// Copyright (C) 2003 Dolphin Project / 2012 PPSSPP Project // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "ppsspp_config.h" #include #include #include "Common/Common.h" #include "Common/MemoryUtil.h" #include "Common/MemArena.h" #include "Common/ChunkFile.h" #include "Core/MemMap.h" #include "Core/HDRemaster.h" #include "Core/MIPS/MIPS.h" #include "Core/HLE/HLE.h" #include "Core/Core.h" #include "Core/Debugger/SymbolMap.h" #include "Core/Debugger/Breakpoints.h" #include "Core/Config.h" #include "Core/HLE/ReplaceTables.h" #include "Core/MIPS/JitCommon/JitBlockCache.h" namespace Memory { // The base pointer to the auto-mirrored arena. u8* base = NULL; // The MemArena class MemArena g_arena; // ============== u8 *m_pPhysicalScratchPad; u8 *m_pUncachedScratchPad; // 64-bit: Pointers to high-mem mirrors // 32-bit: Same as above u8 *m_pPhysicalRAM; u8 *m_pUncachedRAM; u8 *m_pKernelRAM; // RAM mirrored up to "kernel space". Fully accessible at all times currently. u8 *m_pPhysicalRAM2; u8 *m_pUncachedRAM2; u8 *m_pKernelRAM2; u8 *m_pPhysicalRAM3; u8 *m_pUncachedRAM3; u8 *m_pKernelRAM3; // VRAM is mirrored 4 times. The second and fourth mirrors are swizzled. // In practice, a game accessing the mirrors most likely is deswizzling the depth buffer. u8 *m_pPhysicalVRAM1; u8 *m_pPhysicalVRAM2; u8 *m_pPhysicalVRAM3; u8 *m_pPhysicalVRAM4; u8 *m_pUncachedVRAM1; u8 *m_pUncachedVRAM2; u8 *m_pUncachedVRAM3; u8 *m_pUncachedVRAM4; // Holds the ending address of the PSP's user space. // Required for HD Remasters to work properly. // This replaces RAM_NORMAL_SIZE at runtime. u32 g_MemorySize; // Used to store the PSP model on game startup. u32 g_PSPModel; std::recursive_mutex g_shutdownLock; // We don't declare the IO region in here since its handled by other means. static MemoryView views[] = { {&m_pPhysicalScratchPad, 0x00010000, SCRATCHPAD_SIZE, 0}, {&m_pUncachedScratchPad, 0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS}, {&m_pPhysicalVRAM1, 0x04000000, 0x00200000, 0}, {&m_pPhysicalVRAM2, 0x04200000, 0x00200000, MV_MIRROR_PREVIOUS}, {&m_pPhysicalVRAM3, 0x04400000, 0x00200000, MV_MIRROR_PREVIOUS}, {&m_pPhysicalVRAM4, 0x04600000, 0x00200000, MV_MIRROR_PREVIOUS}, {&m_pUncachedVRAM1, 0x44000000, 0x00200000, MV_MIRROR_PREVIOUS}, {&m_pUncachedVRAM2, 0x44200000, 0x00200000, MV_MIRROR_PREVIOUS}, {&m_pUncachedVRAM3, 0x44400000, 0x00200000, MV_MIRROR_PREVIOUS}, {&m_pUncachedVRAM4, 0x44600000, 0x00200000, MV_MIRROR_PREVIOUS}, {&m_pPhysicalRAM, 0x08000000, g_MemorySize, MV_IS_PRIMARY_RAM}, // only from 0x08800000 is it usable (last 24 megs) {&m_pUncachedRAM, 0x48000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM}, {&m_pKernelRAM, 0x88000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM | MV_KERNEL}, // Starts at memory + 31 MB. {&m_pPhysicalRAM2, 0x09F00000, g_MemorySize, MV_IS_EXTRA1_RAM}, {&m_pUncachedRAM2, 0x49F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM}, // {&m_pKernelRAM2, 0x89F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM}, // Starts at memory + 31 * 2 MB. {&m_pPhysicalRAM3, 0x0BE00000, g_MemorySize, MV_IS_EXTRA2_RAM}, {&m_pUncachedRAM3, 0x4BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM}, {&m_pKernelRAM3, 0x8BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM | MV_KERNEL}, // TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to // implement those. }; static const int num_views = sizeof(views) / sizeof(MemoryView); inline static bool CanIgnoreView(const MemoryView &view) { #if PPSSPP_ARCH(32BIT) // Basically, 32-bit platforms can ignore views that are masked out anyway. return (view.flags & MV_MIRROR_PREVIOUS) && (view.virtual_address & ~MEMVIEW32_MASK) != 0; #else return false; #endif } #if defined(IOS) && PPSSPP_ARCH(64BIT) #define SKIP(a_flags, b_flags) \ if ((b_flags) & MV_KERNEL) \ continue; #else #define SKIP(a_flags, b_flags) \ ; #endif static bool Memory_TryBase(u32 flags) { // OK, we know where to find free space. Now grab it! // We just mimic the popular BAT setup. size_t position = 0; size_t last_position = 0; // Zero all the pointers to be sure. for (int i = 0; i < num_views; i++) { if (views[i].out_ptr) *views[i].out_ptr = 0; } int i; for (i = 0; i < num_views; i++) { const MemoryView &view = views[i]; if (view.size == 0) continue; SKIP(flags, view.flags); if (view.flags & MV_MIRROR_PREVIOUS) { position = last_position; } #if PPSSPP_ARCH(64BIT) *view.out_ptr = (u8*)g_arena.CreateView( position, view.size, base + view.virtual_address); if (!*view.out_ptr) { goto bail; ERROR_LOG(MEMMAP, "Failed at view %d", i); } #else if (CanIgnoreView(view)) { // This is handled by address masking in 32-bit, no view needs to be created. *view.out_ptr = *views[i - 1].out_ptr; } else { *view.out_ptr = (u8*)g_arena.CreateView( position, view.size, base + (view.virtual_address & MEMVIEW32_MASK)); if (!*view.out_ptr) { ERROR_LOG(MEMMAP, "Failed at view %d", i); goto bail; } } #endif last_position = position; position += g_arena.roundup(view.size); } return true; bail: // Argh! ERROR! Free what we grabbed so far so we can try again. for (int j = 0; j <= i; j++) { if (views[i].size == 0) continue; SKIP(flags, views[i].flags); if (*views[j].out_ptr) { if (!CanIgnoreView(views[j])) { g_arena.ReleaseView(*views[j].out_ptr, views[j].size); } *views[j].out_ptr = NULL; } } return false; } bool MemoryMap_Setup(u32 flags) { // Figure out how much memory we need to allocate in total. size_t total_mem = 0; for (int i = 0; i < num_views; i++) { if (views[i].size == 0) continue; SKIP(flags, views[i].flags); if (!CanIgnoreView(views[i])) total_mem += g_arena.roundup(views[i].size); } // Grab some pagefile backed memory out of the void ... g_arena.GrabLowMemSpace(total_mem); #if !PPSSPP_PLATFORM(ANDROID) if (g_arena.NeedsProbing()) { int base_attempts = 0; #if defined(_WIN32) && PPSSPP_ARCH(32BIT) // Try a whole range of possible bases. Return once we got a valid one. uintptr_t max_base_addr = 0x7FFF0000 - 0x10000000; uintptr_t min_base_addr = 0x01000000; uintptr_t stride = 0x400000; #else // iOS uintptr_t max_base_addr = 0x1FFFF0000ULL - 0x80000000ULL; uintptr_t min_base_addr = 0x100000000ULL; uintptr_t stride = 0x800000; #endif for (uintptr_t base_addr = min_base_addr; base_addr < max_base_addr; base_addr += stride) { base_attempts++; base = (u8 *)base_addr; if (Memory_TryBase(flags)) { INFO_LOG(MEMMAP, "Found valid memory base at %p after %i tries.", base, base_attempts); return true; } } ERROR_LOG(MEMMAP, "MemoryMap_Setup: Failed finding a memory base."); PanicAlert("MemoryMap_Setup: Failed finding a memory base."); return false; } else #endif { base = g_arena.Find4GBBase(); } // Should return true... return Memory_TryBase(flags); } void MemoryMap_Shutdown(u32 flags) { for (int i = 0; i < num_views; i++) { if (views[i].size == 0) continue; SKIP(flags, views[i].flags); if (*views[i].out_ptr) g_arena.ReleaseView(*views[i].out_ptr, views[i].size); *views[i].out_ptr = nullptr; } g_arena.ReleaseSpace(); } void Init() { // On some 32 bit platforms, you can only map < 32 megs at a time. // TODO: Wait, wtf? What platforms are those? This seems bad. const static int MAX_MMAP_SIZE = 31 * 1024 * 1024; _dbg_assert_msg_(MEMMAP, g_MemorySize < MAX_MMAP_SIZE * 3, "ACK - too much memory for three mmap views."); for (size_t i = 0; i < ARRAY_SIZE(views); i++) { if (views[i].flags & MV_IS_PRIMARY_RAM) views[i].size = std::min((int)g_MemorySize, MAX_MMAP_SIZE); if (views[i].flags & MV_IS_EXTRA1_RAM) views[i].size = std::min(std::max((int)g_MemorySize - MAX_MMAP_SIZE, 0), MAX_MMAP_SIZE); if (views[i].flags & MV_IS_EXTRA2_RAM) views[i].size = std::min(std::max((int)g_MemorySize - MAX_MMAP_SIZE * 2, 0), MAX_MMAP_SIZE); } int flags = 0; MemoryMap_Setup(flags); INFO_LOG(MEMMAP, "Memory system initialized. Base at %p (RAM at @ %p, uncached @ %p)", base, m_pPhysicalRAM, m_pUncachedRAM); } void DoState(PointerWrap &p) { auto s = p.Section("Memory", 1, 3); if (!s) return; if (s < 2) { if (!g_RemasterMode) g_MemorySize = RAM_NORMAL_SIZE; g_PSPModel = PSP_MODEL_FAT; } else if (s == 2) { // In version 2, we determine memory size based on PSP model. u32 oldMemorySize = g_MemorySize; p.Do(g_PSPModel); p.DoMarker("PSPModel"); if (!g_RemasterMode) { g_MemorySize = g_PSPModel == PSP_MODEL_FAT ? RAM_NORMAL_SIZE : RAM_DOUBLE_SIZE; if (oldMemorySize < g_MemorySize) { Shutdown(); Init(); } } } else { // In version 3, we started just saving the memory size directly. // It's no longer based strictly on the PSP model. u32 oldMemorySize = g_MemorySize; p.Do(g_PSPModel); p.DoMarker("PSPModel"); p.Do(g_MemorySize); if (oldMemorySize != g_MemorySize) { Shutdown(); Init(); } } p.DoArray(GetPointer(PSP_GetKernelMemoryBase()), g_MemorySize); p.DoMarker("RAM"); p.DoArray(m_pPhysicalVRAM1, VRAM_SIZE); p.DoMarker("VRAM"); p.DoArray(m_pPhysicalScratchPad, SCRATCHPAD_SIZE); p.DoMarker("ScratchPad"); } void Shutdown() { std::lock_guard guard(g_shutdownLock); u32 flags = 0; MemoryMap_Shutdown(flags); base = nullptr; DEBUG_LOG(MEMMAP, "Memory system shut down."); } void Clear() { if (m_pPhysicalRAM) memset(GetPointerUnchecked(PSP_GetKernelMemoryBase()), 0, g_MemorySize); if (m_pPhysicalScratchPad) memset(m_pPhysicalScratchPad, 0, SCRATCHPAD_SIZE); if (m_pPhysicalVRAM1) memset(m_pPhysicalVRAM1, 0, VRAM_SIZE); } bool IsActive() { return base != nullptr; } // Wanting to avoid include pollution, MemMap.h is included a lot. MemoryInitedLock::MemoryInitedLock() { g_shutdownLock.lock(); } MemoryInitedLock::~MemoryInitedLock() { g_shutdownLock.unlock(); } MemoryInitedLock Lock() { return MemoryInitedLock(); } __forceinline static Opcode Read_Instruction(u32 address, bool resolveReplacements, Opcode inst) { if (!MIPS_IS_EMUHACK(inst.encoding)) { return inst; } if (MIPS_IS_RUNBLOCK(inst.encoding) && MIPSComp::jit) { inst = MIPSComp::jit->GetOriginalOp(inst); if (resolveReplacements && MIPS_IS_REPLACEMENT(inst)) { u32 op; if (GetReplacedOpAt(address, &op)) { if (MIPS_IS_EMUHACK(op)) { ERROR_LOG(HLE,"WTF 1"); return Opcode(op); } else { return Opcode(op); } } else { ERROR_LOG(HLE, "Replacement, but no replacement op? %08x", inst.encoding); } } return inst; } else if (resolveReplacements && MIPS_IS_REPLACEMENT(inst.encoding)) { u32 op; if (GetReplacedOpAt(address, &op)) { if (MIPS_IS_EMUHACK(op)) { ERROR_LOG(HLE,"WTF 2"); return Opcode(op); } else { return Opcode(op); } } else { return inst; } } else { return inst; } } Opcode Read_Instruction(u32 address, bool resolveReplacements) { Opcode inst = Opcode(Read_U32(address)); return Read_Instruction(address, resolveReplacements, inst); } Opcode ReadUnchecked_Instruction(u32 address, bool resolveReplacements) { Opcode inst = Opcode(ReadUnchecked_U32(address)); return Read_Instruction(address, resolveReplacements, inst); } Opcode Read_Opcode_JIT(u32 address) { Opcode inst = Opcode(Read_U32(address)); if (MIPS_IS_RUNBLOCK(inst.encoding) && MIPSComp::jit) { return MIPSComp::jit->GetOriginalOp(inst); } else { return inst; } } // WARNING! No checks! // We assume that _Address is cached void Write_Opcode_JIT(const u32 _Address, const Opcode& _Value) { Memory::WriteUnchecked_U32(_Value.encoding, _Address); } void Memset(const u32 _Address, const u8 _iValue, const u32 _iLength) { u8 *ptr = GetPointer(_Address); if (ptr != NULL) { memset(ptr, _iValue, _iLength); } else { for (size_t i = 0; i < _iLength; i++) Write_U8(_iValue, (u32)(_Address + i)); } #ifndef MOBILE_DEVICE CBreakPoints::ExecMemCheck(_Address, true, _iLength, currentMIPS->pc); #endif } } // namespace