// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ // Reference : https://stackoverflow.com/questions/6121792/how-to-check-if-a-cpu-supports-the-sse3-instruction-set #include "ppsspp_config.h" #if (PPSSPP_ARCH(X86) || PPSSPP_ARCH(AMD64)) && !defined(__EMSCRIPTEN__) #include "ext/cpu_features/include/cpuinfo_x86.h" #if defined(CPU_FEATURES_OS_FREEBSD) || defined(CPU_FEATURES_OS_LINUX) || defined(CPU_FEATURES_OS_ANDROID) || defined(CPU_FEATURES_OS_MACOS) || defined(CPU_FEATURES_OS_WINDOWS) #define USE_CPU_FEATURES 1 #endif #ifdef __ANDROID__ #include #include #elif PPSSPP_PLATFORM(MAC) #include #endif #include #include #include #include #include "Common/Common.h" #include "Common/CPUDetect.h" #include "Common/File/FileUtil.h" #include "Common/StringUtils.h" #if defined(_WIN32) #include "Common/CommonWindows.h" #define _interlockedbittestandset workaround_ms_header_bug_platform_sdk6_set #define _interlockedbittestandreset workaround_ms_header_bug_platform_sdk6_reset #define _interlockedbittestandset64 workaround_ms_header_bug_platform_sdk6_set64 #define _interlockedbittestandreset64 workaround_ms_header_bug_platform_sdk6_reset64 #include #undef _interlockedbittestandset #undef _interlockedbittestandreset #undef _interlockedbittestandset64 #undef _interlockedbittestandreset64 void do_cpuidex(u32 regs[4], u32 cpuid_leaf, u32 ecxval) { __cpuidex((int *)regs, cpuid_leaf, ecxval); } void do_cpuid(u32 regs[4], u32 cpuid_leaf) { __cpuid((int *)regs, cpuid_leaf); } #ifdef __MINGW32__ static uint64_t do_xgetbv(unsigned int index) { unsigned int eax, edx; // This is xgetbv directly, so we can avoid compilers warning we need runtime checks. asm(".byte 0x0f, 0x01, 0xd0" : "=a"(eax), "=d"(edx) : "c"(index)); return ((uint64_t)edx << 32) | eax; } #else #define do_xgetbv _xgetbv #endif #else // _WIN32 #ifdef _M_SSE #include static uint64_t do_xgetbv(unsigned int index) { unsigned int eax, edx; __asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index)); return ((uint64_t)edx << 32) | eax; } #endif // _M_SSE #if !PPSSPP_ARCH(MIPS) void do_cpuidex(u32 regs[4], u32 cpuid_leaf, u32 ecxval) { #if defined(__i386__) && defined(__PIC__) asm ( "xchgl %%ebx, %1;\n\t" "cpuid;\n\t" "xchgl %%ebx, %1;\n\t" :"=a" (regs[0]), "=r" (regs[1]), "=c" (regs[2]), "=d" (regs[3]) :"a" (cpuid_leaf), "c" (ecxval)); #else asm ( "cpuid;\n\t" :"=a" (regs[0]), "=b" (regs[1]), "=c" (regs[2]), "=d" (regs[3]) :"a" (cpuid_leaf), "c" (ecxval)); #endif } void do_cpuid(u32 regs[4], u32 cpuid_leaf) { do_cpuidex(regs, cpuid_leaf, 0); } #endif // !PPSSPP_ARCH(MIPS) #endif // !win32 #ifndef _XCR_XFEATURE_ENABLED_MASK #define _XCR_XFEATURE_ENABLED_MASK 0 #endif CPUInfo cpu_info; CPUInfo::CPUInfo() { Detect(); } #if PPSSPP_PLATFORM(LINUX) static std::vector ParseCPUList(const std::string &filename) { std::string data; std::vector results; if (File::ReadSysTextFileToString(Path(filename), &data)) { std::vector ranges; SplitString(data, ',', ranges); for (auto range : ranges) { int low = 0, high = 0; int parts = sscanf(range.c_str(), "%d-%d", &low, &high); if (parts == 1) { high = low; } for (int i = low; i <= high; ++i) { results.push_back(i); } } } return results; } #endif // Detects the various cpu features void CPUInfo::Detect() { #ifdef USE_CPU_FEATURES cpu_features::X86Info info = cpu_features::GetX86Info(); #endif memset(this, 0, sizeof(*this)); #if PPSSPP_ARCH(X86) Mode64bit = false; #elif PPSSPP_ARCH(AMD64) Mode64bit = true; OS64bit = true; #endif num_cores = 1; #if PPSSPP_PLATFORM(UWP) OS64bit = Mode64bit; // TODO: Not always accurate! #elif defined(_WIN32) && PPSSPP_ARCH(X86) BOOL f64 = false; IsWow64Process(GetCurrentProcess(), &f64); OS64bit = (f64 == TRUE) ? true : false; #endif // Set obvious defaults, for extra safety if (Mode64bit) { bSSE = true; bSSE2 = true; bLongMode = true; } // Assume CPU supports the CPUID instruction. Those that don't can barely // boot modern OS:es anyway. u32 cpu_id[4]; memset(cpu_string, 0, sizeof(cpu_string)); // Detect CPU's CPUID capabilities, and grab cpu string do_cpuid(cpu_id, 0x00000000); u32 max_std_fn = cpu_id[0]; // EAX *((int *)cpu_string) = cpu_id[1]; *((int *)(cpu_string + 4)) = cpu_id[3]; *((int *)(cpu_string + 8)) = cpu_id[2]; do_cpuid(cpu_id, 0x80000000); u32 max_ex_fn = cpu_id[0]; if (!strcmp(cpu_string, "GenuineIntel")) vendor = VENDOR_INTEL; else if (!strcmp(cpu_string, "AuthenticAMD")) vendor = VENDOR_AMD; else vendor = VENDOR_OTHER; // Set reasonable default brand string even if brand string not available. #ifdef USE_CPU_FEATURES if (info.brand_string[0]) strcpy(brand_string, info.brand_string); else #endif strcpy(brand_string, cpu_string); #ifdef USE_CPU_FEATURES switch (cpu_features::GetX86Microarchitecture(&info)) { case cpu_features::INTEL_ATOM_BNL: case cpu_features::INTEL_ATOM_SMT: case cpu_features::INTEL_ATOM_GMT: case cpu_features::INTEL_ATOM_GMT_PLUS: case cpu_features::INTEL_ATOM_TMT: bAtom = true; break; default: bAtom = false; break; } bPOPCNT = info.features.popcnt; bBMI1 = info.features.bmi1; bBMI2 = info.features.bmi2; bBMI2_fast = bBMI2 && (vendor != VENDOR_AMD || info.family >= 0x19); bMOVBE = info.features.movbe; bLZCNT = info.features.lzcnt; bRTM = info.features.rtm; bSSE = info.features.sse; bSSE2 = info.features.sse2; bSSE3 = info.features.sse3; bSSSE3 = info.features.ssse3; bSSE4_1 = info.features.sse4_1; bSSE4_2 = info.features.sse4_2; bSSE4A = info.features.sse4a; bAES = info.features.aes; bSHA = info.features.sha; bF16C = info.features.f16c; bAVX = info.features.avx; bAVX2 = info.features.avx2; bFMA3 = info.features.fma3; bFMA4 = info.features.fma4; #endif // Detect family and other misc stuff. bool ht = false; HTT = ht; logical_cpu_count = 1; if (max_std_fn >= 1) { do_cpuid(cpu_id, 0x00000001); #ifndef USE_CPU_FEATURES int family = ((cpu_id[0] >> 8) & 0xf) + ((cpu_id[0] >> 20) & 0xff); int model = ((cpu_id[0] >> 4) & 0xf) + ((cpu_id[0] >> 12) & 0xf0); // Detect people unfortunate enough to be running PPSSPP on an Atom if (family == 6 && (model == 0x1C || model == 0x26 || model == 0x27 || model == 0x35 || model == 0x36 || model == 0x37 || model == 0x4A || model == 0x4D || model == 0x5A || model == 0x5D)) bAtom = true; #endif logical_cpu_count = (cpu_id[1] >> 16) & 0xFF; ht = (cpu_id[3] >> 28) & 1; #ifndef USE_CPU_FEATURES if ((cpu_id[3] >> 25) & 1) bSSE = true; if ((cpu_id[3] >> 26) & 1) bSSE2 = true; if ((cpu_id[2]) & 1) bSSE3 = true; if ((cpu_id[2] >> 9) & 1) bSSSE3 = true; if ((cpu_id[2] >> 19) & 1) bSSE4_1 = true; if ((cpu_id[2] >> 20) & 1) bSSE4_2 = true; if ((cpu_id[2] >> 28) & 1) { bAVX = true; if ((cpu_id[2] >> 12) & 1) bFMA3 = true; } if ((cpu_id[2] >> 25) & 1) bAES = true; #endif if ((cpu_id[3] >> 24) & 1) { // We can use FXSAVE. bFXSR = true; } #ifndef USE_CPU_FEATURES // AVX support requires 3 separate checks: // - Is the AVX bit set in CPUID? (>>28) // - Is the XSAVE bit set in CPUID? ( >>26) // - Is the OSXSAVE bit set in CPUID? ( >>27) // - XGETBV result has the XCR bit set. if (((cpu_id[2] >> 28) & 1) && ((cpu_id[2] >> 27) & 1) && ((cpu_id[2] >> 26) & 1)) { if ((do_xgetbv(_XCR_XFEATURE_ENABLED_MASK) & 0x6) == 0x6) { bAVX = true; if ((cpu_id[2] >> 12) & 1) bFMA3 = true; } } // TSX support require check: // -- Is the RTM bit set in CPUID? (>>11) // -- No need to check HLE bit because legacy processors ignore HLE hints // -- See https://software.intel.com/en-us/articles/how-to-detect-new-instruction-support-in-the-4th-generation-intel-core-processor-family if (max_std_fn >= 7) { do_cpuid(cpu_id, 0x00000007); // careful; we can't enable AVX2 unless the XSAVE/XGETBV checks above passed if ((cpu_id[1] >> 5) & 1) bAVX2 = bAVX; if ((cpu_id[1] >> 3) & 1) bBMI1 = true; if ((cpu_id[1] >> 8) & 1) bBMI2 = true; if ((cpu_id[1] >> 29) & 1) bSHA = true; if ((cpu_id[1] >> 11) & 1) bRTM = true; } bBMI2_fast = bBMI2 && (vendor != VENDOR_AMD || family >= 0x19); #endif } if (max_ex_fn >= 0x80000004) { #ifndef USE_CPU_FEATURES // Extract brand string do_cpuid(cpu_id, 0x80000002); memcpy(brand_string, cpu_id, sizeof(cpu_id)); do_cpuid(cpu_id, 0x80000003); memcpy(brand_string + 16, cpu_id, sizeof(cpu_id)); do_cpuid(cpu_id, 0x80000004); memcpy(brand_string + 32, cpu_id, sizeof(cpu_id)); #endif } if (max_ex_fn >= 0x80000001) { // Check for more features. do_cpuid(cpu_id, 0x80000001); if (cpu_id[2] & 1) bLAHFSAHF64 = true; #ifndef USE_CPU_FEATURES if ((cpu_id[2] >> 6) & 1) bSSE4A = true; if ((cpu_id[2] >> 16) & 1) bFMA4 = true; #endif if ((cpu_id[2] >> 11) & 1) bXOP = true; // CmpLegacy (bit 2) is deprecated. if ((cpu_id[3] >> 29) & 1) bLongMode = true; } num_cores = (logical_cpu_count == 0) ? 1 : logical_cpu_count; if (max_ex_fn >= 0x80000008) { // Get number of cores. This is a bit complicated. Following AMD manual here. do_cpuid(cpu_id, 0x80000008); int apic_id_core_id_size = (cpu_id[2] >> 12) & 0xF; if (apic_id_core_id_size == 0) { if (ht) { // 0x0B is the preferred method on Core i series processors. // Inspired by https://github.com/D-Programming-Language/druntime/blob/23b0d1f41e27638bda2813af55823b502195a58d/src/core/cpuid.d#L562. bool hasLeafB = false; if (vendor == VENDOR_INTEL && max_std_fn >= 0x0B) { do_cpuidex(cpu_id, 0x0B, 0); if (cpu_id[1] != 0) { logical_cpu_count = cpu_id[1] & 0xFFFF; do_cpuidex(cpu_id, 0x0B, 1); int totalThreads = cpu_id[1] & 0xFFFF; num_cores = totalThreads / logical_cpu_count; hasLeafB = true; } } // Old new mechanism for modern Intel CPUs. if (!hasLeafB && vendor == VENDOR_INTEL) { do_cpuid(cpu_id, 0x00000004); int cores_x_package = ((cpu_id[0] >> 26) & 0x3F) + 1; HTT = (cores_x_package < logical_cpu_count); cores_x_package = ((logical_cpu_count % cores_x_package) == 0) ? cores_x_package : 1; num_cores = (cores_x_package > 1) ? cores_x_package : num_cores; logical_cpu_count /= cores_x_package; } } } else { // Use AMD's new method. num_cores = (cpu_id[2] & 0xFF) + 1; } } // The above only gets valid info for the active processor. // Let's rely on OS APIs for accurate information, if available, below. #if PPSSPP_PLATFORM(WINDOWS) #if !PPSSPP_PLATFORM(UWP) typedef BOOL (WINAPI *getLogicalProcessorInformationEx_f)(LOGICAL_PROCESSOR_RELATIONSHIP RelationshipType, PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX Buffer, PDWORD ReturnedLength); getLogicalProcessorInformationEx_f getLogicalProcessorInformationEx = nullptr; HMODULE kernel32 = GetModuleHandle(L"kernel32.dll"); if (kernel32) getLogicalProcessorInformationEx = (getLogicalProcessorInformationEx_f)GetProcAddress(kernel32, "GetLogicalProcessorInformationEx"); #else void *getLogicalProcessorInformationEx = nullptr; #endif if (getLogicalProcessorInformationEx) { #if !PPSSPP_PLATFORM(UWP) DWORD len = 0; getLogicalProcessorInformationEx(RelationAll, nullptr, &len); auto processors = new uint8_t[len]; if (getLogicalProcessorInformationEx(RelationAll, (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)processors, &len)) { num_cores = 0; logical_cpu_count = 0; auto p = processors; while (p < processors + len) { const auto &processor = *(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)p; if (processor.Relationship == RelationProcessorCore) { num_cores++; for (int j = 0; j < processor.Processor.GroupCount; ++j) { const auto &mask = processor.Processor.GroupMask[j].Mask; for (int i = 0; i < sizeof(mask) * 8; ++i) { logical_cpu_count += (mask >> i) & 1; } } } p += processor.Size; } } delete [] processors; #endif } else { DWORD len = 0; const DWORD sz = sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION); GetLogicalProcessorInformation(nullptr, &len); std::vector processors; processors.resize((len + sz - 1) / sz); if (GetLogicalProcessorInformation(&processors[0], &len)) { num_cores = 0; logical_cpu_count = 0; for (const auto &processor : processors) { if (processor.Relationship == RelationProcessorCore) { num_cores++; for (int i = 0; i < sizeof(processor.ProcessorMask) * 8; ++i) { logical_cpu_count += (processor.ProcessorMask >> i) & 1; } } } } } // This seems to be the count per core. Hopefully all cores are the same, but we counted each above. logical_cpu_count /= std::max(num_cores, 1); #elif PPSSPP_PLATFORM(LINUX) if (File::Exists(Path("/sys/devices/system/cpu/present"))) { // This may not count unplugged cores, but at least it's a best guess. // Also, this assumes the CPU cores are heterogeneous (e.g. all cores could be active simultaneously.) num_cores = 0; logical_cpu_count = 0; std::set counted_cores; auto present = ParseCPUList("/sys/devices/system/cpu/present"); for (int id : present) { logical_cpu_count++; if (counted_cores.count(id) == 0) { num_cores++; counted_cores.insert(id); // Also count any thread siblings as counted. auto threads = ParseCPUList(StringFromFormat("/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list", id)); for (int mark_id : threads) { counted_cores.insert(mark_id); } } } } // This seems to be the count per core. Hopefully all cores are the same, but we counted each above. logical_cpu_count /= std::max(num_cores, 1); #elif PPSSPP_PLATFORM(MAC) int num = 0; size_t sz = sizeof(num); if (sysctlbyname("hw.physicalcpu_max", &num, &sz, nullptr, 0) == 0) { num_cores = num; sz = sizeof(num); if (sysctlbyname("hw.logicalcpu_max", &num, &sz, nullptr, 0) == 0) { logical_cpu_count = num / std::max(num_cores, 1); } } #endif if (logical_cpu_count <= 0) logical_cpu_count = 1; } std::vector CPUInfo::Features() { std::vector features; struct Flag { bool &flag; const char *str; }; const Flag list[] = { { bSSE, "SSE" }, { bSSE2, "SSE2" }, { bSSE3, "SSE3" }, { bSSSE3, "SSSE3" }, { bSSE4_1, "SSE4.1" }, { bSSE4_2, "SSE4.2" }, { bSSE4A, "SSE4A" }, { HTT, "HTT" }, { bAVX, "AVX" }, { bAVX2, "AVX2" }, { bFMA3, "FMA3" }, { bFMA4, "FMA4" }, { bAES, "AES" }, { bSHA, "SHA" }, { bXOP, "XOP" }, { bRTM, "TSX" }, { bF16C, "F16C" }, { bBMI1, "BMI1" }, { bBMI2, "BMI2" }, { bPOPCNT, "POPCNT" }, { bMOVBE, "MOVBE" }, { bLZCNT, "LZCNT" }, { bLongMode, "64-bit support" }, }; for (auto &item : list) { if (item.flag) { features.push_back(item.str); } } return features; } // Turn the cpu info into a string we can show std::string CPUInfo::Summarize() { std::string sum; if (num_cores == 1) { sum = StringFromFormat("%s, %d core", cpu_string, num_cores); } else { sum = StringFromFormat("%s, %d cores", cpu_string, num_cores); if (HTT) sum += StringFromFormat(" (%i logical threads per physical core)", logical_cpu_count); } auto features = Features(); for (std::string &feature : features) { sum += ", " + feature; } return sum; } #endif // PPSSPP_ARCH(X86) || PPSSPP_ARCH(AMD64) const char *GetCompilerABI() { #if PPSSPP_ARCH(ARMV7) return "armeabi-v7a"; #elif PPSSPP_ARCH(ARM64) return "arm64"; #elif PPSSPP_ARCH(X86) return "x86"; #elif PPSSPP_ARCH(AMD64) return "x86-64"; #elif PPSSPP_ARCH(RISCV64) //https://github.com/riscv/riscv-toolchain-conventions#cc-preprocessor-definitions //https://github.com/riscv/riscv-c-api-doc/blob/master/riscv-c-api.md#abi-related-preprocessor-definitions #if defined(__riscv_float_abi_single) return "lp64f"; #elif defined(__riscv_float_abi_double) return "lp64d"; #elif defined(__riscv_float_abi_quad) return "lp64q"; #elif defined(__riscv_float_abi_soft) return "lp64"; #endif #else return "other"; #endif }