#include #include "Common/Serialize/Serializer.h" #include "Common/Serialize/SerializeFuncs.h" #include "Common/StringUtils.h" #include "Core/HLE/HLE.h" #include "Core/HLE/FunctionWrappers.h" #include "Core/HLE/sceKernel.h" #include "Core/HLE/sceKernelHeap.h" #include "Core/HLE/sceKernelMemory.h" #include "Core/Reporting.h" #include "Core/Util/BlockAllocator.h" static const u32 KERNEL_HEAP_BLOCK_HEADER_SIZE = 8; static const bool g_fromBottom = false; // This object and the functions here are available for kernel code only, not game code. // This differs from code like sceKernelMutex, which is available for games. // This exists in PPSSPP mainly because certain game patches use these kernel modules. struct KernelHeap : public KernelObject { int uid = 0; int partitionId = 0; u32 size = 0; int flags = 0; u32 address = 0; std::string name; BlockAllocator alloc; static u32 GetMissingErrorCode() { return SCE_KERNEL_ERROR_UNKNOWN_UID; } static int GetStaticIDType() { return PPSSPP_KERNEL_TMID_Heap; } int GetIDType() const override { return PPSSPP_KERNEL_TMID_Heap; } const char *GetTypeName() override { return GetStaticTypeName(); } static const char *GetStaticTypeName() { return "Heap"; } void DoState(PointerWrap &p) override { Do(p, uid); Do(p, partitionId); Do(p, size); Do(p, flags); Do(p, address); Do(p, name); Do(p, alloc); } }; static int sceKernelCreateHeap(int partitionId, int size, int flags, const char *Name) { u32 allocSize = (size + 3) & ~3; BlockAllocator *allocator = BlockAllocatorFromAddr(partitionId); // TODO: Validate error code. if (!allocator) return hleLogError(Log::sceKernel, SCE_KERNEL_ERROR_ILLEGAL_ARGUMENT, "invalid partition"); // TODO: This should probably actually use flags? Name? u32 addr = allocator->Alloc(allocSize, g_fromBottom, StringFromFormat("KernelHeap/%s", Name).c_str()); if (addr == (u32)-1) { // TODO: Validate error code. return hleLogError(Log::sceKernel, SCE_KERNEL_ERROR_NO_MEMORY, "fFailed to allocate %d bytes of memory", size); } KernelHeap *heap = new KernelHeap(); SceUID uid = kernelObjects.Create(heap); heap->partitionId = partitionId; heap->flags = flags; heap->name = Name ? Name : ""; // Not sure if this needs validation. heap->size = allocSize; heap->address = addr; heap->alloc.Init(heap->address + 128, heap->size - 128, true); heap->uid = uid; return hleLogSuccessInfoX(Log::sceKernel, uid); } static int sceKernelAllocHeapMemory(int heapId, int size) { u32 error; KernelHeap *heap = kernelObjects.Get(heapId, error); if (!heap) return hleLogError(Log::sceKernel, error, "sceKernelAllocHeapMemory(%d): invalid heapId", heapId); // There's 8 bytes at the end of every block, reserved. u32 memSize = KERNEL_HEAP_BLOCK_HEADER_SIZE + size; u32 addr = heap->alloc.Alloc(memSize, true); return hleLogSuccessInfoX(Log::sceKernel, addr); } static int sceKernelDeleteHeap(int heapId) { u32 error; KernelHeap *heap = kernelObjects.Get(heapId, error); if (!heap) return hleLogError(Log::sceKernel, error, "sceKernelDeleteHeap(%d): invalid heapId", heapId); // Not using heap->partitionId here for backwards compatibility with old save states. BlockAllocator *allocator = BlockAllocatorFromAddr(heap->address); if (allocator) allocator->Free(heap->address); kernelObjects.Destroy(heap->uid); return hleLogSuccessInfoX(Log::sceKernel, 0); } static u32 sceKernelPartitionTotalFreeMemSize(int partitionId) { BlockAllocator *allocator = BlockAllocatorFromID(partitionId); // TODO: Validate error code. if (!allocator) return hleLogError(Log::sceKernel, SCE_KERNEL_ERROR_ILLEGAL_ARGUMENT, "invalid partition"); return hleLogWarning(Log::sceKernel, allocator->GetTotalFreeBytes()); } static u32 sceKernelPartitionMaxFreeMemSize(int partitionId) { BlockAllocator *allocator = BlockAllocatorFromID(partitionId); // TODO: Validate error code. if (!allocator) return hleLogError(Log::sceKernel, SCE_KERNEL_ERROR_ILLEGAL_ARGUMENT, "invalid partition"); return hleLogWarning(Log::sceKernel, allocator->GetLargestFreeBlockSize()); } static u32 sceKernelGetUidmanCB() { ERROR_LOG_REPORT(Log::sceKernel, "UNIMP sceKernelGetUidmanCB"); return 0; } static int sceKernelFreeHeapMemory(int heapId, u32 block) { u32 error; KernelHeap* heap = kernelObjects.Get(heapId, error); if (!heap) return hleLogError(Log::sceKernel, error, "sceKernelFreeHeapMemory(%d): invalid heapId", heapId); if (block == 0) { return hleLogSuccessInfoI(Log::sceKernel, 0, "sceKernelFreeHeapMemory(%d): heapId,0: block", heapId); } if (!heap->alloc.FreeExact(block)) { return hleLogError(Log::sceKernel, SCE_KERNEL_ERROR_INVALID_POINTER, "invalid pointer %08x", block); } return hleLogSuccessInfoI(Log::sceKernel, 0, "sceKernelFreeHeapMemory(%d): heapId, block", heapId, block); } static int sceKernelAllocHeapMemoryWithOption(int heapId, u32 memSize, u32 paramsPtr) { u32 error; KernelHeap* heap = kernelObjects.Get(heapId, error); if (!heap) return hleLogError(Log::sceKernel, error, "sceKernelFreeHeapMemory(%d): invalid heapId", heapId); u32 grain = 4; // 0 is ignored. if (paramsPtr != 0) { u32 size = Memory::Read_U32(paramsPtr); if (size < 8) return hleLogError(Log::sceKernel, 0, "invalid param size"); if (size > 8) WARN_LOG(Log::HLE, "sceKernelAllocHeapMemoryWithOption(): unexpected param size %d", size); grain = Memory::Read_U32(paramsPtr + 4); } INFO_LOG(Log::HLE, "sceKernelAllocHeapMemoryWithOption(%08x, %08x, %08x)", heapId, memSize, paramsPtr); // There's 8 bytes at the end of every block, reserved. memSize += 8; u32 addr = heap->alloc.AllocAligned(memSize, grain, grain, true); return addr; } const HLEFunction SysMemForKernel[] = { { 0X636C953B, &WrapI_II, "sceKernelAllocHeapMemory", 'x', "ii", HLE_KERNEL_SYSCALL }, { 0XC9805775, &WrapI_I, "sceKernelDeleteHeap", 'i', "i" , HLE_KERNEL_SYSCALL }, { 0X1C1FBFE7, &WrapI_IIIC, "sceKernelCreateHeap", 'i', "iixs", HLE_KERNEL_SYSCALL }, { 0X237DBD4F, &WrapI_ICIUU, "sceKernelAllocPartitionMemory", 'i', "isixx", HLE_KERNEL_SYSCALL }, { 0XB6D61D02, &WrapI_I, "sceKernelFreePartitionMemory", 'i', "i", HLE_KERNEL_SYSCALL }, { 0X9D9A5BA1, &WrapU_I, "sceKernelGetBlockHeadAddr", 'x', "i", HLE_KERNEL_SYSCALL }, { 0x9697CD32, &WrapU_I, "sceKernelPartitionTotalFreeMemSize", 'x', "i" , HLE_KERNEL_SYSCALL }, { 0xE6581468, &WrapU_I, "sceKernelPartitionMaxFreeMemSize", 'x', "i" , HLE_KERNEL_SYSCALL }, { 0X3FC9AE6A, &WrapU_V, "sceKernelDevkitVersion", 'x', "" , HLE_KERNEL_SYSCALL }, { 0X536AD5E1, &WrapU_V, "sceKernelGetUidmanCB", 'i', "i" , HLE_KERNEL_SYSCALL }, { 0X7B749390, &WrapI_IU, "sceKernelFreeHeapMemory", 'i', "ix" , HLE_KERNEL_SYSCALL }, { 0XEB7A74DB, &WrapI_IUU, "sceKernelAllocHeapMemoryWithOption", 'i', "ixp" , HLE_KERNEL_SYSCALL }, }; void Register_SysMemForKernel() { RegisterModule("SysMemForKernel", ARRAY_SIZE(SysMemForKernel), SysMemForKernel); }