// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include #include "native/base/stringutil.h" #include "Common/ChunkFile.h" #include "Common/FileUtil.h" #include "Core/Config.h" #include "Core/HLE/HLE.h" #include "Core/HLE/FunctionWrappers.h" #include "Core/HLE/HLETables.h" #include "Core/HLE/ReplaceTables.h" #include "Core/Reporting.h" #include "Core/Host.h" #include "Core/MIPS/MIPS.h" #include "Core/MIPS/MIPSAnalyst.h" #include "Core/MIPS/MIPSCodeUtils.h" #include "Core/ELF/ElfReader.h" #include "Core/ELF/PBPReader.h" #include "Core/ELF/PrxDecrypter.h" #include "Core/FileSystems/FileSystem.h" #include "Core/FileSystems/MetaFileSystem.h" #include "Core/Util/BlockAllocator.h" #include "Core/CoreTiming.h" #include "Core/PSPLoaders.h" #include "Core/System.h" #include "Core/MemMap.h" #include "Core/Debugger/SymbolMap.h" #include "Core/MIPS/MIPS.h" #include "Core/HLE/sceKernel.h" #include "Core/HLE/sceKernelModule.h" #include "Core/HLE/sceKernelThread.h" #include "Core/HLE/sceKernelMemory.h" #include "Core/HLE/sceMpeg.h" #include "Core/HLE/sceIo.h" #include "Core/HLE/KernelWaitHelpers.h" #include "Core/ELF/ParamSFO.h" #include "GPU/GPUState.h" #ifdef BLACKBERRY using std::strnlen; #endif enum { PSP_THREAD_ATTR_USER = 0x80000000 }; enum { // Function exports. NID_MODULE_START = 0xD632ACDB, NID_MODULE_STOP = 0xCEE8593C, NID_MODULE_REBOOT_BEFORE = 0x2F064FA6, NID_MODULE_REBOOT_PHASE = 0xADF12745, NID_MODULE_BOOTSTART = 0xD3744BE0, // Variable exports. NID_MODULE_INFO = 0xF01D73A7, NID_MODULE_START_THREAD_PARAMETER = 0x0F7C276C, NID_MODULE_STOP_THREAD_PARAMETER = 0xCF0CC697, NID_MODULE_REBOOT_BEFORE_THREAD_PARAMETER = 0xF4F4299D, NID_MODULE_SDK_VERSION = 0x11B97506, }; // This is a workaround for misbehaving homebrew (like TBL's Suicide Barbie (Final)). static const char *lieAboutSuccessModules[] = { "flash0:/kd/audiocodec.prx", "flash0:/kd/libatrac3plus.prx", "disc0:/PSP_GAME/SYSDIR/UPDATE/EBOOT.BIN", }; static const char *blacklistedModules[] = { "sceATRAC3plus_Library", "sceFont_Library", "SceFont_Library", "SceHttp_Library", "sceMpeg_library", "sceNetAdhocctl_Library", "sceNetAdhocDownload_Library", "sceNetAdhocMatching_Library", "sceNetApDialogDummy_Library", "sceNetAdhoc_Library", "sceNetApctl_Library", "sceNetInet_Library", "sceNetResolver_Library", "sceNet_Library", "sceSsl_Module", }; struct VarSymbolImport { char moduleName[KERNELOBJECT_MAX_NAME_LENGTH + 1]; u32 nid; u32 stubAddr; u8 type; }; struct VarSymbolExport { bool Matches(const VarSymbolImport &other) const { return nid == other.nid && !strncmp(moduleName, other.moduleName, KERNELOBJECT_MAX_NAME_LENGTH); } char moduleName[KERNELOBJECT_MAX_NAME_LENGTH + 1]; u32 nid; u32 symAddr; }; struct FuncSymbolImport { char moduleName[KERNELOBJECT_MAX_NAME_LENGTH + 1]; u32 stubAddr; u32 nid; }; struct FuncSymbolExport { bool Matches(const FuncSymbolImport &other) const { return nid == other.nid && !strncmp(moduleName, other.moduleName, KERNELOBJECT_MAX_NAME_LENGTH); } char moduleName[KERNELOBJECT_MAX_NAME_LENGTH + 1]; u32 symAddr; u32 nid; }; void ImportVarSymbol(const VarSymbolImport &var); void ExportVarSymbol(const VarSymbolExport &var); void UnexportVarSymbol(const VarSymbolExport &var); void ImportFuncSymbol(const FuncSymbolImport &func); void ExportFuncSymbol(const FuncSymbolExport &func); void UnexportFuncSymbol(const FuncSymbolExport &func); struct NativeModule { u32_le next; u16_le attribute; u8 version[2]; char name[28]; u32_le status; u32_le unk1; u32_le usermod_thid; u32_le memid; u32_le mpidtext; u32_le mpiddata; u32_le ent_top; u32_le ent_size; u32_le stub_top; u32_le stub_size; u32_le module_start_func; u32_le module_stop_func; u32_le module_bootstart_func; u32_le module_reboot_before_func; u32_le module_reboot_phase_func; u32_le entry_addr; u32_le gp_value; u32_le text_addr; u32_le text_size; u32_le data_size; u32_le bss_size; u32_le nsegment; u32_le segmentaddr[4]; u32_le segmentsize[4]; u32_le module_start_thread_priority; u32_le module_start_thread_stacksize; u32_le module_start_thread_attr; u32_le module_stop_thread_priority; u32_le module_stop_thread_stacksize; u32_le module_stop_thread_attr; u32_le module_reboot_before_thread_priority; u32_le module_reboot_before_thread_stacksize; u32_le module_reboot_before_thread_attr; }; // by QueryModuleInfo struct ModuleInfo { SceSize_le size; u32_le nsegment; u32_le segmentaddr[4]; u32_le segmentsize[4]; u32_le entry_addr; u32_le gp_value; u32_le text_addr; u32_le text_size; u32_le data_size; u32_le bss_size; u16_le attribute; u8 version[2]; char name[28]; }; struct ModuleWaitingThread { SceUID threadID; u32 statusPtr; }; enum NativeModuleStatus { MODULE_STATUS_STARTING = 4, MODULE_STATUS_STARTED = 5, MODULE_STATUS_STOPPING = 6, MODULE_STATUS_STOPPED = 7, MODULE_STATUS_UNLOADING = 8, }; class Module : public KernelObject { public: Module() : textStart(0), textEnd(0), memoryBlockAddr(0), isFake(false) {} ~Module() { if (memoryBlockAddr) { // If it's either below user memory, or using a high kernel bit, it's in kernel. if (memoryBlockAddr < PSP_GetUserMemoryBase() || memoryBlockAddr > PSP_GetUserMemoryEnd()) { kernelMemory.Free(memoryBlockAddr); } else { userMemory.Free(memoryBlockAddr); } symbolMap.UnloadModule(memoryBlockAddr, memoryBlockSize); } } const char *GetName() override { return nm.name; } const char *GetTypeName() override { return "Module"; } void GetQuickInfo(char *ptr, int size) override { // ignore size sprintf(ptr, "%sname=%s gp=%08x entry=%08x", isFake ? "faked " : "", nm.name, nm.gp_value, nm.entry_addr); } static u32 GetMissingErrorCode() { return SCE_KERNEL_ERROR_UNKNOWN_MODULE; } static int GetStaticIDType() { return PPSSPP_KERNEL_TMID_Module; } int GetIDType() const override { return PPSSPP_KERNEL_TMID_Module; } void DoState(PointerWrap &p) override { auto s = p.Section("Module", 1, 3); if (!s) return; p.Do(nm); p.Do(memoryBlockAddr); p.Do(memoryBlockSize); p.Do(isFake); if (s < 2) { bool isStarted = false; p.Do(isStarted); if (isStarted) nm.status = MODULE_STATUS_STARTED; else nm.status = MODULE_STATUS_STOPPED; } if (s >= 3) { p.Do(textStart); p.Do(textEnd); } ModuleWaitingThread mwt = {0}; p.Do(waitingThreads, mwt); FuncSymbolExport fsx = {{0}}; p.Do(exportedFuncs, fsx); FuncSymbolImport fsi = {{0}}; p.Do(importedFuncs, fsi); VarSymbolExport vsx = {{0}}; p.Do(exportedVars, vsx); VarSymbolImport vsi = {{0}}; p.Do(importedVars, vsi); RebuildImpExpModuleNames(); if (p.mode == p.MODE_READ) { char moduleName[29] = {0}; strncpy(moduleName, nm.name, ARRAY_SIZE(nm.name)); if (memoryBlockAddr != 0) { symbolMap.AddModule(moduleName, memoryBlockAddr, memoryBlockSize); } } } // We don't do this in the destructor to avoid annoying messages on game shutdown. void Cleanup(); void ImportFunc(const FuncSymbolImport &func) { if (!Memory::IsValidAddress(func.stubAddr)) { WARN_LOG_REPORT(LOADER, "Invalid address for syscall stub %s %08x", func.moduleName, func.nid); return; } DEBUG_LOG(LOADER, "Importing %s : %08x", GetFuncName(func.moduleName, func.nid), func.stubAddr); // Add the symbol to the symbol map for debugging. char temp[256]; sprintf(temp,"zz_%s", GetFuncName(func.moduleName, func.nid)); symbolMap.AddFunction(temp,func.stubAddr,8); // Keep track and actually hook it up if possible. importedFuncs.push_back(func); impExpModuleNames.insert(func.moduleName); ImportFuncSymbol(func); } void ImportVar(const VarSymbolImport &var) { // Keep track and actually hook it up if possible. importedVars.push_back(var); impExpModuleNames.insert(var.moduleName); ImportVarSymbol(var); } void ExportFunc(const FuncSymbolExport &func) { if (isFake) { return; } exportedFuncs.push_back(func); impExpModuleNames.insert(func.moduleName); ExportFuncSymbol(func); } void ExportVar(const VarSymbolExport &var) { if (isFake) { return; } exportedVars.push_back(var); impExpModuleNames.insert(var.moduleName); ExportVarSymbol(var); } template void RebuildImpExpList(const std::vector &list) { for (size_t i = 0; i < list.size(); ++i) { impExpModuleNames.insert(list[i].moduleName); } } void RebuildImpExpModuleNames() { impExpModuleNames.clear(); RebuildImpExpList(exportedFuncs); RebuildImpExpList(importedFuncs); RebuildImpExpList(exportedVars); RebuildImpExpList(importedVars); } bool ImportsOrExportsModuleName(const std::string &moduleName) { return impExpModuleNames.find(moduleName) != impExpModuleNames.end(); } NativeModule nm; std::vector waitingThreads; std::vector exportedFuncs; std::vector importedFuncs; std::vector exportedVars; std::vector importedVars; std::set impExpModuleNames; // Keep track of the code region so we can throw out analysis results // when unloaded. u32 textStart; u32 textEnd; u32 memoryBlockAddr; u32 memoryBlockSize; bool isFake; }; KernelObject *__KernelModuleObject() { return new Module; } class AfterModuleEntryCall : public Action { public: AfterModuleEntryCall() {} SceUID moduleID_; u32 retValAddr; virtual void run(MipsCall &call); virtual void DoState(PointerWrap &p) { auto s = p.Section("AfterModuleEntryCall", 1); if (!s) return; p.Do(moduleID_); p.Do(retValAddr); } static Action *Create() { return new AfterModuleEntryCall; } }; void AfterModuleEntryCall::run(MipsCall &call) { Memory::Write_U32(retValAddr, currentMIPS->r[MIPS_REG_V0]); } ////////////////////////////////////////////////////////////////////////// // MODULES ////////////////////////////////////////////////////////////////////////// struct StartModuleInfo { u32_le size; u32_le mpidtext; u32_le mpiddata; u32_le threadpriority; u32_le threadattributes; }; struct SceKernelLMOption { SceSize_le size; SceUID_le mpidtext; SceUID_le mpiddata; u32_le flags; char position; char access; char creserved[2]; }; struct SceKernelSMOption { SceSize_le size; SceUID_le mpidstack; SceSize_le stacksize; s32_le priority; u32_le attribute; }; ////////////////////////////////////////////////////////////////////////// // STATE BEGIN static int actionAfterModule; static std::set loadedModules; // STATE END ////////////////////////////////////////////////////////////////////////// static void __KernelModuleInit() { actionAfterModule = __KernelRegisterActionType(AfterModuleEntryCall::Create); } void __KernelModuleDoState(PointerWrap &p) { auto s = p.Section("sceKernelModule", 1, 2); if (!s) return; p.Do(actionAfterModule); __KernelRestoreActionType(actionAfterModule, AfterModuleEntryCall::Create); if (s >= 2) { p.Do(loadedModules); } if (g_Config.bFuncReplacements) { MIPSAnalyst::ReplaceFunctions(); } } void __KernelModuleShutdown() { loadedModules.clear(); MIPSAnalyst::Reset(); } // Sometimes there are multiple LO16's or HI16's per pair, even though the ABI says nothing of this. // For multiple LO16's, we need the original (unrelocated) instruction data of the HI16. // For multiple HI16's, we just need to set each one. struct HI16RelocInfo { u32 addr; u32 data; }; static void WriteVarSymbol(u32 exportAddress, u32 relocAddress, u8 type, bool reverse = false) { // We have to post-process the HI16 part, since it might be +1 or not depending on the LO16 value. static u32 lastHI16ExportAddress = 0; static std::vector lastHI16Relocs; static bool lastHI16Processed = true; u32 relocData = Memory::Read_Instruction(relocAddress, true).encoding; switch (type) { case R_MIPS_NONE: WARN_LOG_REPORT(LOADER, "Var relocation type NONE - %08x => %08x", exportAddress, relocAddress); break; case R_MIPS_32: if (!reverse) { relocData += exportAddress; } else { relocData -= exportAddress; } break; // Not really tested, but should work... /* case R_MIPS_26: if (exportAddress % 4 || (exportAddress >> 28) != ((relocAddress + 4) >> 28)) { WARN_LOG_REPORT(LOADER, "Bad var relocation addresses for type 26 - %08x => %08x", exportAddress, relocAddress) } else { if (!reverse) { relocData = (relocData & ~0x03ffffff) | ((relocData + (exportAddress >> 2)) & 0x03ffffff); } else { relocData = (relocData & ~0x03ffffff) | ((relocData - (exportAddress >> 2)) & 0x03ffffff); } } break; */ case R_MIPS_HI16: if (lastHI16ExportAddress != exportAddress) { if (!lastHI16Processed && lastHI16Relocs.size() >= 1) { WARN_LOG_REPORT(LOADER, "Unsafe unpaired HI16 variable relocation @ %08x / %08x", lastHI16Relocs[lastHI16Relocs.size() - 1].addr, relocAddress); } lastHI16ExportAddress = exportAddress; lastHI16Relocs.clear(); } // After this will be an R_MIPS_LO16. If that addition overflows, we need to account for it in HI16. // The R_MIPS_LO16 and R_MIPS_HI16 will often be *different* relocAddress values. HI16RelocInfo reloc; reloc.addr = relocAddress; reloc.data = Memory::Read_Instruction(relocAddress, true).encoding; lastHI16Relocs.push_back(reloc); lastHI16Processed = false; break; case R_MIPS_LO16: { // Sign extend the existing low value (e.g. from addiu.) const u32 offsetLo = (s32)(s16)(u16)(relocData & 0xFFFF); u32 full = exportAddress; // This is only used in the error case (no hi/wrong hi.) if (!reverse) { full = offsetLo + exportAddress; } else { full = offsetLo - exportAddress; } // The ABI requires that these come in pairs, at least. if (lastHI16Relocs.empty()) { ERROR_LOG_REPORT(LOADER, "LO16 without any HI16 variable import at %08x for %08x", relocAddress, exportAddress); // Try to process at least the low relocation... } else if (lastHI16ExportAddress != exportAddress) { ERROR_LOG_REPORT(LOADER, "HI16 and LO16 imports do not match at %08x for %08x (should be %08x)", relocAddress, lastHI16ExportAddress, exportAddress); } else { // Process each of the HI16. Usually there's only one. for (auto it = lastHI16Relocs.begin(), end = lastHI16Relocs.end(); it != end; ++it) { if (!reverse) { full = (it->data << 16) + offsetLo + exportAddress; } else { full = (it->data << 16) + offsetLo - exportAddress; } // The low instruction will be a signed add, which means (full & 0x8000) will subtract. // We add 1 in that case so that it ends up the right value. u16 high = (full >> 16) + ((full & 0x8000) ? 1 : 0); Memory::Write_U32((it->data & ~0xFFFF) | high, it->addr); currentMIPS->InvalidateICache(it->addr, 4); } lastHI16Processed = true; } // With full set above (hopefully), now we just need to correct the low instruction. relocData = (relocData & ~0xFFFF) | (full & 0xFFFF); } break; default: WARN_LOG_REPORT(LOADER, "Unsupported var relocation type %d - %08x => %08x", type, exportAddress, relocAddress); } Memory::Write_U32(relocData, relocAddress); currentMIPS->InvalidateICache(relocAddress, 4); } void ImportVarSymbol(const VarSymbolImport &var) { if (var.nid == 0) { // TODO: What's the right thing for this? ERROR_LOG_REPORT(LOADER, "Var import with nid = 0, type = %d", var.type); return; } if (!Memory::IsValidAddress(var.stubAddr)) { ERROR_LOG_REPORT(LOADER, "Invalid address for var import nid = %08x, type = %d, addr = %08x", var.nid, var.type, var.stubAddr); return; } u32 error; for (auto mod = loadedModules.begin(), modend = loadedModules.end(); mod != modend; ++mod) { Module *module = kernelObjects.Get(*mod, error); if (!module || !module->ImportsOrExportsModuleName(var.moduleName)) { continue; } // Look for exports currently loaded modules already have. Maybe it's available? for (auto it = module->exportedVars.begin(), end = module->exportedVars.end(); it != end; ++it) { if (it->Matches(var)) { WriteVarSymbol(it->symAddr, var.stubAddr, var.type); return; } } } // It hasn't been exported yet, but hopefully it will later. INFO_LOG(LOADER, "Variable (%s,%08x) unresolved, storing for later resolving", var.moduleName, var.nid); } void ExportVarSymbol(const VarSymbolExport &var) { u32 error; for (auto mod = loadedModules.begin(), modend = loadedModules.end(); mod != modend; ++mod) { Module *module = kernelObjects.Get(*mod, error); if (!module || !module->ImportsOrExportsModuleName(var.moduleName)) { continue; } // Look for imports currently loaded modules already have, hook it up right away. for (auto it = module->importedVars.begin(), end = module->importedVars.end(); it != end; ++it) { if (var.Matches(*it)) { INFO_LOG(LOADER, "Resolving var %s/%08x", var.moduleName, var.nid); WriteVarSymbol(var.symAddr, it->stubAddr, it->type); } } } } void UnexportVarSymbol(const VarSymbolExport &var) { u32 error; for (auto mod = loadedModules.begin(), modend = loadedModules.end(); mod != modend; ++mod) { Module *module = kernelObjects.Get(*mod, error); if (!module || !module->ImportsOrExportsModuleName(var.moduleName)) { continue; } // Look for imports modules that are *still* loaded have, and reverse them. for (auto it = module->importedVars.begin(), end = module->importedVars.end(); it != end; ++it) { if (var.Matches(*it)) { INFO_LOG(LOADER, "Unresolving var %s/%08x", var.moduleName, var.nid); WriteVarSymbol(var.symAddr, it->stubAddr, it->type, true); } } } } void ImportFuncSymbol(const FuncSymbolImport &func) { // Prioritize HLE implementations. // TODO: Or not? if (FuncImportIsSyscall(func.moduleName, func.nid)) { WriteSyscall(func.moduleName, func.nid, func.stubAddr); currentMIPS->InvalidateICache(func.stubAddr, 8); return; } u32 error; for (auto mod = loadedModules.begin(), modend = loadedModules.end(); mod != modend; ++mod) { Module *module = kernelObjects.Get(*mod, error); if (!module || !module->ImportsOrExportsModuleName(func.moduleName)) { continue; } // Look for exports currently loaded modules already have. Maybe it's available? for (auto it = module->exportedFuncs.begin(), end = module->exportedFuncs.end(); it != end; ++it) { if (it->Matches(func)) { WriteFuncStub(func.stubAddr, it->symAddr); currentMIPS->InvalidateICache(func.stubAddr, 8); return; } } } // It hasn't been exported yet, but hopefully it will later. if (GetModuleIndex(func.moduleName) != -1) { WARN_LOG_REPORT(LOADER, "Unknown syscall in known module: %s 0x%08x", func.moduleName, func.nid); } else { INFO_LOG(LOADER, "Function (%s,%08x) unresolved, storing for later resolving", func.moduleName, func.nid); } WriteFuncMissingStub(func.stubAddr, func.nid); currentMIPS->InvalidateICache(func.stubAddr, 8); } void ExportFuncSymbol(const FuncSymbolExport &func) { if (FuncImportIsSyscall(func.moduleName, func.nid)) { // Oops, HLE covers this. WARN_LOG_REPORT(LOADER, "Ignoring func export %s/%08x, already implemented in HLE.", func.moduleName, func.nid); return; } u32 error; for (auto mod = loadedModules.begin(), modend = loadedModules.end(); mod != modend; ++mod) { Module *module = kernelObjects.Get(*mod, error); if (!module || !module->ImportsOrExportsModuleName(func.moduleName)) { continue; } // Look for imports currently loaded modules already have, hook it up right away. for (auto it = module->importedFuncs.begin(), end = module->importedFuncs.end(); it != end; ++it) { if (func.Matches(*it)) { INFO_LOG(LOADER, "Resolving function %s/%08x", func.moduleName, func.nid); WriteFuncStub(it->stubAddr, func.symAddr); currentMIPS->InvalidateICache(it->stubAddr, 8); } } } } void UnexportFuncSymbol(const FuncSymbolExport &func) { if (FuncImportIsSyscall(func.moduleName, func.nid)) { // Oops, HLE covers this. return; } u32 error; for (auto mod = loadedModules.begin(), modend = loadedModules.end(); mod != modend; ++mod) { Module *module = kernelObjects.Get(*mod, error); if (!module || !module->ImportsOrExportsModuleName(func.moduleName)) { continue; } // Look for imports modules that are *still* loaded have, and write back stubs. for (auto it = module->importedFuncs.begin(), end = module->importedFuncs.end(); it != end; ++it) { if (func.Matches(*it)) { INFO_LOG(LOADER, "Unresolving function %s/%08x", func.moduleName, func.nid); WriteFuncMissingStub(it->stubAddr, it->nid); currentMIPS->InvalidateICache(it->stubAddr, 8); } } } } void Module::Cleanup() { MIPSAnalyst::ForgetFunctions(textStart, textEnd); loadedModules.erase(GetUID()); for (auto it = exportedVars.begin(), end = exportedVars.end(); it != end; ++it) { UnexportVarSymbol(*it); } for (auto it = exportedFuncs.begin(), end = exportedFuncs.end(); it != end; ++it) { UnexportFuncSymbol(*it); } if (memoryBlockAddr != 0 && nm.text_addr != 0 && memoryBlockSize >= nm.data_size + nm.bss_size + nm.text_size) { DEBUG_LOG(HLE, "Zeroing out module %s memory: %08x - %08x", nm.name, memoryBlockAddr, memoryBlockAddr + memoryBlockSize); for (u32 i = 0; i < (u32)(nm.text_size + 3); i += 4) { Memory::Write_U32(MIPS_MAKE_BREAK(1), nm.text_addr + i); } Memory::Memset(nm.text_addr + nm.text_size, -1, nm.data_size + nm.bss_size); } } static void __SaveDecryptedEbootToStorageMedia(const u8 *decryptedEbootDataPtr, const u32 length) { if (!decryptedEbootDataPtr) { ERROR_LOG(SCEMODULE, "Error saving decrypted EBOOT.BIN: invalid pointer"); return; } if (length == 0) { ERROR_LOG(SCEMODULE, "Error saving decrypted EBOOT.BIN: invalid length"); return; } const std::string filenameToDumpTo = g_paramSFO.GetValueString("DISC_ID") + ".BIN"; const std::string dumpDirectory = GetSysDirectory(DIRECTORY_DUMP); const std::string fullPath = dumpDirectory + filenameToDumpTo; // If the file already exists, don't dump it again. if (File::Exists(fullPath)) { INFO_LOG(SCEMODULE, "Decrypted EBOOT.BIN already exists for this game, skipping dump."); return; } // Make sure the dump directory exists before continuing. if (!File::Exists(dumpDirectory)) { if (!File::CreateDir(dumpDirectory)) { ERROR_LOG(SCEMODULE, "Unable to create directory for EBOOT dumping, aborting."); return; } } FILE *decryptedEbootFile = fopen(fullPath.c_str(), "wb"); if (!decryptedEbootFile) { ERROR_LOG(SCEMODULE, "Unable to write decrypted EBOOT."); return; } const size_t lengthToWrite = length; fwrite(decryptedEbootDataPtr, sizeof(u8), lengthToWrite, decryptedEbootFile); fclose(decryptedEbootFile); INFO_LOG(SCEMODULE, "Successfully wrote decrypted EBOOT to %s", fullPath.c_str()); } static bool IsHLEVersionedModule(const char *name) { // TODO: Only some of these are currently known to be versioned. // Potentially only sceMpeg_library matters. // For now, we're just reporting version numbers. for (size_t i = 0; i < ARRAY_SIZE(blacklistedModules); i++) { if (!strncmp(name, blacklistedModules[i], 28)) { return true; } } static const char *otherModules[] = { "sceAvcodec_driver", "sceAudiocodec_Driver", "sceAudiocodec", "sceVideocodec_Driver", "sceVideocodec", "sceMpegbase_Driver", "sceMpegbase", "scePsmf_library", "scePsmfP_library", "scePsmfPlayer", "sceSAScore", "sceCcc_Library", "SceParseHTTPheader_Library", "SceParseURI_Library", // Guessing. "sceJpeg", "sceJpeg_library", "sceJpeg_Library", }; for (size_t i = 0; i < ARRAY_SIZE(otherModules); i++) { if (!strncmp(name, otherModules[i], 28)) { return true; } } return false; } static Module *__KernelLoadELFFromPtr(const u8 *ptr, u32 loadAddress, bool fromTop, std::string *error_string, u32 *magic, u32 &error) { Module *module = new Module; kernelObjects.Create(module); loadedModules.insert(module->GetUID()); memset(&module->nm, 0, sizeof(module->nm)); bool reportedModule = false; u32 devkitVersion = 0; u8 *newptr = 0; u32_le *magicPtr = (u32_le *) ptr; if (*magicPtr == 0x4543537e) { // "~SCE" INFO_LOG(SCEMODULE, "~SCE module, skipping header"); ptr += *(u32_le*)(ptr + 4); magicPtr = (u32_le *)ptr; } *magic = *magicPtr; if (*magic == 0x5053507e) { // "~PSP" DEBUG_LOG(SCEMODULE, "Decrypting ~PSP file"); PSP_Header *head = (PSP_Header*)ptr; devkitVersion = head->devkitversion; if (IsHLEVersionedModule(head->modname)) { int ver = (head->module_ver_hi << 8) | head->module_ver_lo; char temp[256]; snprintf(temp, sizeof(temp), "Loading module %s with version %%04x, devkit %%08x", head->modname); INFO_LOG_REPORT(SCEMODULE, temp, ver, head->devkitversion); reportedModule = true; if (!strcmp(head->modname, "sceMpeg_library")) { __MpegLoadModule(ver); } } const u8 *in = ptr; u32 size = head->elf_size; if (head->psp_size > size) { size = head->psp_size; } newptr = new u8[head->elf_size + head->psp_size]; ptr = newptr; magicPtr = (u32_le *)ptr; int ret = pspDecryptPRX(in, (u8*)ptr, head->psp_size); if (ret == MISSING_KEY) { // This should happen for all "kernel" modules. *error_string = "Missing key"; delete [] newptr; module->isFake = true; strncpy(module->nm.name, head->modname, ARRAY_SIZE(module->nm.name)); module->nm.entry_addr = -1; module->nm.gp_value = -1; // Let's still try to allocate it. It may use user memory. u32 totalSize = 0; for (int i = 0; i < 4; ++i) { if (head->seg_size[i]) { const u32 align = head->seg_align[i] - 1; totalSize = ((totalSize + align) & ~align) + head->seg_size[i]; } } bool kernelModule = (head->attribute & 0x1000) != 0; BlockAllocator &memblock = kernelModule ? kernelMemory : userMemory; size_t n = strnlen(head->modname, 28); const std::string modName = "ELF/" + std::string(head->modname, n); u32 addr = memblock.Alloc(totalSize, fromTop, modName.c_str()); if (addr == (u32)-1) { error = SCE_KERNEL_ERROR_MEMBLOCK_ALLOC_FAILED; module->Cleanup(); kernelObjects.Destroy(module->GetUID()); } else { error = 0; module->memoryBlockAddr = addr; module->memoryBlockSize = totalSize; } return module; } else if (ret <= 0) { ERROR_LOG(SCEMODULE, "Failed decrypting PRX! That's not normal! ret = %i\n", ret); Reporting::ReportMessage("Failed decrypting the PRX (ret = %i, size = %i, psp_size = %i)!", ret, head->elf_size, head->psp_size); // Fall through to safe exit in the next check. } else { // TODO: Is this right? module->nm.bss_size = head->bss_size; // If we've made it this far, it should be safe to dump. if (g_Config.bDumpDecryptedEboot) { INFO_LOG(SCEMODULE, "Dumping derypted EBOOT.BIN to file."); const u32 dumpLength = ret; __SaveDecryptedEbootToStorageMedia(ptr, dumpLength); } } } // DO NOT change to else if, see above. if (*magicPtr != 0x464c457f) { ERROR_LOG_REPORT(SCEMODULE, "Wrong magic number %08x", *magicPtr); *error_string = "File corrupt"; if (newptr) delete [] newptr; module->Cleanup(); kernelObjects.Destroy(module->GetUID()); error = SCE_KERNEL_ERROR_UNSUPPORTED_PRX_TYPE; return 0; } // Open ELF reader ElfReader reader((void*)ptr); int result = reader.LoadInto(loadAddress, fromTop); if (result != SCE_KERNEL_ERROR_OK) { ERROR_LOG(SCEMODULE, "LoadInto failed with error %08x",result); if (newptr) delete [] newptr; module->Cleanup(); kernelObjects.Destroy(module->GetUID()); error = result; return 0; } module->memoryBlockAddr = reader.GetVaddr(); module->memoryBlockSize = reader.GetTotalSize(); SectionID sceModuleInfoSection = reader.GetSectionByName(".rodata.sceModuleInfo"); PspModuleInfo *modinfo; if (sceModuleInfoSection != -1) modinfo = (PspModuleInfo *)Memory::GetPointer(reader.GetSectionAddr(sceModuleInfoSection)); else modinfo = (PspModuleInfo *)Memory::GetPointer(reader.GetSegmentVaddr(0) + (reader.GetSegmentPaddr(0) & 0x7FFFFFFF) - reader.GetSegmentOffset(0)); module->nm.nsegment = reader.GetNumSegments(); module->nm.attribute = modinfo->moduleAttrs; module->nm.version[0] = modinfo->moduleVersion & 0xFF; module->nm.version[1] = modinfo->moduleVersion >> 8; module->nm.data_size = 0; // TODO: Is summing them up correct? Must not be since the numbers aren't exactly right. for (int i = 0; i < reader.GetNumSegments(); ++i) { if (i < (int)ARRAY_SIZE(module->nm.segmentaddr)) { module->nm.segmentsize[i] = reader.GetSegmentMemSize(i); if (module->nm.segmentsize[i] != 0) { module->nm.segmentaddr[i] = reader.GetSegmentVaddr(i); } else { module->nm.segmentaddr[i] = 0; } } module->nm.data_size += reader.GetSegmentDataSize(i); } module->nm.gp_value = modinfo->gp; strncpy(module->nm.name, modinfo->name, ARRAY_SIZE(module->nm.name)); // Let's also get a truncated version. char moduleName[29] = {0}; strncpy(moduleName, modinfo->name, ARRAY_SIZE(module->nm.name)); // Check for module blacklist - we don't allow games to load these modules from disc // as we have HLE implementations and the originals won't run in the emu because they // directly access hardware or for other reasons. for (u32 i = 0; i < ARRAY_SIZE(blacklistedModules); i++) { if (strncmp(modinfo->name, blacklistedModules[i], ARRAY_SIZE(modinfo->name)) == 0) { module->isFake = true; } } if (!module->isFake && module->memoryBlockAddr != 0) { symbolMap.AddModule(moduleName, module->memoryBlockAddr, module->memoryBlockSize); } SectionID textSection = reader.GetSectionByName(".text"); if (textSection != -1) { module->textStart = reader.GetSectionAddr(textSection); u32 textSize = reader.GetSectionSize(textSection); module->textEnd = module->textStart + textSize; module->nm.text_addr = module->textStart; module->nm.text_size = reader.GetTotalTextSize(); if (!module->isFake) { #if !defined(MOBILE_DEVICE) bool gotSymbols = reader.LoadSymbols(); MIPSAnalyst::ScanForFunctions(module->textStart, module->textEnd, !gotSymbols); #else if (g_Config.bFuncReplacements) { bool gotSymbols = reader.LoadSymbols(); MIPSAnalyst::ScanForFunctions(module->textStart, module->textEnd, !gotSymbols); } #endif } } else { module->nm.text_addr = 0; module->nm.text_size = 0; } module->nm.bss_size = reader.GetTotalSectionSizeByPrefix(".bss"); module->nm.data_size = reader.GetTotalDataSize() - module->nm.bss_size; INFO_LOG(LOADER, "Module %s: %08x %08x %08x", modinfo->name, modinfo->gp, modinfo->libent, modinfo->libstub); struct PspLibStubEntry { u32_le name; u16_le version; u16_le flags; u8 size; u8 numVars; u16_le numFuncs; // each symbol has an associated nid; nidData is a pointer // (in .rodata.sceNid section) to an array of longs, one // for each function, which identifies the function whose // address is to be inserted. // // The hash is the first 4 bytes of a SHA-1 hash of the function // name. (Represented as a little-endian long, so the order // of the bytes is reversed.) u32_le nidData; // the address of the function stubs where the function address jumps // should be filled in u32_le firstSymAddr; // Optional, this is where var relocations are. // They use the format: u32 addr, u32 nid, ... // WARNING: May have garbage if size < 6. u32_le varData; // Not sure what this is yet, assume garbage for now. // TODO: Tales of the World: Radiant Mythology 2 has something here? u32_le extra; }; DEBUG_LOG(LOADER,"==================================================="); u32_le *entryPos = (u32_le *)Memory::GetPointer(modinfo->libstub); u32_le *entryEnd = (u32_le *)Memory::GetPointer(modinfo->libstubend); u32_le firstImportStubAddr = 0; bool needReport = false; while (entryPos < entryEnd) { PspLibStubEntry *entry = (PspLibStubEntry *)entryPos; entryPos += entry->size; const char *modulename; if (Memory::IsValidAddress(entry->name)) { modulename = Memory::GetCharPointer(entry->name); } else { modulename = "(invalidname)"; needReport = true; } DEBUG_LOG(LOADER, "Importing Module %s, stubs at %08x", modulename, entry->firstSymAddr); if (entry->size != 5 && entry->size != 6) { if (entry->size != 7) { WARN_LOG_REPORT(LOADER, "Unexpected module entry size %d", entry->size); needReport = true; } else if (entry->extra != 0) { WARN_LOG_REPORT(LOADER, "Unexpected module entry with non-zero 7th value %08x", entry->extra); needReport = true; } } // If nidData is 0, only variables are being imported. if (entry->nidData != 0) { if (!Memory::IsValidAddress(entry->nidData)) { ERROR_LOG_REPORT(LOADER, "Crazy nidData address %08x, skipping entire module", entry->nidData); needReport = true; continue; } FuncSymbolImport func; strncpy(func.moduleName, modulename, KERNELOBJECT_MAX_NAME_LENGTH); func.moduleName[KERNELOBJECT_MAX_NAME_LENGTH] = '\0'; u32_le *nidDataPtr = (u32_le *)Memory::GetPointer(entry->nidData); for (int i = 0; i < entry->numFuncs; ++i) { // This is the id of the import. func.nid = nidDataPtr[i]; // This is the address to write the j and delay slot to. func.stubAddr = entry->firstSymAddr + i * 8; module->ImportFunc(func); } if (!firstImportStubAddr || firstImportStubAddr > entry->firstSymAddr) firstImportStubAddr = entry->firstSymAddr; } else if (entry->numFuncs > 0) { WARN_LOG_REPORT(LOADER, "Module entry with %d imports but no valid address", entry->numFuncs); needReport = true; } if (entry->varData != 0) { if (!Memory::IsValidAddress(entry->varData)) { ERROR_LOG_REPORT(LOADER, "Crazy varData address %08x, skipping rest of module", entry->varData); needReport = true; continue; } VarSymbolImport var; strncpy(var.moduleName, modulename, KERNELOBJECT_MAX_NAME_LENGTH); var.moduleName[KERNELOBJECT_MAX_NAME_LENGTH] = '\0'; for (int i = 0; i < entry->numVars; ++i) { u32 varRefsPtr = Memory::Read_U32(entry->varData + i * 8); u32 nid = Memory::Read_U32(entry->varData + i * 8 + 4); if (!Memory::IsValidAddress(varRefsPtr)) { WARN_LOG_REPORT(LOADER, "Bad relocation list address for nid %08x in %s", nid, modulename); continue; } u32_le *varRef = (u32_le *)Memory::GetPointer(varRefsPtr); for (; *varRef != 0; ++varRef) { var.nid = nid; var.stubAddr = (*varRef & 0x03FFFFFF) << 2; var.type = *varRef >> 26; module->ImportVar(var); } } } else if (entry->numVars > 0) { WARN_LOG_REPORT(LOADER, "Module entry with %d var imports but no valid address", entry->numVars); needReport = true; } DEBUG_LOG(LOADER, "-------------------------------------------------------------"); } if (needReport) { std::string debugInfo; entryPos = (u32_le *)Memory::GetPointer(modinfo->libstub); while (entryPos < entryEnd) { PspLibStubEntry *entry = (PspLibStubEntry *)entryPos; entryPos += entry->size; char temp[512]; const char *modulename; if (Memory::IsValidAddress(entry->name)) { modulename = Memory::GetCharPointer(entry->name); } else { modulename = "(invalidname)"; } snprintf(temp, sizeof(temp), "%s ver=%04x, flags=%04x, size=%d, numVars=%d, numFuncs=%d, nidData=%08x, firstSym=%08x, varData=%08x, extra=%08x\n", modulename, entry->version, entry->flags, entry->size, entry->numVars, entry->numFuncs, entry->nidData, entry->firstSymAddr, entry->size >= 6 ? entry->varData : 0, entry->size >= 7 ? entry->extra : 0); debugInfo += temp; } Reporting::ReportMessage("Module linking debug info:\n%s", debugInfo.c_str()); } if (textSection == -1) { module->textStart = reader.GetVaddr(); module->textEnd = firstImportStubAddr - 4; if (!module->isFake) { #if !defined(MOBILE_DEVICE) bool gotSymbols = reader.LoadSymbols(); MIPSAnalyst::ScanForFunctions(module->textStart, module->textEnd, !gotSymbols); #else if (g_Config.bFuncReplacements) { bool gotSymbols = reader.LoadSymbols(); MIPSAnalyst::ScanForFunctions(module->textStart, module->textEnd, !gotSymbols); } #endif } } // Look at the exports, too. struct PspLibEntEntry { u32_le name; /* ent's name (module name) address */ u16_le version; u16_le flags; u8 size; u8 vcount; u16_le fcount; u32_le resident; u16_le vcountNew; u8 unknown1; u8 unknown2; }; u32_le *entPos = (u32_le *)Memory::GetPointer(modinfo->libent); u32_le *entEnd = (u32_le *)Memory::GetPointer(modinfo->libentend); for (int m = 0; entPos < entEnd; ++m) { PspLibEntEntry *ent = (PspLibEntEntry *)entPos; entPos += ent->size; if (ent->size == 0) { WARN_LOG_REPORT(LOADER, "Invalid export entry size %d", ent->size); entPos += 4; continue; } u32 variableCount = ent->size <= 4 ? ent->vcount : std::max((u32)ent->vcount , (u32)ent->vcountNew); const char *name; if (Memory::IsValidAddress(ent->name)) { name = Memory::GetCharPointer(ent->name); } else if (ent->name == 0) { name = module->nm.name; } else { name = "invalid?"; } INFO_LOG(LOADER, "Exporting ent %d named %s, %d funcs, %d vars, resident %08x", m, name, ent->fcount, ent->vcount, ent->resident); if (!Memory::IsValidAddress(ent->resident)) { if (ent->fcount + variableCount > 0) { WARN_LOG_REPORT(LOADER, "Invalid export resident address %08x", ent->resident); } continue; } u32_le *residentPtr = (u32_le *)Memory::GetPointer(ent->resident); u32_le *exportPtr = residentPtr + ent->fcount + variableCount; if (ent->size != 4 && ent->unknown1 != 0 && ent->unknown2 != 0) { WARN_LOG_REPORT(LOADER, "Unexpected export module entry size %d, vcountNew=%08x, unknown1=%08x, unknown2=%08x", ent->size, ent->vcountNew, ent->unknown1, ent->unknown2); } FuncSymbolExport func; strncpy(func.moduleName, name, KERNELOBJECT_MAX_NAME_LENGTH); func.moduleName[KERNELOBJECT_MAX_NAME_LENGTH] = '\0'; for (u32 j = 0; j < ent->fcount; j++) { u32 nid = residentPtr[j]; u32 exportAddr = exportPtr[j]; switch (nid) { case NID_MODULE_START: module->nm.module_start_func = exportAddr; break; case NID_MODULE_STOP: module->nm.module_stop_func = exportAddr; break; case NID_MODULE_REBOOT_BEFORE: module->nm.module_reboot_before_func = exportAddr; break; case NID_MODULE_REBOOT_PHASE: module->nm.module_reboot_phase_func = exportAddr; break; case NID_MODULE_BOOTSTART: module->nm.module_bootstart_func = exportAddr; break; default: func.nid = nid; func.symAddr = exportAddr; if (ent->name == 0) { WARN_LOG_REPORT(HLE, "Exporting func from syslib export: %08x", nid); } module->ExportFunc(func); } } VarSymbolExport var; strncpy(var.moduleName, name, KERNELOBJECT_MAX_NAME_LENGTH); var.moduleName[KERNELOBJECT_MAX_NAME_LENGTH] = '\0'; for (u32 j = 0; j < variableCount; j++) { u32 nid = residentPtr[ent->fcount + j]; u32 exportAddr = exportPtr[ent->fcount + j]; int size; switch (nid) { case NID_MODULE_INFO: // Points to a PspModuleInfo, often the exact one .rodata.sceModuleInfo points to. break; case NID_MODULE_START_THREAD_PARAMETER: size = Memory::Read_U32(exportAddr); if (size == 0) break; else if (size != 3) WARN_LOG_REPORT(LOADER, "Strange value at module_start_thread_parameter export: %08x", Memory::Read_U32(exportAddr)); module->nm.module_start_thread_priority = Memory::Read_U32(exportAddr + 4); module->nm.module_start_thread_stacksize = Memory::Read_U32(exportAddr + 8); module->nm.module_start_thread_attr = Memory::Read_U32(exportAddr + 12); break; case NID_MODULE_STOP_THREAD_PARAMETER: size = Memory::Read_U32(exportAddr); if (size == 0) break; else if (size != 3) WARN_LOG_REPORT(LOADER, "Strange value at module_stop_thread_parameter export: %08x", Memory::Read_U32(exportAddr)); module->nm.module_stop_thread_priority = Memory::Read_U32(exportAddr + 4); module->nm.module_stop_thread_stacksize = Memory::Read_U32(exportAddr + 8); module->nm.module_stop_thread_attr = Memory::Read_U32(exportAddr + 12); break; case NID_MODULE_REBOOT_BEFORE_THREAD_PARAMETER: size = Memory::Read_U32(exportAddr); if (size == 0) break; else if (size != 3) WARN_LOG_REPORT(LOADER, "Strange value at module_reboot_before_thread_parameter export: %08x", Memory::Read_U32(exportAddr)); module->nm.module_reboot_before_thread_priority = Memory::Read_U32(exportAddr + 4); module->nm.module_reboot_before_thread_stacksize = Memory::Read_U32(exportAddr + 8); module->nm.module_reboot_before_thread_attr = Memory::Read_U32(exportAddr + 12); break; case NID_MODULE_SDK_VERSION: DEBUG_LOG(LOADER, "Module SDK: %08x", Memory::Read_U32(exportAddr)); devkitVersion = Memory::Read_U32(exportAddr); break; default: var.nid = nid; var.symAddr = exportAddr; if (ent->name == 0) { WARN_LOG_REPORT(HLE, "Exporting var from syslib export: %08x", nid); } module->ExportVar(var); break; } } } if (!module->isFake) { module->nm.entry_addr = reader.GetEntryPoint(); // use module_start_func instead of entry_addr if entry_addr is 0 if (module->nm.entry_addr == 0) module->nm.entry_addr = module->nm.module_start_func; } else { module->nm.entry_addr = -1; } if (newptr) delete [] newptr; if (!reportedModule && IsHLEVersionedModule(modinfo->name)) { char temp[256]; snprintf(temp, sizeof(temp), "Loading module %s with version %%04x, devkit %%08x", modinfo->name); INFO_LOG_REPORT(SCEMODULE, temp, modinfo->moduleVersion, devkitVersion); if (!strcmp(modinfo->name, "sceMpeg_library")) { __MpegLoadModule(modinfo->moduleVersion); } } error = 0; return module; } static bool __KernelLoadPBP(const char *filename, std::string *error_string) { PBPReader pbp(filename); if (!pbp.IsValid()) { ERROR_LOG(LOADER,"%s is not a valid homebrew PSP1.0 PBP",filename); *error_string = "Not a valid homebrew PBP"; return false; } size_t elfSize; u8 *elfData = pbp.GetSubFile(PBP_EXECUTABLE_PSP, &elfSize); u32 magic; u32 error; Module *module = __KernelLoadELFFromPtr(elfData, PSP_GetDefaultLoadAddress(), false, error_string, &magic, error); if (!module) { delete [] elfData; return false; } mipsr4k.pc = module->nm.entry_addr; delete [] elfData; return true; } static Module *__KernelLoadModule(u8 *fileptr, SceKernelLMOption *options, std::string *error_string) { Module *module = 0; // Check for PBP if (memcmp(fileptr, "\0PBP", 4) == 0) { // PBP! u32_le version; memcpy(&version, fileptr + 4, 4); u32_le offset0, offsets[16]; int numfiles; memcpy(&offset0, fileptr + 8, 4); numfiles = (offset0 - 8)/4; offsets[0] = offset0; for (int i = 1; i < numfiles; i++) memcpy(&offsets[i], fileptr + 12 + 4*i, 4); u32 magic = 0; u8 *temp = 0; if (offsets[5] & 3) { // Our loader does NOT like to load from an unaligned address on ARM! size_t size = offsets[6] - offsets[5]; temp = new u8[size]; memcpy(temp, fileptr + offsets[5], size); INFO_LOG(LOADER, "Elf unaligned, aligning!"); } u32 error; module = __KernelLoadELFFromPtr(temp ? temp : fileptr + offsets[5], PSP_GetDefaultLoadAddress(), false, error_string, &magic, error); if (temp) { delete [] temp; } } else { u32 error; u32 magic = 0; module = __KernelLoadELFFromPtr(fileptr, PSP_GetDefaultLoadAddress(), false, error_string, &magic, error); } return module; } static void __KernelStartModule(Module *m, int args, const char *argp, SceKernelSMOption *options) { m->nm.status = MODULE_STATUS_STARTED; if (m->nm.module_start_func != 0 && m->nm.module_start_func != (u32)-1) { if (m->nm.module_start_func != m->nm.entry_addr) WARN_LOG_REPORT(LOADER, "Main module has start func (%08x) different from entry (%08x)?", m->nm.module_start_func, m->nm.entry_addr); // TODO: Should we try to run both? currentMIPS->pc = m->nm.module_start_func; } SceUID threadID = __KernelSetupRootThread(m->GetUID(), args, argp, options->priority, options->stacksize, options->attribute); __KernelSetThreadRA(threadID, NID_MODULERETURN); } u32 __KernelGetModuleGP(SceUID uid) { u32 error; Module *module = kernelObjects.Get(uid, error); if (module) { return module->nm.gp_value; } else { return 0; } } bool __KernelLoadExec(const char *filename, u32 paramPtr, std::string *error_string) { SceKernelLoadExecParam param; if (paramPtr) Memory::ReadStruct(paramPtr, ¶m); else memset(¶m, 0, sizeof(SceKernelLoadExecParam)); u8 *param_argp = 0; u8 *param_key = 0; if (param.args > 0) { u32 argpAddr = param.argp; param_argp = new u8[param.args]; Memory::Memcpy(param_argp, argpAddr, param.args); } if (param.keyp != 0) { u32 keyAddr = param.keyp; size_t keylen = strlen(Memory::GetCharPointer(keyAddr))+1; param_key = new u8[keylen]; Memory::Memcpy(param_key, keyAddr, (u32)keylen); } // Wipe kernel here, loadexec should reset the entire system if (__KernelIsRunning()) { u32 error; while (!loadedModules.empty()) { SceUID moduleID = *loadedModules.begin(); Module *module = kernelObjects.Get(moduleID, error); if (module) { module->Cleanup(); } else { // An invalid module. We need to remove it or we'll loop forever. WARN_LOG(LOADER, "Invalid module still marked as loaded on loadexec"); loadedModules.erase(moduleID); } } Replacement_Shutdown(); __KernelShutdown(); //HLE needs to be reset here HLEShutdown(); Replacement_Init(); HLEInit(); GPU_Reinitialize(); } __KernelModuleInit(); __KernelInit(); PSPFileInfo info = pspFileSystem.GetFileInfo(filename); if (!info.exists) { ERROR_LOG(LOADER, "Failed to load executable %s - file doesn't exist", filename); *error_string = StringFromFormat("Could not find executable %s", filename); if (paramPtr) { if (param_argp) delete[] param_argp; if (param_key) delete[] param_key; } return false; } u32 handle = pspFileSystem.OpenFile(filename, FILEACCESS_READ); u8 *temp = new u8[(int)info.size + 0x01000000]; pspFileSystem.ReadFile(handle, temp, (size_t)info.size); Module *module = __KernelLoadModule(temp, 0, error_string); if (!module || module->isFake) { if (module) { module->Cleanup(); kernelObjects.Destroy(module->GetUID()); } ERROR_LOG(LOADER, "Failed to load module %s", filename); *error_string = "Failed to load executable: " + *error_string; delete [] temp; if (paramPtr) { if (param_argp) delete[] param_argp; if (param_key) delete[] param_key; } return false; } mipsr4k.pc = module->nm.entry_addr; INFO_LOG(LOADER, "Module entry: %08x", mipsr4k.pc); delete [] temp; pspFileSystem.CloseFile(handle); SceKernelSMOption option; option.size = sizeof(SceKernelSMOption); option.attribute = PSP_THREAD_ATTR_USER; option.mpidstack = 2; option.priority = 0x20; option.stacksize = 0x40000; // crazy? but seems to be the truth // Replace start options with module-specified values if they exist. if (module->nm.module_start_thread_attr != 0) option.attribute = module->nm.module_start_thread_attr; if (module->nm.module_start_thread_priority != 0) option.priority = module->nm.module_start_thread_priority; if (module->nm.module_start_thread_stacksize != 0) option.stacksize = module->nm.module_start_thread_stacksize; if (paramPtr) __KernelStartModule(module, param.args, (const char*)param_argp, &option); else __KernelStartModule(module, (u32)strlen(filename) + 1, filename, &option); __KernelStartIdleThreads(module->GetUID()); if (param_argp) delete[] param_argp; if (param_key) delete[] param_key; hleSkipDeadbeef(); return true; } int sceKernelLoadExec(const char *filename, u32 paramPtr) { std::string exec_filename = filename; PSPFileInfo info = pspFileSystem.GetFileInfo(exec_filename); // If there's an EBOOT.BIN, redirect to that instead. if (info.exists && endsWith(exec_filename, "/BOOT.BIN")) { std::string eboot_filename = exec_filename.substr(0, exec_filename.length() - strlen("BOOT.BIN")) + "EBOOT.BIN"; PSPFileInfo eboot_info = pspFileSystem.GetFileInfo(eboot_filename); if (eboot_info.exists) { exec_filename = eboot_filename; info = eboot_info; } } if (!info.exists) { ERROR_LOG(LOADER, "sceKernelLoadExec(%s, ...): File does not exist", filename); return SCE_KERNEL_ERROR_NOFILE; } s64 size = (s64)info.size; if (!size) { ERROR_LOG(LOADER, "sceKernelLoadExec(%s, ...): File is size 0", filename); return SCE_KERNEL_ERROR_ILLEGAL_OBJECT; } DEBUG_LOG(SCEMODULE, "sceKernelLoadExec(name=%s,...): loading %s", filename, exec_filename.c_str()); std::string error_string; if (!__KernelLoadExec(exec_filename.c_str(), paramPtr, &error_string)) { ERROR_LOG(SCEMODULE, "sceKernelLoadExec failed: %s", error_string.c_str()); Core_UpdateState(CORE_ERROR); return -1; } return 0; } static u32 sceKernelLoadModule(const char *name, u32 flags, u32 optionAddr) { if (!name) { ERROR_LOG(LOADER, "sceKernelLoadModule(NULL, %08x): Bad name", flags); return SCE_KERNEL_ERROR_ILLEGAL_ADDR; } for (size_t i = 0; i < ARRAY_SIZE(lieAboutSuccessModules); i++) { if (!strcmp(name, lieAboutSuccessModules[i])) { INFO_LOG(LOADER, "Tries to load module %s. We return a fake module.", lieAboutSuccessModules[i]); Module *module = new Module; kernelObjects.Create(module); loadedModules.insert(module->GetUID()); memset(&module->nm, 0, sizeof(module->nm)); module->isFake = true; return module->GetUID(); } } PSPFileInfo info = pspFileSystem.GetFileInfo(name); std::string error_string; s64 size = (s64)info.size; if (!info.exists) { ERROR_LOG(LOADER, "sceKernelLoadModule(%s, %08x): File does not exist", name, flags); // ERRNO_FILE_NOT_FOUND return 0x80010002; } if (!size) { ERROR_LOG(LOADER, "sceKernelLoadModule(%s, %08x): Module file is size 0", name, flags); return SCE_KERNEL_ERROR_FILEERR; } DEBUG_LOG(LOADER, "sceKernelLoadModule(%s, %08x)", name, flags); if (flags != 0) { WARN_LOG_REPORT(LOADER, "sceKernelLoadModule: unsupported flags: %08x", flags); } SceKernelLMOption *lmoption = 0; if (optionAddr) { lmoption = (SceKernelLMOption *)Memory::GetPointer(optionAddr); if (lmoption->position < PSP_SMEM_Low || lmoption->position > PSP_SMEM_HighAligned) { ERROR_LOG_REPORT(LOADER, "sceKernelLoadModule(%s): invalid position (%i)", name, (int)lmoption->position); return SCE_KERNEL_ERROR_ILLEGAL_MEMBLOCKTYPE; } if (lmoption->position == PSP_SMEM_LowAligned || lmoption->position == PSP_SMEM_HighAligned) { ERROR_LOG_REPORT(LOADER, "sceKernelLoadModule(%s): invalid position (aligned)", name); return SCE_KERNEL_ERROR_ILLEGAL_ALIGNMENT_SIZE; } if (lmoption->position == PSP_SMEM_Addr) { ERROR_LOG_REPORT(LOADER, "sceKernelLoadModule(%s): invalid position (fixed)", name); return SCE_KERNEL_ERROR_MEMBLOCK_ALLOC_FAILED; } WARN_LOG_REPORT(LOADER, "sceKernelLoadModule: unsupported options size=%08x, flags=%08x, pos=%d, access=%d, data=%d, text=%d", lmoption->size, lmoption->flags, lmoption->position, lmoption->access, lmoption->mpiddata, lmoption->mpidtext); } Module *module = 0; u8 *temp = new u8[(int)size]; u32 handle = pspFileSystem.OpenFile(name, FILEACCESS_READ); pspFileSystem.ReadFile(handle, temp, (size_t)size); u32 magic; u32 error; module = __KernelLoadELFFromPtr(temp, 0, lmoption ? lmoption->position == 1 : false, &error_string, &magic, error); delete [] temp; pspFileSystem.CloseFile(handle); if (!module) { if (magic == 0x46535000) { ERROR_LOG(LOADER, "Game tried to load an SFO as a module. Go figure? Magic = %08x", magic); return -1; } if (info.name == "BOOT.BIN") { NOTICE_LOG_REPORT(LOADER, "Module %s is blacklisted or undecryptable - we try __KernelLoadExec", name); // Name might get deleted. const std::string safeName = name; return __KernelLoadExec(safeName.c_str(), 0, &error_string); } else if ((int)error >= 0) { // Module was blacklisted or couldn't be decrypted, which means it's a kernel module we don't want to run.. // Let's just act as if it worked. NOTICE_LOG(LOADER, "Module %s is blacklisted or undecryptable - we lie about success", name); return 1; } else { NOTICE_LOG(LOADER, "Module %s failed to load: %08x", name, error); return error; } } if (lmoption) { INFO_LOG(SCEMODULE,"%i=sceKernelLoadModule(name=%s,flag=%08x,%08x,%08x,%08x,position = %08x)", module->GetUID(),name,flags, lmoption->size,lmoption->mpidtext,lmoption->mpiddata,lmoption->position); } else { INFO_LOG(SCEMODULE,"%i=sceKernelLoadModule(name=%s,flag=%08x,(...))", module->GetUID(), name, flags); } // TODO: This is not the right timing and probably not the right wait type, just an approximation. return hleDelayResult(module->GetUID(), "module loaded", 500); } static u32 sceKernelLoadModuleNpDrm(const char *name, u32 flags, u32 optionAddr) { DEBUG_LOG(LOADER, "sceKernelLoadModuleNpDrm(%s, %08x)", name, flags); return sceKernelLoadModule(name, flags, optionAddr); } static void sceKernelStartModule(u32 moduleId, u32 argsize, u32 argAddr, u32 returnValueAddr, u32 optionAddr) { u32 priority = 0x20; u32 stacksize = 0x40000; u32 attr = 0; int stackPartition = 0; SceKernelSMOption smoption = {0}; if (optionAddr) { Memory::ReadStruct(optionAddr, &smoption); } u32 error; Module *module = kernelObjects.Get(moduleId, error); if (!module) { INFO_LOG(SCEMODULE, "sceKernelStartModule(%d,asize=%08x,aptr=%08x,retptr=%08x,%08x): error %08x", moduleId, argsize, argAddr, returnValueAddr, optionAddr, error); RETURN(error); return; } else if (module->isFake) { INFO_LOG(SCEMODULE, "sceKernelStartModule(%d,asize=%08x,aptr=%08x,retptr=%08x,%08x): faked (undecryptable module)", moduleId,argsize,argAddr,returnValueAddr,optionAddr); if (returnValueAddr) Memory::Write_U32(0, returnValueAddr); RETURN(moduleId); return; } else if (module->nm.status == MODULE_STATUS_STARTED) { ERROR_LOG(SCEMODULE, "sceKernelStartModule(%d,asize=%08x,aptr=%08x,retptr=%08x,%08x) : already started", moduleId,argsize,argAddr,returnValueAddr,optionAddr); // TODO: Maybe should be SCE_KERNEL_ERROR_ALREADY_STARTED, but I get SCE_KERNEL_ERROR_ERROR. // But I also get crashes... RETURN(SCE_KERNEL_ERROR_ERROR); return; } else { INFO_LOG(SCEMODULE, "sceKernelStartModule(%d,asize=%08x,aptr=%08x,retptr=%08x,%08x)", moduleId,argsize,argAddr,returnValueAddr,optionAddr); int attribute = module->nm.attribute; u32 entryAddr = module->nm.entry_addr; if (module->nm.module_start_func != 0 && module->nm.module_start_func != (u32)-1) { entryAddr = module->nm.module_start_func; attribute = module->nm.module_start_thread_attr; } else if ((entryAddr == (u32)-1) || entryAddr == module->memoryBlockAddr - 1) { if (optionAddr) { // TODO: Does sceKernelStartModule() really give an error when no entry only if you pass options? attribute = smoption.attribute; } else { // TODO: Why are we just returning the module ID in this case? WARN_LOG(SCEMODULE, "sceKernelStartModule(): module has no start or entry func"); module->nm.status = MODULE_STATUS_STARTED; RETURN(moduleId); return; } } if (Memory::IsValidAddress(entryAddr)) { if ((optionAddr) && smoption.priority > 0) { priority = smoption.priority; } else if (module->nm.module_start_thread_priority > 0) { priority = module->nm.module_start_thread_priority; } if ((optionAddr) && (smoption.stacksize > 0)) { stacksize = smoption.stacksize; } else if (module->nm.module_start_thread_stacksize > 0) { stacksize = module->nm.module_start_thread_stacksize; } SceUID threadID = __KernelCreateThread(module->nm.name, moduleId, entryAddr, priority, stacksize, attribute, 0); sceKernelStartThread(threadID, argsize, argAddr); __KernelSetThreadRA(threadID, NID_MODULERETURN); __KernelWaitCurThread(WAITTYPE_MODULE, moduleId, 1, 0, false, "started module"); const ModuleWaitingThread mwt = {__KernelGetCurThread(), returnValueAddr}; module->nm.status = MODULE_STATUS_STARTING; module->waitingThreads.push_back(mwt); } else if (entryAddr == 0) { INFO_LOG(SCEMODULE, "sceKernelStartModule(%d,asize=%08x,aptr=%08x,retptr=%08x,%08x): no entry address", moduleId,argsize,argAddr,returnValueAddr,optionAddr); module->nm.status = MODULE_STATUS_STARTED; } else { ERROR_LOG(SCEMODULE, "sceKernelStartModule(%d,asize=%08x,aptr=%08x,retptr=%08x,%08x): invalid entry address", moduleId,argsize,argAddr,returnValueAddr,optionAddr); RETURN(-1); return; } } RETURN(moduleId); } static u32 sceKernelStopModule(u32 moduleId, u32 argSize, u32 argAddr, u32 returnValueAddr, u32 optionAddr) { u32 priority = 0x20; u32 stacksize = 0x40000; u32 attr = 0; // TODO: In a lot of cases (even for errors), this should resched. Needs testing. u32 error; Module *module = kernelObjects.Get(moduleId, error); if (!module) { ERROR_LOG(SCEMODULE, "sceKernelStopModule(%08x, %08x, %08x, %08x, %08x): invalid module id", moduleId, argSize, argAddr, returnValueAddr, optionAddr); return error; } if (module->isFake) { INFO_LOG(SCEMODULE, "sceKernelStopModule(%08x, %08x, %08x, %08x, %08x) - faking", moduleId, argSize, argAddr, returnValueAddr, optionAddr); if (returnValueAddr) Memory::Write_U32(0, returnValueAddr); return 0; } if (module->nm.status != MODULE_STATUS_STARTED) { ERROR_LOG(SCEMODULE, "sceKernelStopModule(%08x, %08x, %08x, %08x, %08x): already stopped", moduleId, argSize, argAddr, returnValueAddr, optionAddr); return SCE_KERNEL_ERROR_ALREADY_STOPPED; } u32 stopFunc = module->nm.module_stop_func; if (module->nm.module_stop_thread_priority != 0) priority = module->nm.module_stop_thread_priority; if (module->nm.module_stop_thread_stacksize != 0) stacksize = module->nm.module_stop_thread_stacksize; if (module->nm.module_stop_thread_attr != 0) attr = module->nm.module_stop_thread_attr; // TODO: Need to test how this really works. Let's assume it's an override. if (Memory::IsValidAddress(optionAddr)) { auto options = PSPPointer::Create(optionAddr); // TODO: Check how size handling actually works. if (options->size != 0 && options->priority != 0) priority = options->priority; if (options->size != 0 && options->stacksize != 0) stacksize = options->stacksize; if (options->size != 0 && options->attribute != 0) attr = options->attribute; // TODO: Maybe based on size? else if (attr != 0) WARN_LOG_REPORT(SCEMODULE, "Stopping module with attr=%x, but options specify 0", attr); } if (Memory::IsValidAddress(stopFunc)) { SceUID threadID = __KernelCreateThread(module->nm.name, moduleId, stopFunc, priority, stacksize, attr, 0); sceKernelStartThread(threadID, argSize, argAddr); __KernelSetThreadRA(threadID, NID_MODULERETURN); __KernelWaitCurThread(WAITTYPE_MODULE, moduleId, 1, 0, false, "stopped module"); const ModuleWaitingThread mwt = {__KernelGetCurThread(), returnValueAddr}; module->nm.status = MODULE_STATUS_STOPPING; module->waitingThreads.push_back(mwt); } else if (stopFunc == 0) { INFO_LOG(SCEMODULE, "sceKernelStopModule(%08x, %08x, %08x, %08x, %08x): no stop func, skipping", moduleId, argSize, argAddr, returnValueAddr, optionAddr); module->nm.status = MODULE_STATUS_STOPPED; } else { ERROR_LOG_REPORT(SCEMODULE, "sceKernelStopModule(%08x, %08x, %08x, %08x, %08x): bad stop func address", moduleId, argSize, argAddr, returnValueAddr, optionAddr); module->nm.status = MODULE_STATUS_STOPPED; } return 0; } static u32 sceKernelUnloadModule(u32 moduleId) { INFO_LOG(SCEMODULE,"sceKernelUnloadModule(%i)", moduleId); u32 error; Module *module = kernelObjects.Get(moduleId, error); if (!module) return error; module->Cleanup(); kernelObjects.Destroy(moduleId); return moduleId; } u32 hleKernelStopUnloadSelfModuleWithOrWithoutStatus(u32 exitCode, u32 argSize, u32 argp, u32 statusAddr, u32 optionAddr, bool WithStatus) { if (loadedModules.size() > 1) { if (WithStatus) ERROR_LOG_REPORT(SCEMODULE, "UNIMPL sceKernelStopUnloadSelfModuleWithStatus(%08x, %08x, %08x, %08x, %08x): game may have crashed", exitCode, argSize, argp, statusAddr, optionAddr); else ERROR_LOG_REPORT(SCEMODULE, "UNIMPL sceKernelSelfStopUnloadModule(%08x, %08x, %08x): game may have crashed", exitCode, argSize, argp); SceUID moduleID = __KernelGetCurThreadModuleId(); u32 priority = 0x20; u32 stacksize = 0x40000; u32 attr = 0; // TODO: In a lot of cases (even for errors), this should resched. Needs testing. u32 error; Module *module = kernelObjects.Get(moduleID, error); if (!module) { if (WithStatus) ERROR_LOG(SCEMODULE, "sceKernelStopUnloadSelfModuleWithStatus(%08x, %08x, %08x, %08x, %08x): invalid module id", exitCode, argSize, argp, statusAddr, optionAddr); else ERROR_LOG(SCEMODULE, "sceKernelSelfStopUnloadModule(%08x, %08x, %08x): invalid module id", exitCode, argSize, argp); return error; } u32 stopFunc = module->nm.module_stop_func; if (module->nm.module_stop_thread_priority != 0) priority = module->nm.module_stop_thread_priority; if (module->nm.module_stop_thread_stacksize != 0) stacksize = module->nm.module_stop_thread_stacksize; if (module->nm.module_stop_thread_attr != 0) attr = module->nm.module_stop_thread_attr; // TODO: Need to test how this really works. Let's assume it's an override. if (Memory::IsValidAddress(optionAddr)) { auto options = PSPPointer::Create(optionAddr); // TODO: Check how size handling actually works. if (options->size != 0 && options->priority != 0) priority = options->priority; if (options->size != 0 && options->stacksize != 0) stacksize = options->stacksize; if (options->size != 0 && options->attribute != 0) attr = options->attribute; // TODO: Maybe based on size? else if (attr != 0) WARN_LOG_REPORT(SCEMODULE, "Stopping module with attr=%x, but options specify 0", attr); } if (Memory::IsValidAddress(stopFunc)) { SceUID threadID = __KernelCreateThread(module->nm.name, moduleID, stopFunc, priority, stacksize, attr, 0); sceKernelStartThread(threadID, argSize, argp); __KernelSetThreadRA(threadID, NID_MODULERETURN); __KernelWaitCurThread(WAITTYPE_MODULE, moduleID, 1, 0, false, "unloadstopped module"); const ModuleWaitingThread mwt = {__KernelGetCurThread(), statusAddr}; module->nm.status = MODULE_STATUS_UNLOADING; module->waitingThreads.push_back(mwt); } else if (stopFunc == 0) { if (WithStatus) INFO_LOG(SCEMODULE, "sceKernelStopUnloadSelfModuleWithStatus(%08x, %08x, %08x, %08x, %08x): no stop func", exitCode, argSize, argp, statusAddr, optionAddr); else INFO_LOG(SCEMODULE, "sceKernelSelfStopUnloadModule(%08x, %08x, %08x): no stop func", exitCode, argSize, argp); sceKernelExitDeleteThread(exitCode); module->Cleanup(); kernelObjects.Destroy(moduleID); } else { if (WithStatus) ERROR_LOG_REPORT(SCEMODULE, "sceKernelStopUnloadSelfModuleWithStatus(%08x, %08x, %08x, %08x, %08x): bad stop func address", exitCode, argSize, argp, statusAddr, optionAddr); else ERROR_LOG_REPORT(SCEMODULE, "sceKernelSelfStopUnloadModule(%08x, %08x, %08x): bad stop func address", exitCode, argSize, argp); sceKernelExitDeleteThread(exitCode); module->Cleanup(); kernelObjects.Destroy(moduleID); } } else { if (WithStatus) ERROR_LOG_REPORT(SCEMODULE, "UNIMPL sceKernelStopUnloadSelfModuleWithStatus(%08x, %08x, %08x, %08x, %08x): game has likely crashed", exitCode, argSize, argp, statusAddr, optionAddr); else ERROR_LOG_REPORT(SCEMODULE, "UNIMPL sceKernelSelfStopUnloadModule(%08x, %08x, %08x): game has likely crashed", exitCode, argSize, argp); } return 0; } static u32 sceKernelSelfStopUnloadModule(u32 exitCode, u32 argSize, u32 argp) { // Used in Tom Clancy's Splinter Cell Essentials,Ghost in the Shell Stand Alone Complex return hleKernelStopUnloadSelfModuleWithOrWithoutStatus(exitCode, argSize, argp, 0, 0, false); } static u32 sceKernelStopUnloadSelfModuleWithStatus(u32 exitCode, u32 argSize, u32 argp, u32 statusAddr, u32 optionAddr) { return hleKernelStopUnloadSelfModuleWithOrWithoutStatus(exitCode, argSize, argp, statusAddr, optionAddr, true); } void __KernelReturnFromModuleFunc() { // Return from the thread as normal. hleSkipDeadbeef(); __KernelReturnFromThread(); SceUID leftModuleID = __KernelGetCurThreadModuleId(); SceUID leftThreadID = __KernelGetCurThread(); int exitStatus = sceKernelGetThreadExitStatus(leftThreadID); // Reschedule immediately (to leave the thread) and delete it and its stack. __KernelReSchedule("returned from module"); sceKernelDeleteThread(leftThreadID); u32 error; Module *module = kernelObjects.Get(leftModuleID, error); if (!module) { ERROR_LOG_REPORT(SCEMODULE, "Returned from deleted module start/stop func"); return; } // We can't be starting and stopping at the same time, so no need to differentiate. if (module->nm.status == MODULE_STATUS_STARTING) module->nm.status = MODULE_STATUS_STARTED; if (module->nm.status == MODULE_STATUS_STOPPING) module->nm.status = MODULE_STATUS_STOPPED; for (auto it = module->waitingThreads.begin(), end = module->waitingThreads.end(); it < end; ++it) { // Still waiting? if (HLEKernel::VerifyWait(it->threadID, WAITTYPE_MODULE, leftModuleID)) { if (module->nm.status == MODULE_STATUS_UNLOADING) { // TODO: Maybe should maintain the exitCode? sceKernelDeleteThread(it->threadID); } else { if (it->statusPtr != 0) Memory::Write_U32(exitStatus, it->statusPtr); __KernelResumeThreadFromWait(it->threadID, module->nm.status == MODULE_STATUS_STARTED ? leftModuleID : 0); } } } module->waitingThreads.clear(); if (module->nm.status == MODULE_STATUS_UNLOADING) { // TODO: Delete the waiting thread? module->Cleanup(); kernelObjects.Destroy(leftModuleID); } } struct GetModuleIdByAddressArg { u32 addr; SceUID result; }; static bool __GetModuleIdByAddressIterator(Module *module, GetModuleIdByAddressArg *state) { const u32 start = module->memoryBlockAddr, size = module->memoryBlockSize; if (start != 0 && start <= state->addr && start + size > state->addr) { state->result = module->GetUID(); return false; } return true; } static u32 sceKernelGetModuleIdByAddress(u32 moduleAddr) { GetModuleIdByAddressArg state; state.addr = moduleAddr; state.result = SCE_KERNEL_ERROR_UNKNOWN_MODULE; kernelObjects.Iterate(&__GetModuleIdByAddressIterator, &state); if (state.result == (SceUID)SCE_KERNEL_ERROR_UNKNOWN_MODULE) ERROR_LOG(SCEMODULE, "sceKernelGetModuleIdByAddress(%08x): module not found", moduleAddr); else DEBUG_LOG(SCEMODULE, "%x=sceKernelGetModuleIdByAddress(%08x)", state.result, moduleAddr); return state.result; } static u32 sceKernelGetModuleId() { INFO_LOG(SCEMODULE,"sceKernelGetModuleId()"); return __KernelGetCurThreadModuleId(); } u32 sceKernelFindModuleByName(const char *name) { ERROR_LOG_REPORT(SCEMODULE, "UNIMPL sceKernelFindModuleByName(%s)", name); int index = GetModuleIndex(name); if (index == -1) return 0; return 1; } static u32 sceKernelLoadModuleByID(u32 id, u32 flags, u32 lmoptionPtr) { u32 error; u32 handle = __IoGetFileHandleFromId(id, error); if (handle == (u32)-1) { ERROR_LOG(SCEMODULE,"sceKernelLoadModuleByID(%08x, %08x, %08x): could not open file id",id,flags,lmoptionPtr); return error; } if (flags != 0) { WARN_LOG_REPORT(LOADER, "sceKernelLoadModuleByID: unsupported flags: %08x", flags); } SceKernelLMOption *lmoption = 0; if (lmoptionPtr) { lmoption = (SceKernelLMOption *)Memory::GetPointer(lmoptionPtr); WARN_LOG_REPORT(LOADER, "sceKernelLoadModuleByID: unsupported options size=%08x, flags=%08x, pos=%d, access=%d, data=%d, text=%d", lmoption->size, lmoption->flags, lmoption->position, lmoption->access, lmoption->mpiddata, lmoption->mpidtext); } u32 pos = (u32) pspFileSystem.SeekFile(handle, 0, FILEMOVE_CURRENT); size_t size = pspFileSystem.SeekFile(handle, 0, FILEMOVE_END); std::string error_string; pspFileSystem.SeekFile(handle, pos, FILEMOVE_BEGIN); Module *module = 0; u8 *temp = new u8[size - pos]; pspFileSystem.ReadFile(handle, temp, size - pos); u32 magic; module = __KernelLoadELFFromPtr(temp, 0, lmoption ? lmoption->position == 1 : false, &error_string, &magic, error); delete [] temp; if (!module) { // Some games try to load strange stuff as PARAM.SFO as modules and expect it to fail. // This checks for the SFO magic number. if (magic == 0x46535000) { ERROR_LOG(LOADER, "Game tried to load an SFO as a module. Go figure? Magic = %08x", magic); return error; } if ((int)error >= 0) { // Module was blacklisted or couldn't be decrypted, which means it's a kernel module we don't want to run.. // Let's just act as if it worked. NOTICE_LOG(LOADER, "Module %d is blacklisted or undecryptable - we lie about success", id); return 1; } else { NOTICE_LOG(LOADER, "Module %d failed to load: %08x", id, error); return error; } } if (lmoption) { INFO_LOG(SCEMODULE,"%i=sceKernelLoadModuleByID(%d,flag=%08x,%08x,%08x,%08x,position = %08x)", module->GetUID(),id,flags, lmoption->size,lmoption->mpidtext,lmoption->mpiddata,lmoption->position); } else { INFO_LOG(SCEMODULE,"%i=sceKernelLoadModuleByID(%d,flag=%08x,(...))", module->GetUID(), id, flags); } return module->GetUID(); } static u32 sceKernelLoadModuleDNAS(const char *name, u32 flags) { ERROR_LOG_REPORT(SCEMODULE, "UNIMPL 0=sceKernelLoadModuleDNAS()"); return 0; } static SceUID sceKernelLoadModuleBufferUsbWlan(u32 size, u32 bufPtr, u32 flags, u32 lmoptionPtr) { if (flags != 0) { WARN_LOG_REPORT(LOADER, "sceKernelLoadModuleBufferUsbWlan: unsupported flags: %08x", flags); } SceKernelLMOption *lmoption = 0; if (lmoptionPtr) { lmoption = (SceKernelLMOption *)Memory::GetPointer(lmoptionPtr); WARN_LOG_REPORT(LOADER, "sceKernelLoadModuleBufferUsbWlan: unsupported options size=%08x, flags=%08x, pos=%d, access=%d, data=%d, text=%d", lmoption->size, lmoption->flags, lmoption->position, lmoption->access, lmoption->mpiddata, lmoption->mpidtext); } std::string error_string; Module *module = 0; u32 magic; u32 error; module = __KernelLoadELFFromPtr(Memory::GetPointer(bufPtr), 0, lmoption ? lmoption->position == 1 : false, &error_string, &magic, error); if (!module) { // Some games try to load strange stuff as PARAM.SFO as modules and expect it to fail. // This checks for the SFO magic number. if (magic == 0x46535000) { ERROR_LOG(LOADER, "Game tried to load an SFO as a module. Go figure? Magic = %08x", magic); return error; } if ((int)error >= 0) { // Module was blacklisted or couldn't be decrypted, which means it's a kernel module we don't want to run.. // Let's just act as if it worked. NOTICE_LOG(LOADER, "Module is blacklisted or undecryptable - we lie about success"); return 1; } else { NOTICE_LOG(LOADER, "Module failed to load: %08x", error); return error; } } if (lmoption) { INFO_LOG(SCEMODULE,"%i=sceKernelLoadModuleBufferUsbWlan(%x,%08x,flag=%08x,%08x,%08x,%08x,position = %08x)", module->GetUID(),size,bufPtr,flags, lmoption->size,lmoption->mpidtext,lmoption->mpiddata,lmoption->position); } else { INFO_LOG(SCEMODULE,"%i=sceKernelLoadModuleBufferUsbWlan(%x,%08x,flag=%08x,(...))", module->GetUID(), size,bufPtr, flags); } return module->GetUID(); } static u32 sceKernelQueryModuleInfo(u32 uid, u32 infoAddr) { INFO_LOG(SCEMODULE, "sceKernelQueryModuleInfo(%i, %08x)", uid, infoAddr); u32 error; Module *module = kernelObjects.Get(uid, error); if (!module) return error; if (!Memory::IsValidAddress(infoAddr)) { ERROR_LOG(SCEMODULE, "sceKernelQueryModuleInfo(%i, %08x) - bad infoAddr", uid, infoAddr); return -1; } auto info = PSPPointer::Create(infoAddr); memcpy(info->segmentaddr, module->nm.segmentaddr, sizeof(info->segmentaddr)); memcpy(info->segmentsize, module->nm.segmentsize, sizeof(info->segmentsize)); info->nsegment = module->nm.nsegment; info->entry_addr = module->nm.entry_addr; info->gp_value = module->nm.gp_value; info->text_addr = module->nm.text_addr; info->text_size = module->nm.text_size; info->data_size = module->nm.data_size; info->bss_size = module->nm.bss_size; // Even if it's bigger, if it's not exactly 96, skip this extra data. // Even if it's 0, the above are all written though. if (info->size == 96) { info->attribute = module->nm.attribute; info->version[0] = module->nm.version[0]; info->version[1] = module->nm.version[1]; memcpy(info->name, module->nm.name, 28); } return 0; } static u32 sceKernelGetModuleIdList(u32 resultBuffer, u32 resultBufferSize, u32 idCountAddr) { ERROR_LOG(SCEMODULE, "UNTESTED sceKernelGetModuleIdList(%08x, %i, %08x)", resultBuffer, resultBufferSize, idCountAddr); int idCount = 0; u32 resultBufferOffset = 0; u32 error; for (auto mod = loadedModules.begin(), modend = loadedModules.end(); mod != modend; ++mod) { Module *module = kernelObjects.Get(*mod, error); if (!module->isFake) { if (resultBufferOffset < resultBufferSize) { Memory::Write_U32(module->GetUID(), resultBuffer + resultBufferOffset); resultBufferOffset += 4; } idCount++; } } Memory::Write_U32(idCount, idCountAddr); return 0; } static u32 ModuleMgrForKernel_977de386(const char *name, u32 flags, u32 optionAddr) { WARN_LOG(SCEMODULE,"ModuleMgrForKernel_977de386:Not support this patcher"); return sceKernelLoadModule(name, flags, optionAddr); } static void ModuleMgrForKernel_50f0c1ec(u32 moduleId, u32 argsize, u32 argAddr, u32 returnValueAddr, u32 optionAddr) { WARN_LOG(SCEMODULE,"ModuleMgrForKernel_50f0c1ec:Not support this patcher"); sceKernelStartModule(moduleId, argsize, argAddr, returnValueAddr, optionAddr); } //fix for tiger x dragon static u32 ModuleMgrForKernel_a1a78c58(const char *name, u32 flags, u32 optionAddr) { WARN_LOG(SCEMODULE,"ModuleMgrForKernel_a1a78c58:Not support this patcher"); return sceKernelLoadModule(name, flags, optionAddr); } const HLEFunction ModuleMgrForUser[] = { {0x977DE386,&WrapU_CUU,"sceKernelLoadModule"}, {0xb7f46618,&WrapU_UUU,"sceKernelLoadModuleByID"}, {0x50F0C1EC,&WrapV_UUUUU,"sceKernelStartModule", HLE_NOT_IN_INTERRUPT | HLE_NOT_DISPATCH_SUSPENDED}, {0xD675EBB8,WrapU_UUU, "sceKernelSelfStopUnloadModule"}, {0xd1ff982a,&WrapU_UUUUU,"sceKernelStopModule", HLE_NOT_IN_INTERRUPT | HLE_NOT_DISPATCH_SUSPENDED}, {0x2e0911aa,WrapU_U,"sceKernelUnloadModule"}, {0x710F61B5,0,"sceKernelLoadModuleMs"}, {0xF9275D98,WrapI_UUUU,"sceKernelLoadModuleBufferUsbWlan"}, ///??? {0xCC1D3699,0,"sceKernelStopUnloadSelfModule"}, {0x748CBED9,WrapU_UU,"sceKernelQueryModuleInfo"}, {0xd8b73127,&WrapU_U, "sceKernelGetModuleIdByAddress"}, {0xf0a26395,WrapU_V, "sceKernelGetModuleId"}, {0x8f2df740,WrapU_UUUUU,"sceKernelStopUnloadSelfModuleWithStatus"}, {0xfef27dc1,&WrapU_CU , "sceKernelLoadModuleDNAS"}, {0x644395e2,WrapU_UUU,"sceKernelGetModuleIdList"}, {0xf2d8d1b4,&WrapU_CUU,"sceKernelLoadModuleNpDrm"}, {0xe4c4211c,0,"ModuleMgrForUser_E4C4211C"}, {0xfbe27467,0,"ModuleMgrForUser_FBE27467"}, }; const HLEFunction ModuleMgrForKernel[] = { {0x50f0c1ec,&WrapV_UUUUU, "ModuleMgrForKernel_50f0c1ec"},//Not sure right {0x977de386, &WrapU_CUU, "ModuleMgrForKernel_977de386"},//Not sure right {0xa1a78c58, &WrapU_CUU, "ModuleMgrForKernel_a1a78c58"}, //fix for tiger x dragon {0x748CBED9, WrapU_UU, "sceKernelQueryModuleInfo" },//Bugz Homebrew {0x644395e2, WrapU_UUU, "sceKernelGetModuleIdList" },//Bugz Homebrew }; void Register_ModuleMgrForUser() { RegisterModule("ModuleMgrForUser", ARRAY_SIZE(ModuleMgrForUser), ModuleMgrForUser); } void Register_ModuleMgrForKernel() { RegisterModule("ModuleMgrForKernel", ARRAY_SIZE(ModuleMgrForKernel), ModuleMgrForKernel); };