// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "base/timeutil.h" #include "HLE.h" #include #include #include #include "../MemMap.h" #include "../Config.h" #include "Core/CoreTiming.h" #include "Core/Reporting.h" #include "HLETables.h" #include "../System.h" #include "sceDisplay.h" #include "sceIo.h" #include "sceAudio.h" #include "sceKernelMemory.h" #include "sceKernelThread.h" #include "sceKernelInterrupt.h" #include "../MIPS/MIPSCodeUtils.h" #include "../Host.h" enum { // Do nothing after the syscall. HLE_AFTER_NOTHING = 0x00, // Reschedule immediately after the syscall. HLE_AFTER_RESCHED = 0x01, // Call current thread's callbacks after the syscall. HLE_AFTER_CURRENT_CALLBACKS = 0x02, // Check all threads' callbacks after the syscall. HLE_AFTER_ALL_CALLBACKS = 0x04, // Reschedule and process current thread's callbacks after the syscall. HLE_AFTER_RESCHED_CALLBACKS = 0x08, // Run interrupts (and probably reschedule) after the syscall. HLE_AFTER_RUN_INTERRUPTS = 0x10, // Switch to CORE_STEPPING after the syscall (for debugging.) HLE_AFTER_DEBUG_BREAK = 0x20, }; typedef std::vector SyscallVector; typedef std::map SyscallVectorByModule; static std::vector moduleDB; static SyscallVectorByModule unresolvedSyscalls; static SyscallVectorByModule exportedCalls; static int delayedResultEvent = -1; static int hleAfterSyscall = HLE_AFTER_NOTHING; static const char *hleAfterSyscallReschedReason; void hleDelayResultFinish(u64 userdata, int cycleslate) { u32 error; SceUID threadID = (SceUID) userdata; SceUID verify = __KernelGetWaitID(threadID, WAITTYPE_HLEDELAY, error); // The top 32 bits of userdata are the top 32 bits of the 64 bit result. // We can't just put it all in userdata because we need to know the threadID... u64 result = (userdata & 0xFFFFFFFF00000000ULL) | __KernelGetWaitValue(threadID, error); if (error == 0 && verify == 1) __KernelResumeThreadFromWait(threadID, result); else WARN_LOG(HLE, "Someone else woke up HLE-blocked thread?"); } void HLEInit() { RegisterAllModules(); delayedResultEvent = CoreTiming::RegisterEvent("HLEDelayedResult", hleDelayResultFinish); } void HLEDoState(PointerWrap &p) { p.Do(unresolvedSyscalls); p.Do(exportedCalls); p.Do(delayedResultEvent); CoreTiming::RestoreRegisterEvent(delayedResultEvent, "HLEDelayedResult", hleDelayResultFinish); p.DoMarker("HLE"); } void HLEShutdown() { hleAfterSyscall = HLE_AFTER_NOTHING; moduleDB.clear(); unresolvedSyscalls.clear(); exportedCalls.clear(); } void RegisterModule(const char *name, int numFunctions, const HLEFunction *funcTable) { HLEModule module = {name, numFunctions, funcTable}; moduleDB.push_back(module); } int GetModuleIndex(const char *moduleName) { for (size_t i = 0; i < moduleDB.size(); i++) if (strcmp(moduleName, moduleDB[i].name) == 0) return (int)i; return -1; } int GetFuncIndex(int moduleIndex, u32 nib) { const HLEModule &module = moduleDB[moduleIndex]; for (int i = 0; i < module.numFunctions; i++) { if (module.funcTable[i].ID == nib) return i; } return -1; } u32 GetNibByName(const char *moduleName, const char *function) { int moduleIndex = GetModuleIndex(moduleName); const HLEModule &module = moduleDB[moduleIndex]; for (int i = 0; i < module.numFunctions; i++) { if (!strcmp(module.funcTable[i].name, function)) return module.funcTable[i].ID; } return -1; } const HLEFunction *GetFunc(const char *moduleName, u32 nib) { int moduleIndex = GetModuleIndex(moduleName); if (moduleIndex != -1) { int idx = GetFuncIndex(moduleIndex, nib); if (idx != -1) return &(moduleDB[moduleIndex].funcTable[idx]); } return 0; } const char *GetFuncName(const char *moduleName, u32 nib) { _dbg_assert_msg_(HLE, moduleName != NULL, "Invalid module name."); const HLEFunction *func = GetFunc(moduleName,nib); if (func) return func->name; SyscallModuleName searchModuleName = {0}; strncpy(searchModuleName, moduleName, KERNELOBJECT_MAX_NAME_LENGTH); searchModuleName[KERNELOBJECT_MAX_NAME_LENGTH] = '\0'; // Was this function exported previously? static char temp[256]; const auto exported = exportedCalls.find(searchModuleName); if (exported != exportedCalls.end()) { const SyscallVector &syscalls = exported->second; for (auto it = syscalls.begin(), end = syscalls.end(); it != end; ++it) { if (it->nid == nib) { sprintf(temp, "[EXP: 0x%08x]", nib); return temp; } } } // No good, we can't find it. sprintf(temp,"[UNK: 0x%08x]", nib); return temp; } u32 GetSyscallOp(const char *moduleName, u32 nib) { int modindex = GetModuleIndex(moduleName); if (modindex != -1) { int funcindex = GetFuncIndex(modindex, nib); if (funcindex != -1) { return (0x0000000c | (modindex<<18) | (funcindex<<6)); } else { INFO_LOG(HLE, "Syscall (%s, %08x) unknown", moduleName, nib); Reporting::ReportMessage("Unknown syscall in known module: %s 0x%08x", moduleName, nib); return (0x0003FFCC | (modindex<<18)); // invalid syscall } } else { ERROR_LOG(HLE, "Unknown module %s!", moduleName); return (0x03FFFFCC); // invalid syscall } } void WriteSyscall(const char *moduleName, u32 nib, u32 address) { if (nib == 0) { Memory::Write_U32(MIPS_MAKE_JR_RA(), address); //patched out? Memory::Write_U32(MIPS_MAKE_NOP(), address+4); //patched out? return; } int modindex = GetModuleIndex(moduleName); if (modindex != -1) { Memory::Write_U32(MIPS_MAKE_JR_RA(), address); // jr ra Memory::Write_U32(GetSyscallOp(moduleName, nib), address + 4); } else { Syscall sysc = {"", address, nib}; strncpy(sysc.moduleName, moduleName, KERNELOBJECT_MAX_NAME_LENGTH); sysc.moduleName[KERNELOBJECT_MAX_NAME_LENGTH] = '\0'; // Did another module export this already? const auto exported = exportedCalls.find(sysc.moduleName); if (exported != exportedCalls.end()) { const SyscallVector &syscalls = exported->second; for (auto it = syscalls.begin(), end = syscalls.end(); it != end; ++it) { if (it->nid == nib) { Memory::Write_U32(MIPS_MAKE_J(it->symAddr), address); // j symAddr Memory::Write_U32(MIPS_MAKE_NOP(), address + 4); // nop (delay slot) return; } } } // Module inexistent.. for now; let's store the syscall for it to be resolved later INFO_LOG(HLE,"Syscall (%s,%08x) unresolved, storing for later resolving", moduleName, nib); unresolvedSyscalls[sysc.moduleName].push_back(sysc); // Write a trap so we notice this func if it's called before resolving. Memory::Write_U32(MIPS_MAKE_JR_RA(), address); // jr ra Memory::Write_U32(GetSyscallOp("(invalid syscall)", nib), address + 4); } } void ResolveSyscall(const char *moduleName, u32 nib, u32 address) { _dbg_assert_msg_(HLE, moduleName != NULL, "Invalid module name."); Syscall ex = {"", address, nib}; strncpy(ex.moduleName, moduleName, KERNELOBJECT_MAX_NAME_LENGTH); ex.moduleName[KERNELOBJECT_MAX_NAME_LENGTH] = '\0'; exportedCalls[ex.moduleName].push_back(ex); const auto unresolved = unresolvedSyscalls.find(ex.moduleName); if (unresolved != unresolvedSyscalls.end()) { const SyscallVector &syscalls = unresolved->second; for (size_t i = 0; i < syscalls.size(); i++) { const Syscall *sysc = &syscalls[i]; if (sysc->nid == nib) { INFO_LOG(HLE,"Resolving %s/%08x",moduleName,nib); // Note: doing that, we can't trace external module calls, so maybe something else should be done to debug more efficiently // Note that this should be J not JAL, as otherwise control will return to the stub.. Memory::Write_U32(MIPS_MAKE_J(address), sysc->symAddr); Memory::Write_U32(MIPS_MAKE_NOP(), sysc->symAddr + 4); } } } } const char *GetFuncName(int moduleIndex, int func) { if (moduleIndex >= 0 && moduleIndex < (int)moduleDB.size()) { const HLEModule &module = moduleDB[moduleIndex]; if (func >= 0 && func < module.numFunctions) { return module.funcTable[func].name; } } return "[unknown]"; } void hleCheckAllCallbacks() { hleAfterSyscall |= HLE_AFTER_ALL_CALLBACKS; } void hleCheckCurrentCallbacks() { hleAfterSyscall |= HLE_AFTER_CURRENT_CALLBACKS; } void hleReSchedule(const char *reason) { _dbg_assert_msg_(HLE, reason != 0, "hleReSchedule: Expecting a valid reason."); _dbg_assert_msg_(HLE, reason != 0 && strlen(reason) < 256, "hleReSchedule: Not too long reason."); hleAfterSyscall |= HLE_AFTER_RESCHED; if (!reason) hleAfterSyscallReschedReason = "Invalid reason"; else hleAfterSyscallReschedReason = reason; } void hleReSchedule(bool callbacks, const char *reason) { hleReSchedule(reason); if (callbacks) hleAfterSyscall |= HLE_AFTER_RESCHED_CALLBACKS; } void hleRunInterrupts() { hleAfterSyscall |= HLE_AFTER_RUN_INTERRUPTS; } void hleDebugBreak() { hleAfterSyscall |= HLE_AFTER_DEBUG_BREAK; } // Pauses execution after an HLE call. bool hleExecuteDebugBreak(const HLEFunction &func) { const u32 NID_SUSPEND_INTR = 0x092968F4, NID_RESUME_INTR = 0x5F10D406; // Never break on these, they're noise. u32 blacklistedNIDs[] = {NID_SUSPEND_INTR, NID_RESUME_INTR, NID_IDLE}; for (size_t i = 0; i < ARRAY_SIZE(blacklistedNIDs); ++i) { if (func.ID == blacklistedNIDs[i]) return false; } Core_EnableStepping(true); host->SetDebugMode(true); return true; } u32 hleDelayResult(u32 result, const char *reason, int usec) { if (__KernelIsDispatchEnabled()) { CoreTiming::ScheduleEvent(usToCycles(usec), delayedResultEvent, __KernelGetCurThread()); __KernelWaitCurThread(WAITTYPE_HLEDELAY, 1, result, 0, false, reason); } else WARN_LOG(HLE, "Dispatch disabled, not delaying HLE result (right thing to do?)"); return result; } u64 hleDelayResult(u64 result, const char *reason, int usec) { if (__KernelIsDispatchEnabled()) { u64 param = (result & 0xFFFFFFFF00000000) | __KernelGetCurThread(); CoreTiming::ScheduleEvent(usToCycles(usec), delayedResultEvent, param); __KernelWaitCurThread(WAITTYPE_HLEDELAY, 1, (u32) result, 0, false, reason); } else WARN_LOG(HLE, "Dispatch disabled, not delaying HLE result (right thing to do?)"); return result; } void hleEatCycles(int cycles) { // Maybe this should Idle, at least for larger delays? Could that cause issues? currentMIPS->downcount -= cycles; } void hleEatMicro(int usec) { hleEatCycles((int) usToCycles(usec)); } inline void hleFinishSyscall(int modulenum, int funcnum) { if ((hleAfterSyscall & HLE_AFTER_CURRENT_CALLBACKS) != 0) __KernelForceCallbacks(); if ((hleAfterSyscall & HLE_AFTER_RUN_INTERRUPTS) != 0) __RunOnePendingInterrupt(); // Rescheduling will also do HLE_AFTER_ALL_CALLBACKS. if ((hleAfterSyscall & HLE_AFTER_RESCHED_CALLBACKS) != 0) __KernelReSchedule(true, hleAfterSyscallReschedReason); else if ((hleAfterSyscall & HLE_AFTER_RESCHED) != 0) __KernelReSchedule(hleAfterSyscallReschedReason); else if ((hleAfterSyscall & HLE_AFTER_ALL_CALLBACKS) != 0) __KernelCheckCallbacks(); if ((hleAfterSyscall & HLE_AFTER_DEBUG_BREAK) != 0) { if (!hleExecuteDebugBreak(moduleDB[modulenum].funcTable[funcnum])) { // We'll do it next syscall. hleAfterSyscall = HLE_AFTER_DEBUG_BREAK; hleAfterSyscallReschedReason = 0; return; } } hleAfterSyscall = HLE_AFTER_NOTHING; hleAfterSyscallReschedReason = 0; } inline void updateSyscallStats(int modulenum, int funcnum, double total) { const char *name = moduleDB[modulenum].funcTable[funcnum].name; // Ignore this one, especially for msInSyscalls (although that ignores CoreTiming events.) if (0 == strcmp(name, "_sceKernelIdle")) return; if (total > kernelStats.slowestSyscallTime) { kernelStats.slowestSyscallTime = total; kernelStats.slowestSyscallName = name; } kernelStats.msInSyscalls += total; KernelStatsSyscall statCall(modulenum, funcnum); auto summedStat = kernelStats.summedMsInSyscalls.find(statCall); if (summedStat == kernelStats.summedMsInSyscalls.end()) { kernelStats.summedMsInSyscalls[statCall] = total; if (total > kernelStats.summedSlowestSyscallTime) { kernelStats.summedSlowestSyscallTime = total; kernelStats.summedSlowestSyscallName = name; } } else { double newTotal = kernelStats.summedMsInSyscalls[statCall] += total; if (newTotal > kernelStats.summedSlowestSyscallTime) { kernelStats.summedSlowestSyscallTime = newTotal; kernelStats.summedSlowestSyscallName = name; } } } void CallSyscall(u32 op) { double start = 0.0; // need to initialize to fix the race condition where g_Config.bShowDebugStats is enabled in the middle of this func. if (g_Config.bShowDebugStats) { time_update(); start = time_now_d(); } u32 callno = (op >> 6) & 0xFFFFF; //20 bits int funcnum = callno & 0xFFF; int modulenum = (callno & 0xFF000) >> 12; if (funcnum == 0xfff || op == 0xffff) { ERROR_LOG(HLE,"Unknown syscall: Module: %s", modulenum > (int) moduleDB.size() ? "(unknown)" : moduleDB[modulenum].name); return; } HLEFunc func = moduleDB[modulenum].funcTable[funcnum].func; if (func) { // TODO: Move to jit/interp. u32 flags = moduleDB[modulenum].funcTable[funcnum].flags; if (flags & HLE_NOT_DISPATCH_SUSPENDED) { if (!__KernelIsDispatchEnabled()) RETURN(SCE_KERNEL_ERROR_CAN_NOT_WAIT); else func(); } else func(); if (hleAfterSyscall != HLE_AFTER_NOTHING) hleFinishSyscall(modulenum, funcnum); } else { ERROR_LOG_REPORT(HLE, "Unimplemented HLE function %s", moduleDB[modulenum].funcTable[funcnum].name); } if (g_Config.bShowDebugStats) { time_update(); updateSyscallStats(modulenum, funcnum, time_now_d() - start); } }