// Copyright (c) 2015- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "ColorConv.h" // NEON is in a separate file so that it can be compiled with a runtime check. #include "ColorConvNEON.h" #include "Common.h" #include "CPUDetect.h" #ifdef _M_SSE #include #endif #if _M_SSE >= 0x401 #include #endif inline u16 RGBA8888toRGB565(u32 px) { return ((px >> 3) & 0x001F) | ((px >> 5) & 0x07E0) | ((px >> 8) & 0xF800); } inline u16 RGBA8888toRGBA4444(u32 px) { return ((px >> 4) & 0x000F) | ((px >> 8) & 0x00F0) | ((px >> 12) & 0x0F00) | ((px >> 16) & 0xF000); } inline u16 BGRA8888toRGB565(u32 px) { return ((px >> 19) & 0x001F) | ((px >> 5) & 0x07E0) | ((px << 8) & 0xF800); } inline u16 BGRA8888toRGBA4444(u32 px) { return ((px >> 20) & 0x000F) | ((px >> 8) & 0x00F0) | ((px << 4) & 0x0F00) | ((px >> 16) & 0xF000); } inline u16 BGRA8888toRGBA5551(u32 px) { return ((px >> 19) & 0x001F) | ((px >> 6) & 0x03E0) | ((px << 7) & 0x7C00) | ((px >> 16) & 0x8000); } inline u16 RGBA8888toRGBA5551(u32 px) { return ((px >> 3) & 0x001F) | ((px >> 6) & 0x03E0) | ((px >> 9) & 0x7C00) | ((px >> 16) & 0x8000); } // convert 4444 image to 8888, parallelizable void convert4444_gl(u16* data, u32* out, int width, int l, int u) { for (int y = l; y < u; ++y) { for (int x = 0; x < width; ++x) { u32 val = data[y*width + x]; u32 r = ((val >> 12) & 0xF) * 17; u32 g = ((val >> 8) & 0xF) * 17; u32 b = ((val >> 4) & 0xF) * 17; u32 a = ((val >> 0) & 0xF) * 17; out[y*width + x] = (a << 24) | (b << 16) | (g << 8) | r; } } } // convert 565 image to 8888, parallelizable void convert565_gl(u16* data, u32* out, int width, int l, int u) { for (int y = l; y < u; ++y) { for (int x = 0; x < width; ++x) { u32 val = data[y*width + x]; u32 r = Convert5To8((val >> 11) & 0x1F); u32 g = Convert6To8((val >> 5) & 0x3F); u32 b = Convert5To8((val)& 0x1F); out[y*width + x] = (0xFF << 24) | (b << 16) | (g << 8) | r; } } } // convert 5551 image to 8888, parallelizable void convert5551_gl(u16* data, u32* out, int width, int l, int u) { for (int y = l; y < u; ++y) { for (int x = 0; x < width; ++x) { u32 val = data[y*width + x]; u32 r = Convert5To8((val >> 11) & 0x1F); u32 g = Convert5To8((val >> 6) & 0x1F); u32 b = Convert5To8((val >> 1) & 0x1F); u32 a = (val & 0x1) * 255; out[y*width + x] = (a << 24) | (b << 16) | (g << 8) | r; } } } // convert 4444 image to 8888, parallelizable void convert4444_dx9(u16* data, u32* out, int width, int l, int u) { for (int y = l; y < u; ++y) { for (int x = 0; x < width; ++x) { u32 val = data[y*width + x]; u32 r = ((val >> 0) & 0xF) * 17; u32 g = ((val >> 4) & 0xF) * 17; u32 b = ((val >> 8) & 0xF) * 17; u32 a = ((val >> 12) & 0xF) * 17; out[y*width + x] = (a << 24) | (b << 16) | (g << 8) | r; } } } // convert 565 image to 8888, parallelizable void convert565_dx9(u16* data, u32* out, int width, int l, int u) { for (int y = l; y < u; ++y) { for (int x = 0; x < width; ++x) { u32 val = data[y*width + x]; u32 r = Convert5To8((val)& 0x1F); u32 g = Convert6To8((val >> 5) & 0x3F); u32 b = Convert5To8((val >> 11) & 0x1F); out[y*width + x] = (0xFF << 24) | (b << 16) | (g << 8) | r; } } } // convert 5551 image to 8888, parallelizable void convert5551_dx9(u16* data, u32* out, int width, int l, int u) { for (int y = l; y < u; ++y) { for (int x = 0; x < width; ++x) { u32 val = data[y*width + x]; u32 r = Convert5To8((val >> 0) & 0x1F); u32 g = Convert5To8((val >> 5) & 0x1F); u32 b = Convert5To8((val >> 10) & 0x1F); u32 a = ((val >> 15) & 0x1) * 255; out[y*width + x] = (a << 24) | (b << 16) | (g << 8) | r; } } } void ConvertBGRA8888ToRGBA8888(u32 *dst, const u32 *src, const u32 numPixels) { #ifdef _M_SSE const __m128i maskGA = _mm_set1_epi32(0xFF00FF00); const __m128i *srcp = (const __m128i *)src; __m128i *dstp = (__m128i *)dst; u32 sseChunks = numPixels / 4; if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF)) { sseChunks = 0; } for (u32 i = 0; i < sseChunks; ++i) { __m128i c = _mm_load_si128(&srcp[i]); __m128i rb = _mm_andnot_si128(maskGA, c); c = _mm_and_si128(c, maskGA); __m128i b = _mm_srli_epi32(rb, 16); __m128i r = _mm_slli_epi32(rb, 16); c = _mm_or_si128(_mm_or_si128(c, r), b); _mm_store_si128(&dstp[i], c); } // The remainder starts right after those done via SSE. u32 i = sseChunks * 4; #else u32 i = 0; #endif for (; i < numPixels; i++) { const u32 c = src[i]; dst[i] = ((c >> 16) & 0x000000FF) | (c & 0xFF00FF00) | ((c << 16) & 0x00FF0000); } } void ConvertRGBA8888ToRGBA5551(u16 *dst, const u32 *src, const u32 numPixels) { #if _M_SSE >= 0x401 const __m128i maskAG = _mm_set1_epi32(0x8000F800); const __m128i maskRB = _mm_set1_epi32(0x00F800F8); const __m128i mask = _mm_set1_epi32(0x0000FFFF); const __m128i *srcp = (const __m128i *)src; __m128i *dstp = (__m128i *)dst; u32 sseChunks = (numPixels / 4) & ~1; // SSE 4.1 required for _mm_packus_epi32. if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF) || !cpu_info.bSSE4_1) { sseChunks = 0; } for (u32 i = 0; i < sseChunks; i += 2) { __m128i c1 = _mm_load_si128(&srcp[i + 0]); __m128i c2 = _mm_load_si128(&srcp[i + 1]); __m128i ag, rb; ag = _mm_and_si128(c1, maskAG); ag = _mm_or_si128(_mm_srli_epi32(ag, 16), _mm_srli_epi32(ag, 6)); rb = _mm_and_si128(c1, maskRB); rb = _mm_or_si128(_mm_srli_epi32(rb, 3), _mm_srli_epi32(rb, 9)); c1 = _mm_and_si128(_mm_or_si128(ag, rb), mask); ag = _mm_and_si128(c2, maskAG); ag = _mm_or_si128(_mm_srli_epi32(ag, 16), _mm_srli_epi32(ag, 6)); rb = _mm_and_si128(c2, maskRB); rb = _mm_or_si128(_mm_srli_epi32(rb, 3), _mm_srli_epi32(rb, 9)); c2 = _mm_and_si128(_mm_or_si128(ag, rb), mask); _mm_store_si128(&dstp[i / 2], _mm_packus_epi32(c1, c2)); } // The remainder starts right after those done via SSE. u32 i = sseChunks * 4; #else u32 i = 0; #endif for (; i < numPixels; i++) { dst[i] = RGBA8888toRGBA5551(src[i]); } } void ConvertBGRA8888ToRGBA5551(u16 *dst, const u32 *src, const u32 numPixels) { #if _M_SSE >= 0x401 const __m128i maskAG = _mm_set1_epi32(0x8000F800); const __m128i maskRB = _mm_set1_epi32(0x00F800F8); const __m128i mask = _mm_set1_epi32(0x0000FFFF); const __m128i *srcp = (const __m128i *)src; __m128i *dstp = (__m128i *)dst; u32 sseChunks = (numPixels / 4) & ~1; // SSE 4.1 required for _mm_packus_epi32. if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF) || !cpu_info.bSSE4_1) { sseChunks = 0; } for (u32 i = 0; i < sseChunks; i += 2) { __m128i c1 = _mm_load_si128(&srcp[i + 0]); __m128i c2 = _mm_load_si128(&srcp[i + 1]); __m128i ag, rb; ag = _mm_and_si128(c1, maskAG); ag = _mm_or_si128(_mm_srli_epi32(ag, 16), _mm_srli_epi32(ag, 6)); rb = _mm_and_si128(c1, maskRB); rb = _mm_or_si128(_mm_srli_epi32(rb, 19), _mm_slli_epi32(rb, 7)); c1 = _mm_and_si128(_mm_or_si128(ag, rb), mask); ag = _mm_and_si128(c2, maskAG); ag = _mm_or_si128(_mm_srli_epi32(ag, 16), _mm_srli_epi32(ag, 6)); rb = _mm_and_si128(c2, maskRB); rb = _mm_or_si128(_mm_srli_epi32(rb, 19), _mm_slli_epi32(rb, 7)); c2 = _mm_and_si128(_mm_or_si128(ag, rb), mask); _mm_store_si128(&dstp[i / 2], _mm_packus_epi32(c1, c2)); } // The remainder starts right after those done via SSE. u32 i = sseChunks * 4; #else u32 i = 0; #endif for (; i < numPixels; i++) { dst[i] = BGRA8888toRGBA5551(src[i]); } } void ConvertBGRA8888ToRGB565(u16 *dst, const u32 *src, const u32 numPixels) { for (u32 i = 0; i < numPixels; i++) { dst[i] = BGRA8888toRGB565(src[i]); } } void ConvertBGRA8888ToRGBA4444(u16 *dst, const u32 *src, const u32 numPixels) { for (u32 i = 0; i < numPixels; i++) { dst[i] = BGRA8888toRGBA4444(src[i]); } } void ConvertRGBA8888ToRGB565(u16 *dst, const u32 *src, const u32 numPixels) { for (u32 x = 0; x < numPixels; ++x) { dst[x] = RGBA8888toRGB565(src[x]); } } void ConvertRGBA8888ToRGBA4444(u16 *dst, const u32 *src, const u32 numPixels) { for (u32 x = 0; x < numPixels; ++x) { dst[x] = RGBA8888toRGBA4444(src[x]); } } void ConvertRGBA565ToRGBA8888(u32 *dst32, const u16 *src, const u32 numPixels) { #ifdef _M_SSE const __m128i mask5 = _mm_set1_epi16(0x001f); const __m128i mask6 = _mm_set1_epi16(0x003f); const __m128i mask8 = _mm_set1_epi16(0x00ff); const __m128i *srcp = (const __m128i *)src; __m128i *dstp = (__m128i *)dst32; u32 sseChunks = numPixels / 8; if (((intptr_t)src & 0xF) || ((intptr_t)dst32 & 0xF)) { sseChunks = 0; } for (u32 i = 0; i < sseChunks; ++i) { const __m128i c = _mm_load_si128(&srcp[i]); // Swizzle, resulting in RR00 RR00. __m128i r = _mm_and_si128(c, mask5); r = _mm_or_si128(_mm_slli_epi16(r, 3), _mm_srli_epi16(r, 2)); r = _mm_and_si128(r, mask8); // This one becomes 00GG 00GG. __m128i g = _mm_and_si128(_mm_srli_epi16(c, 5), mask6); g = _mm_or_si128(_mm_slli_epi16(g, 2), _mm_srli_epi16(g, 4)); g = _mm_slli_epi16(g, 8); // Almost done, we aim for BB00 BB00 again here. __m128i b = _mm_and_si128(_mm_srli_epi16(c, 11), mask5); b = _mm_or_si128(_mm_slli_epi16(b, 3), _mm_srli_epi16(b, 2)); b = _mm_and_si128(b, mask8); // Always set to 00FF 00FF. __m128i a = _mm_slli_epi16(mask8, 8); // Now combine them, RRGG RRGG and BBAA BBAA, and then interleave. const __m128i rg = _mm_or_si128(r, g); const __m128i ba = _mm_or_si128(b, a); _mm_store_si128(&dstp[i * 2 + 0], _mm_unpacklo_epi16(rg, ba)); _mm_store_si128(&dstp[i * 2 + 1], _mm_unpackhi_epi16(rg, ba)); } u32 i = sseChunks * 8; #else u32 i = 0; #endif u8 *dst = (u8 *)dst32; for (u32 x = i; x < numPixels; x++) { u16 col = src[x]; dst[x * 4] = Convert5To8((col) & 0x1f); dst[x * 4 + 1] = Convert6To8((col >> 5) & 0x3f); dst[x * 4 + 2] = Convert5To8((col >> 11) & 0x1f); dst[x * 4 + 3] = 255; } } void ConvertRGBA5551ToRGBA8888(u32 *dst32, const u16 *src, const u32 numPixels) { #ifdef _M_SSE const __m128i mask5 = _mm_set1_epi16(0x001f); const __m128i mask8 = _mm_set1_epi16(0x00ff); const __m128i *srcp = (const __m128i *)src; __m128i *dstp = (__m128i *)dst32; u32 sseChunks = numPixels / 8; if (((intptr_t)src & 0xF) || ((intptr_t)dst32 & 0xF)) { sseChunks = 0; } for (u32 i = 0; i < sseChunks; ++i) { const __m128i c = _mm_load_si128(&srcp[i]); // Swizzle, resulting in RR00 RR00. __m128i r = _mm_and_si128(c, mask5); r = _mm_or_si128(_mm_slli_epi16(r, 3), _mm_srli_epi16(r, 2)); r = _mm_and_si128(r, mask8); // This one becomes 00GG 00GG. __m128i g = _mm_and_si128(_mm_srli_epi16(c, 5), mask5); g = _mm_or_si128(_mm_slli_epi16(g, 3), _mm_srli_epi16(g, 2)); g = _mm_slli_epi16(g, 8); // Almost done, we aim for BB00 BB00 again here. __m128i b = _mm_and_si128(_mm_srli_epi16(c, 10), mask5); b = _mm_or_si128(_mm_slli_epi16(b, 3), _mm_srli_epi16(b, 2)); b = _mm_and_si128(b, mask8); // 1 bit A to 00AA 00AA. __m128i a = _mm_srai_epi16(c, 15); a = _mm_slli_epi16(a, 8); // Now combine them, RRGG RRGG and BBAA BBAA, and then interleave. const __m128i rg = _mm_or_si128(r, g); const __m128i ba = _mm_or_si128(b, a); _mm_store_si128(&dstp[i * 2 + 0], _mm_unpacklo_epi16(rg, ba)); _mm_store_si128(&dstp[i * 2 + 1], _mm_unpackhi_epi16(rg, ba)); } u32 i = sseChunks * 8; #else u32 i = 0; #endif u8 *dst = (u8 *)dst32; for (u32 x = i; x < numPixels; x++) { u16 col = src[x]; dst[x * 4] = Convert5To8((col) & 0x1f); dst[x * 4 + 1] = Convert5To8((col >> 5) & 0x1f); dst[x * 4 + 2] = Convert5To8((col >> 10) & 0x1f); dst[x * 4 + 3] = (col >> 15) ? 255 : 0; } } void ConvertRGBA4444ToRGBA8888(u32 *dst32, const u16 *src, const u32 numPixels) { #ifdef _M_SSE const __m128i mask4 = _mm_set1_epi16(0x000f); const __m128i *srcp = (const __m128i *)src; __m128i *dstp = (__m128i *)dst32; u32 sseChunks = numPixels / 8; if (((intptr_t)src & 0xF) || ((intptr_t)dst32 & 0xF)) { sseChunks = 0; } for (u32 i = 0; i < sseChunks; ++i) { const __m128i c = _mm_load_si128(&srcp[i]); // Let's just grab R000 R000, without swizzling yet. __m128i r = _mm_and_si128(c, mask4); // And then 00G0 00G0. __m128i g = _mm_and_si128(_mm_srli_epi16(c, 4), mask4); g = _mm_slli_epi16(g, 8); // Now B000 B000. __m128i b = _mm_and_si128(_mm_srli_epi16(c, 8), mask4); // And lastly 00A0 00A0. No mask needed, we have a wall. __m128i a = _mm_srli_epi16(c, 12); a = _mm_slli_epi16(a, 8); // We swizzle after combining - R0G0 R0G0 and B0A0 B0A0 -> RRGG RRGG and BBAA BBAA. __m128i rg = _mm_or_si128(r, g); __m128i ba = _mm_or_si128(b, a); rg = _mm_or_si128(rg, _mm_slli_epi16(rg, 4)); ba = _mm_or_si128(ba, _mm_slli_epi16(ba, 4)); // And then we can store. _mm_store_si128(&dstp[i * 2 + 0], _mm_unpacklo_epi16(rg, ba)); _mm_store_si128(&dstp[i * 2 + 1], _mm_unpackhi_epi16(rg, ba)); } u32 i = sseChunks * 8; #else u32 i = 0; #endif u8 *dst = (u8 *)dst32; for (u32 x = i; x < numPixels; x++) { u16 col = src[x]; dst[x * 4] = Convert4To8(col & 0xf); dst[x * 4 + 1] = Convert4To8((col >> 4) & 0xf); dst[x * 4 + 2] = Convert4To8((col >> 8) & 0xf); dst[x * 4 + 3] = Convert4To8(col >> 12); } } void ConvertRGBA4444ToBGRA8888(u32 *dst32, const u16 *src, const u32 numPixels) { u8 *dst = (u8 *)dst32; for (u32 x = 0; x < numPixels; x++) { u16 c = src[x]; u32 r = c & 0x000f; u32 g = (c >> 4) & 0x000f; u32 b = (c >> 8) & 0x000f; u32 a = (c >> 12) & 0x000f; dst[x] = (r << (16 + 4)) | (g << (8 + 4)) | (b << 4) | (a << (24 + 4)); } } void ConvertRGBA5551ToBGRA8888(u32 *dst, const u16 *src, const u32 numPixels) { for (u32 x = 0; x < numPixels; x++) { u16 c = src[x]; u32 r = c & 0x001f; u32 g = (c >> 5) & 0x001f; u32 b = (c >> 10) & 0x001f; // We force an arithmetic shift to get the sign bits/ u32 a = ((s32)(s16)c) & 0xff000000; dst[x] = (r << (16 + 3)) | (g << (8 + 3)) | (b << 3) | a; } } void ConvertRGB565ToBGRA8888(u32 *dst, const u16 *src, const u32 numPixels) { for (u32 x = 0; x < numPixels; x++) { u16 c = src[x]; u32 r = c & 0x001f; u32 g = (c >> 5) & 0x003f; u32 b = (c >> 11) & 0x001f; dst[x] = (r << (16 + 3)) | (g << (8 + 2)) | (b << 3) | 0xFF000000; } } void ConvertRGBA4444ToABGR4444Basic(u16 *dst, const u16 *src, const u32 numPixels) { #ifdef _M_SSE const __m128i mask0040 = _mm_set1_epi16(0x00F0); const __m128i *srcp = (const __m128i *)src; __m128i *dstp = (__m128i *)dst; u32 sseChunks = numPixels / 8; if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF)) { sseChunks = 0; } for (u32 i = 0; i < sseChunks; ++i) { const __m128i c = _mm_load_si128(&srcp[i]); __m128i v = _mm_srli_epi16(c, 12); v = _mm_or_si128(v, _mm_and_si128(_mm_srli_epi16(c, 4), mask0040)); v = _mm_or_si128(v, _mm_slli_epi16(_mm_and_si128(c, mask0040), 4)); v = _mm_or_si128(v, _mm_slli_epi16(c, 12)); _mm_store_si128(&dstp[i], v); } // The remainder is done in chunks of 2, SSE was chunks of 8. u32 i = sseChunks * 8 / 2; #else u32 i = 0; #endif const u32 *src32 = (const u32 *)src; u32 *dst32 = (u32 *)dst; for (; i < numPixels / 2; i++) { const u32 c = src32[i]; dst32[i] = ((c >> 12) & 0x000F000F) | ((c >> 4) & 0x00F000F0) | ((c << 4) & 0x0F000F00) | ((c << 12) & 0xF000F000); } if (numPixels & 1) { const u32 i = numPixels - 1; const u16 c = src[i]; dst[i] = ((c >> 12) & 0x000F) | ((c >> 4) & 0x00F0) | ((c << 4) & 0x0F00) | ((c << 12) & 0xF000); } } void ConvertRGBA5551ToABGR1555Basic(u16 *dst, const u16 *src, const u32 numPixels) { #ifdef _M_SSE const __m128i maskB = _mm_set1_epi16(0x003E); const __m128i maskG = _mm_set1_epi16(0x07C0); const __m128i *srcp = (const __m128i *)src; __m128i *dstp = (__m128i *)dst; u32 sseChunks = numPixels / 8; if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF)) { sseChunks = 0; } for (u32 i = 0; i < sseChunks; ++i) { const __m128i c = _mm_load_si128(&srcp[i]); __m128i v = _mm_srli_epi16(c, 15); v = _mm_or_si128(v, _mm_and_si128(_mm_srli_epi16(c, 9), maskB)); v = _mm_or_si128(v, _mm_and_si128(_mm_slli_epi16(c, 1), maskG)); v = _mm_or_si128(v, _mm_slli_epi16(c, 11)); _mm_store_si128(&dstp[i], v); } // The remainder is done in chunks of 2, SSE was chunks of 8. u32 i = sseChunks * 8 / 2; #else u32 i = 0; #endif const u32 *src32 = (const u32 *)src; u32 *dst32 = (u32 *)dst; for (; i < numPixels / 2; i++) { const u32 c = src32[i]; dst32[i] = ((c >> 15) & 0x00010001) | ((c >> 9) & 0x003E003E) | ((c << 1) & 0x07C007C0) | ((c << 11) & 0xF800F800); } if (numPixels & 1) { const u32 i = numPixels - 1; const u16 c = src[i]; dst[i] = ((c >> 15) & 0x0001) | ((c >> 9) & 0x003E) | ((c << 1) & 0x07C0) | ((c << 11) & 0xF800); } } void ConvertRGB565ToBGR565Basic(u16 *dst, const u16 *src, const u32 numPixels) { #ifdef _M_SSE const __m128i maskG = _mm_set1_epi16(0x07E0); const __m128i *srcp = (const __m128i *)src; __m128i *dstp = (__m128i *)dst; u32 sseChunks = numPixels / 8; if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF)) { sseChunks = 0; } for (u32 i = 0; i < sseChunks; ++i) { const __m128i c = _mm_load_si128(&srcp[i]); __m128i v = _mm_srli_epi16(c, 11); v = _mm_or_si128(v, _mm_and_si128(c, maskG)); v = _mm_or_si128(v, _mm_slli_epi16(c, 11)); _mm_store_si128(&dstp[i], v); } // The remainder is done in chunks of 2, SSE was chunks of 8. u32 i = sseChunks * 8 / 2; #else u32 i = 0; #endif const u32 *src32 = (const u32 *)src; u32 *dst32 = (u32 *)dst; for (; i < numPixels / 2; i++) { const u32 c = src32[i]; dst32[i] = ((c >> 11) & 0x001F001F) | ((c >> 0) & 0x07E007E0) | ((c << 11) & 0xF800F800); } if (numPixels & 1) { const u32 i = numPixels - 1; const u16 c = src[i]; dst[i] = ((c >> 11) & 0x001F) | ((c >> 0) & 0x07E0) | ((c << 11) & 0xF800); } } // Reuse the logic from the header - if these aren't defined, we need externs. #ifndef ConvertRGBA4444ToABGR4444 Convert16bppTo16bppFunc ConvertRGBA4444ToABGR4444 = &ConvertRGBA4444ToABGR4444Basic; Convert16bppTo16bppFunc ConvertRGBA5551ToABGR1555 = &ConvertRGBA5551ToABGR1555Basic; Convert16bppTo16bppFunc ConvertRGB565ToBGR565 = &ConvertRGB565ToBGR565Basic; #endif void SetupColorConv() { #if defined(HAVE_ARMV7) && !defined(ARM64) if (cpu_info.bNEON) { ConvertRGBA4444ToABGR4444 = &ConvertRGBA4444ToABGR4444NEON; ConvertRGBA5551ToABGR1555 = &ConvertRGBA5551ToABGR1555NEON; ConvertRGB565ToBGR565 = &ConvertRGB565ToBGR565NEON; } #endif }