// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "../../MemMap.h" #include "../MIPSAnalyst.h" #include "../../Config.h" #include "Jit.h" #include "RegCache.h" #define _RS ((op>>21) & 0x1F) #define _RT ((op>>16) & 0x1F) #define _RD ((op>>11) & 0x1F) #define _FS ((op>>11) & 0x1F) #define _FT ((op>>16) & 0x1F) #define _FD ((op>>6 ) & 0x1F) #define _POS ((op>>6 ) & 0x1F) #define _SIZE ((op>>11 ) & 0x1F) // All functions should have CONDITIONAL_DISABLE, so we can narrow things down to a file quickly. // Currently known non working ones should have DISABLE. // #define CONDITIONAL_DISABLE { Comp_Generic(op); return; } #define CONDITIONAL_DISABLE ; #define DISABLE { Comp_Generic(op); return; } namespace MIPSComp { void Jit::CompITypeMemRead(u32 op, u32 bits, void (XEmitter::*mov)(int, int, X64Reg, OpArg), void *safeFunc) { CONDITIONAL_DISABLE; int offset = (signed short)(op&0xFFFF); int rt = _RT; int rs = _RS; gpr.Lock(rt, rs); gpr.BindToRegister(rt, rt == rs, true); JitSafeMem safe(this, rs, offset); OpArg src; if (safe.PrepareRead(src)) (this->*mov)(32, bits, gpr.RX(rt), src); if (safe.PrepareSlowRead(safeFunc)) (this->*mov)(32, bits, gpr.RX(rt), R(EAX)); safe.Finish(); gpr.UnlockAll(); } void Jit::CompITypeMemWrite(u32 op, u32 bits, void *safeFunc) { CONDITIONAL_DISABLE; int offset = (signed short)(op&0xFFFF); int rt = _RT; int rs = _RS; gpr.Lock(rt, rs); gpr.BindToRegister(rt, true, false); #ifdef _M_IX86 // We use EDX so we can have DL for 8-bit ops. const bool needSwap = bits == 8 && !gpr.R(rt).IsSimpleReg(EDX) && !gpr.R(rt).IsSimpleReg(ECX); if (needSwap) gpr.FlushLockX(EDX); #else const bool needSwap = false; #endif JitSafeMem safe(this, rs, offset); OpArg dest; if (safe.PrepareWrite(dest)) { if (needSwap) { MOV(32, R(EDX), gpr.R(rt)); MOV(bits, dest, R(EDX)); } else MOV(bits, dest, gpr.R(rt)); } if (safe.PrepareSlowWrite()) safe.DoSlowWrite(safeFunc, gpr.R(rt)); safe.Finish(); if (needSwap) gpr.UnlockAllX(); gpr.UnlockAll(); } void Jit::Comp_ITypeMem(u32 op) { CONDITIONAL_DISABLE; int offset = (signed short)(op&0xFFFF); int rt = _RT; int rs = _RS; int o = op>>26; if (((op >> 29) & 1) == 0 && rt == 0) { // Don't load anything into $zr return; } switch (o) { case 37: //R(rt) = ReadMem16(addr); break; //lhu CompITypeMemRead(op, 16, &XEmitter::MOVZX, (void *) &Memory::Read_U16); break; case 36: //R(rt) = ReadMem8 (addr); break; //lbu CompITypeMemRead(op, 8, &XEmitter::MOVZX, (void *) &Memory::Read_U8); break; case 35: //R(rt) = ReadMem32(addr); break; //lw CompITypeMemRead(op, 32, &XEmitter::MOVZX, (void *) &Memory::Read_U32); break; case 32: //R(rt) = (u32)(s32)(s8) ReadMem8 (addr); break; //lb CompITypeMemRead(op, 8, &XEmitter::MOVSX, (void *) &Memory::Read_U8); break; case 33: //R(rt) = (u32)(s32)(s16)ReadMem16(addr); break; //lh CompITypeMemRead(op, 16, &XEmitter::MOVSX, (void *) &Memory::Read_U16); break; case 40: //WriteMem8 (addr, R(rt)); break; //sb CompITypeMemWrite(op, 8, (void *) &Memory::Write_U8); break; case 41: //WriteMem16(addr, R(rt)); break; //sh CompITypeMemWrite(op, 16, (void *) &Memory::Write_U16); break; case 43: //WriteMem32(addr, R(rt)); break; //sw CompITypeMemWrite(op, 32, (void *) &Memory::Write_U32); break; case 34: //lwl { u32 nextOp = Memory::Read_Instruction(js.compilerPC + 4); // Looking for lwr rd, offset-3(rs) which makes a pair. u32 desiredOp = ((op + (4 << 26)) & 0xFFFF0000) + (offset - 3); if (!js.inDelaySlot && nextOp == desiredOp) { EatInstruction(nextOp); // nextOp has the correct address. CompITypeMemRead(nextOp, 32, &XEmitter::MOVZX, (void *) &Memory::Read_U32); } else Comp_Generic(op); } break; case 38: //lwr { u32 nextOp = Memory::Read_Instruction(js.compilerPC + 4); // Looking for lwl rd, offset+3(rs) which makes a pair. u32 desiredOp = ((op - (4 << 26)) & 0xFFFF0000) + (offset + 3); if (!js.inDelaySlot && nextOp == desiredOp) { EatInstruction(nextOp); // op has the correct address. CompITypeMemRead(op, 32, &XEmitter::MOVZX, (void *) &Memory::Read_U32); } else Comp_Generic(op); } break; case 42: //swl { u32 nextOp = Memory::Read_Instruction(js.compilerPC + 4); // Looking for swr rd, offset-3(rs) which makes a pair. u32 desiredOp = ((op + (4 << 26)) & 0xFFFF0000) + (offset - 3); if (!js.inDelaySlot && nextOp == desiredOp) { EatInstruction(nextOp); // nextOp has the correct address. CompITypeMemWrite(nextOp, 32, (void *) &Memory::Write_U32); } else Comp_Generic(op); } break; case 46: //swr { u32 nextOp = Memory::Read_Instruction(js.compilerPC + 4); // Looking for swl rd, offset+3(rs) which makes a pair. u32 desiredOp = ((op - (4 << 26)) & 0xFFFF0000) + (offset + 3); if (!js.inDelaySlot && nextOp == desiredOp) { EatInstruction(nextOp); // op has the correct address. CompITypeMemWrite(op, 32, (void *) &Memory::Write_U32); } else Comp_Generic(op); } break; default: Comp_Generic(op); return ; } } }