// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #pragma once #include #include "ArmCommon.h" #include "BitSet.h" #include "CodeBlock.h" #include "Common.h" #define DYNA_REC JIT #ifdef FMAX #undef FMAX #endif #ifdef FMIN #undef FMIN #endif namespace Arm64Gen { // X30 serves a dual purpose as a link register // Encoded as // Types: // 000 - 32bit GPR // 001 - 64bit GPR // 010 - VFP single precision // 100 - VFP double precision // 110 - VFP quad precision enum ARM64Reg { // 32bit registers W0 = 0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15, W16, W17, W18, W19, W20, W21, W22, W23, W24, W25, W26, W27, W28, W29, W30, WSP, // 32bit stack pointer // 64bit registers X0 = 0x20, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, X29, X30, SP, // 64bit stack pointer // VFP single precision registers S0 = 0x40, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, // VFP Double Precision registers D0 = 0x80, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30, D31, // ASIMD Quad-Word registers Q0 = 0xC0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q17, Q18, Q19, Q20, Q21, Q22, Q23, Q24, Q25, Q26, Q27, Q28, Q29, Q30, Q31, // For PRFM(prefetch memory) encoding // This is encoded in the Rt register // Data preload PLDL1KEEP = 0, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM, // Instruction preload PLIL1KEEP = 8, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM, // Prepare for store PLTL1KEEP = 16, PLTL1STRM, PLTL2KEEP, PLTL2STRM, PLTL3KEEP, PLTL3STRM, WZR = WSP, ZR = SP, INVALID_REG = 0xFFFFFFFF }; inline bool Is64Bit(ARM64Reg reg) { return (reg & 0x20) != 0; } inline bool IsSingle(ARM64Reg reg) { return (reg & 0xC0) == 0x40; } inline bool IsDouble(ARM64Reg reg) { return (reg & 0xC0) == 0x80; } inline bool IsScalar(ARM64Reg reg) { return IsSingle(reg) || IsDouble(reg); } inline bool IsQuad(ARM64Reg reg) { return (reg & 0xC0) == 0xC0; } inline bool IsVector(ARM64Reg reg) { return (reg & 0xC0) != 0; } inline bool IsGPR(ARM64Reg reg) { return (int)reg < 0x40; } int CountLeadingZeros(uint64_t value, int width); inline ARM64Reg DecodeReg(ARM64Reg reg) { return (ARM64Reg)(reg & 0x1F); } inline ARM64Reg EncodeRegTo64(ARM64Reg reg) { return (ARM64Reg)(reg | 0x20); } inline ARM64Reg EncodeRegToDouble(ARM64Reg reg) { return (ARM64Reg)((reg & ~0xC0) | 0x80); } inline ARM64Reg EncodeRegToQuad(ARM64Reg reg) { return (ARM64Reg)(reg | 0xC0); } // For AND/TST/ORR/EOR etc bool IsImmLogical(uint64_t value, unsigned int width, unsigned int *n, unsigned int *imm_s, unsigned int *imm_r); // For ADD/SUB bool IsImmArithmetic(uint64_t input, u32 *val, bool *shift); float FPImm8ToFloat(uint8_t bits); bool FPImm8FromFloat(float value, uint8_t *immOut); enum OpType { TYPE_IMM = 0, TYPE_REG, TYPE_IMMSREG, TYPE_RSR, TYPE_MEM }; enum ShiftType { ST_LSL = 0, ST_LSR = 1, ST_ASR = 2, ST_ROR = 3, }; enum IndexType { INDEX_UNSIGNED = 0, INDEX_POST = 1, INDEX_PRE = 2, INDEX_SIGNED = INDEX_UNSIGNED // used in LDP/STP }; enum ShiftAmount { SHIFT_0 = 0, SHIFT_16 = 1, SHIFT_32 = 2, SHIFT_48 = 3, }; enum RoundingMode { ROUND_A, // round to nearest, ties to away ROUND_M, // round towards -inf ROUND_N, // round to nearest, ties to even ROUND_P, // round towards +inf ROUND_Z, // round towards zero }; struct FixupBranch { u8* ptr; // Type defines // 0 = CBZ (32bit) // 1 = CBNZ (32bit) // 2 = B (conditional) // 3 = TBZ // 4 = TBNZ // 5 = B (unconditional) // 6 = BL (unconditional) u32 type; // Used with B.cond CCFlags cond; // Used with TBZ/TBNZ u8 bit; // Used with Test/Compare and Branch ARM64Reg reg; }; enum PStateField { FIELD_SPSel = 0, FIELD_DAIFSet, FIELD_DAIFClr, FIELD_NZCV, // The only system registers accessible from EL0 (user space) FIELD_FPCR = 0x340, FIELD_FPSR = 0x341, }; enum SystemHint { HINT_NOP = 0, HINT_YIELD, HINT_WFE, HINT_WFI, HINT_SEV, HINT_SEVL, }; enum BarrierType { OSHLD = 1, OSHST = 2, OSH = 3, NSHLD = 5, NSHST = 6, NSH = 7, ISHLD = 9, ISHST = 10, ISH = 11, LD = 13, ST = 14, SY = 15, }; class ArithOption { public: enum WidthSpecifier { WIDTH_DEFAULT, WIDTH_32BIT, WIDTH_64BIT, }; enum ExtendSpecifier { EXTEND_UXTB = 0x0, EXTEND_UXTH = 0x1, EXTEND_UXTW = 0x2, /* Also LSL on 32bit width */ EXTEND_UXTX = 0x3, /* Also LSL on 64bit width */ EXTEND_SXTB = 0x4, EXTEND_SXTH = 0x5, EXTEND_SXTW = 0x6, EXTEND_SXTX = 0x7, }; enum TypeSpecifier { TYPE_EXTENDEDREG, TYPE_IMM, TYPE_SHIFTEDREG, }; private: ARM64Reg m_destReg; WidthSpecifier m_width; ExtendSpecifier m_extend; TypeSpecifier m_type; ShiftType m_shifttype; u32 m_shift; public: ArithOption(ARM64Reg Rd, bool index = false) { // Indexed registers are a certain feature of AARch64 // On Loadstore instructions that use a register offset // We can have the register as an index // If we are indexing then the offset register will // be shifted to the left so we are indexing at intervals // of the size of what we are loading // 8-bit: Index does nothing // 16-bit: Index LSL 1 // 32-bit: Index LSL 2 // 64-bit: Index LSL 3 if (index) m_shift = 4; else m_shift = 0; m_destReg = Rd; m_type = TYPE_EXTENDEDREG; if (Is64Bit(Rd)) { m_width = WIDTH_64BIT; m_extend = EXTEND_UXTX; } else { m_width = WIDTH_32BIT; m_extend = EXTEND_UXTW; } m_shifttype = ST_LSL; } ArithOption(ARM64Reg Rd, ShiftType shift_type, u32 shift) { m_destReg = Rd; m_shift = shift; m_shifttype = shift_type; m_type = TYPE_SHIFTEDREG; if (Is64Bit(Rd)) { m_width = WIDTH_64BIT; if (shift == 64) m_shift = 0; } else { m_width = WIDTH_32BIT; if (shift == 32) m_shift = 0; } } TypeSpecifier GetType() const { return m_type; } ARM64Reg GetReg() { return m_destReg; } u32 GetData() const { switch (m_type) { case TYPE_EXTENDEDREG: return (m_extend << 13) | (m_shift << 10); break; case TYPE_SHIFTEDREG: return (m_shifttype << 22) | (m_shift << 10); break; default: _dbg_assert_msg_(DYNA_REC, false, "Invalid type in GetData"); break; } return 0; } }; class ARM64XEmitter { friend class ARM64FloatEmitter; private: u8* m_code; u8* m_startcode; u8* m_lastCacheFlushEnd; void EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr); void EncodeTestBranchInst(u32 op, ARM64Reg Rt, u8 bits, const void* ptr); void EncodeUnconditionalBranchInst(u32 op, const void* ptr); void EncodeUnconditionalBranchInst(u32 opc, u32 op2, u32 op3, u32 op4, ARM64Reg Rn); void EncodeExceptionInst(u32 instenc, u32 imm); void EncodeSystemInst(u32 op0, u32 op1, u32 CRn, u32 CRm, u32 op2, ARM64Reg Rt); void EncodeArithmeticInst(u32 instenc, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option); void EncodeArithmeticCarryInst(u32 op, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void EncodeCondCompareImmInst(u32 op, ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond); void EncodeCondCompareRegInst(u32 op, ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond); void EncodeCondSelectInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond); void EncodeData1SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn); void EncodeData2SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void EncodeData3SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void EncodeLogicalInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift); void EncodeLoadRegisterInst(u32 bitop, ARM64Reg Rt, u32 imm); void EncodeLoadStoreExcInst(u32 instenc, ARM64Reg Rs, ARM64Reg Rt2, ARM64Reg Rn, ARM64Reg Rt); void EncodeLoadStorePairedInst(u32 op, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm); void EncodeLoadStoreIndexedInst(u32 op, u32 op2, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void EncodeLoadStoreIndexedInst(u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm, u8 size); void EncodeMOVWideInst(u32 op, ARM64Reg Rd, u32 imm, ShiftAmount pos); void EncodeBitfieldMOVInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms); void EncodeLoadStoreRegisterOffset(u32 size, u32 opc, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); void EncodeAddSubImmInst(u32 op, bool flags, u32 shift, u32 imm, ARM64Reg Rn, ARM64Reg Rd); void EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, int n); void EncodeLoadStorePair(u32 op, bool V, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm); void EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm); void EncodeLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm); protected: inline void Write32(u32 value) { *(u32*)m_code = value; m_code += 4; } public: ARM64XEmitter() : m_code(nullptr), m_startcode(nullptr), m_lastCacheFlushEnd(nullptr) { } ARM64XEmitter(u8* code_ptr) { m_code = code_ptr; m_lastCacheFlushEnd = code_ptr; m_startcode = code_ptr; } virtual ~ARM64XEmitter() { } void SetCodePtr(u8* ptr); void ReserveCodeSpace(u32 bytes); const u8* AlignCode16(); const u8* AlignCodePage(); const u8* GetCodePtr() const; void FlushIcache(); void FlushIcacheSection(u8* start, u8* end); u8* GetWritableCodePtr(); // FixupBranch branching void SetJumpTarget(FixupBranch const& branch); FixupBranch CBZ(ARM64Reg Rt); FixupBranch CBNZ(ARM64Reg Rt); FixupBranch B(CCFlags cond); FixupBranch TBZ(ARM64Reg Rt, u8 bit); FixupBranch TBNZ(ARM64Reg Rt, u8 bit); FixupBranch B(); FixupBranch BL(); // Compare and Branch void CBZ(ARM64Reg Rt, const void* ptr); void CBNZ(ARM64Reg Rt, const void* ptr); // Conditional Branch void B(CCFlags cond, const void* ptr); // Test and Branch void TBZ(ARM64Reg Rt, u8 bits, const void* ptr); void TBNZ(ARM64Reg Rt, u8 bits, const void* ptr); // Unconditional Branch void B(const void* ptr); void BL(const void* ptr); // Unconditional Branch (register) void BR(ARM64Reg Rn); void BLR(ARM64Reg Rn); void RET(ARM64Reg Rn = X30); void ERET(); void DRPS(); // Exception generation void SVC(u32 imm); void HVC(u32 imm); void SMC(u32 imm); void BRK(u32 imm); void HLT(u32 imm); void DCPS1(u32 imm); void DCPS2(u32 imm); void DCPS3(u32 imm); // System void _MSR(PStateField field, u8 imm); void _MSR(PStateField field, ARM64Reg Rt); void MRS(ARM64Reg Rt, PStateField field); void HINT(SystemHint op); void CLREX(); void DSB(BarrierType type); void DMB(BarrierType type); void ISB(BarrierType type); // Add/Subtract (Extended/Shifted register) void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option); void ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option); void SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option); void SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option); void CMN(ARM64Reg Rn, ARM64Reg Rm); void CMN(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option); void CMP(ARM64Reg Rn, ARM64Reg Rm); void CMP(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option); // Add/Subtract (with carry) void ADC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void ADCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void SBC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void SBCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); // Conditional Compare (immediate) void CCMN(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond); void CCMP(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond); // Conditional Compare (register) void CCMN(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond); void CCMP(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond); // Conditional Select void CSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond); void CSINC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond); void CSINV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond); void CSNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond); // Aliases void CSET(ARM64Reg Rd, CCFlags cond) { ARM64Reg zr = Is64Bit(Rd) ? ZR : WZR; CSINC(Rd, zr, zr, (CCFlags)((u32)cond ^ 1)); } void NEG(ARM64Reg Rd, ARM64Reg Rs) { SUB(Rd, Is64Bit(Rd) ? ZR : WZR, Rs); } // Data-Processing 1 source void RBIT(ARM64Reg Rd, ARM64Reg Rn); void REV16(ARM64Reg Rd, ARM64Reg Rn); void REV32(ARM64Reg Rd, ARM64Reg Rn); void REV64(ARM64Reg Rd, ARM64Reg Rn); void CLZ(ARM64Reg Rd, ARM64Reg Rn); void CLS(ARM64Reg Rd, ARM64Reg Rn); // Data-Processing 2 source void UDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void SDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void LSLV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void LSRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void ASRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void RORV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void CRC32B(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void CRC32H(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void CRC32W(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void CRC32CB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void CRC32CH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void CRC32CW(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void CRC32X(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void CRC32CX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); // Data-Processing 3 source void MADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void MSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void SMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void SMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void UMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void UMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void UMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void MUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void MNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); // Logical (shifted register) void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift); void BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift); void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift); void ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift); void EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift); void EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift); void ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift); void BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift); // Wrap the above for saner syntax void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { AND(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); } void BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { BIC(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); } void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ORR(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); } void ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ORN(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); } void EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EOR(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); } void EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EON(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); } void ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ANDS(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); } void BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { BICS(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); } // Convenience wrappers around ORR. These match the official convenience syntax. void MOV(ARM64Reg Rd, ARM64Reg Rm, ArithOption Shift); void MOV(ARM64Reg Rd, ARM64Reg Rm); void MVN(ARM64Reg Rd, ARM64Reg Rm); // TODO: These are "slow" as they use arith+shift, should be replaced with UBFM/EXTR variants. void LSR(ARM64Reg Rd, ARM64Reg Rm, int shift); void LSL(ARM64Reg Rd, ARM64Reg Rm, int shift); void ASR(ARM64Reg Rd, ARM64Reg Rm, int shift); void ROR(ARM64Reg Rd, ARM64Reg Rm, int shift); // Logical (immediate) void AND(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false); void ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false); void EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false); void ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false); void TST(ARM64Reg Rn, u32 immr, u32 imms, bool invert = false); // Add/subtract (immediate) void ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false); void ADDS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false); void SUB(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false); void SUBS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false); void CMP(ARM64Reg Rn, u32 imm, bool shift = false); // Data Processing (Immediate) void MOVZ(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0); void MOVN(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0); void MOVK(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0); // Bitfield move void BFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms); void SBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms); void UBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms); // Extract register (ROR with two inputs, if same then faster on A67) void EXTR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u32 shift); // Aliases void SXTB(ARM64Reg Rd, ARM64Reg Rn); void SXTH(ARM64Reg Rd, ARM64Reg Rn); void SXTW(ARM64Reg Rd, ARM64Reg Rn); void UXTB(ARM64Reg Rd, ARM64Reg Rn); void UXTH(ARM64Reg Rd, ARM64Reg Rn); void UBFX(ARM64Reg Rd, ARM64Reg Rn, int lsb, int width) { UBFM(Rd, Rn, lsb, lsb + width <= (Is64Bit(Rn) ? 64 : 32)); } // Load Register (Literal) void LDR(ARM64Reg Rt, u32 imm); void LDRSW(ARM64Reg Rt, u32 imm); void PRFM(ARM64Reg Rt, u32 imm); // Load/Store Exclusive void STXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn); void STLXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn); void LDXRB(ARM64Reg Rt, ARM64Reg Rn); void LDAXRB(ARM64Reg Rt, ARM64Reg Rn); void STLRB(ARM64Reg Rt, ARM64Reg Rn); void LDARB(ARM64Reg Rt, ARM64Reg Rn); void STXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn); void STLXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn); void LDXRH(ARM64Reg Rt, ARM64Reg Rn); void LDAXRH(ARM64Reg Rt, ARM64Reg Rn); void STLRH(ARM64Reg Rt, ARM64Reg Rn); void LDARH(ARM64Reg Rt, ARM64Reg Rn); void STXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn); void STLXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn); void STXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn); void STLXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn); void LDXR(ARM64Reg Rt, ARM64Reg Rn); void LDAXR(ARM64Reg Rt, ARM64Reg Rn); void LDXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn); void LDAXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn); void STLR(ARM64Reg Rt, ARM64Reg Rn); void LDAR(ARM64Reg Rt, ARM64Reg Rn); // Load/Store no-allocate pair (offset) void STNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm); void LDNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm); // Load/Store register (immediate indexed) void STRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void LDRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void LDRSB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void STRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void LDRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void LDRSH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void STR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void LDR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void LDRSW(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); // Load/Store register (register offset) void STRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); void LDRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); void LDRSB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); void STRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); void LDRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); void LDRSH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); void STR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); void LDR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); void LDRSW(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); void PRFM(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); // Load/Store register (unscaled offset) void STURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm); void LDURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm); void LDURSB(ARM64Reg Rt, ARM64Reg Rn, s32 imm); void STURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm); void LDURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm); void LDURSH(ARM64Reg Rt, ARM64Reg Rn, s32 imm); void STUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm); void LDUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm); void LDURSW(ARM64Reg Rt, ARM64Reg Rn, s32 imm); // Load/Store pair void LDP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm); void LDPSW(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm); void STP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm); // Address of label/page PC-relative void ADR(ARM64Reg Rd, s32 imm); void ADRP(ARM64Reg Rd, s32 imm); // Wrapper around MOVZ+MOVK void MOVI2R(ARM64Reg Rd, u64 imm, bool optimize = true); template void MOVP2R(ARM64Reg Rd, P *ptr) { _assert_msg_(JIT, Is64Bit(Rd), "Can't store pointers in 32-bit registers"); MOVI2R(Rd, (uintptr_t)ptr); } // Wrapper around AND x, y, imm etc. If you are sure the imm will work, no need to pass a scratch register. void ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG); void ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG); void TSTI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG) { ANDSI2R(Is64Bit(Rn) ? ZR : WZR, Rn, imm, scratch); } void ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG); void EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG); void CMPI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG); void ADDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG); void SUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG); void SUBSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG); bool TryADDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm); bool TrySUBI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm); bool TryCMPI2R(ARM64Reg Rn, u32 imm); bool TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm); bool TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm); bool TryEORI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm); // ABI related void ABI_PushRegisters(BitSet32 registers); void ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask = BitSet32(0)); // Pseudo-instruction for convenience. PUSH pushes 16 bytes even though we only push a single register. // This is so the stack pointer is always 16-byte aligned, which is checked by hardware! void PUSH(ARM64Reg Rd); void POP(ARM64Reg Rd); void PUSH2(ARM64Reg Rd, ARM64Reg Rn); void POP2(ARM64Reg Rd, ARM64Reg Rn); // Utility to generate a call to a std::function object. // // Unfortunately, calling operator() directly is undefined behavior in C++ // (this method might be a thunk in the case of multi-inheritance) so we // have to go through a trampoline function. template static void CallLambdaTrampoline(const std::function* f, Args... args) { (*f)(args...); } // This function expects you to have set up the state. // Overwrites X0 and X30 template ARM64Reg ABI_SetupLambda(const std::function* f) { auto trampoline = &ARM64XEmitter::CallLambdaTrampoline; MOVI2R(X30, (uintptr_t)trampoline); MOVI2R(X0, (uintptr_t)const_cast((const void*)f)); return X30; } // Plain function call void QuickCallFunction(ARM64Reg scratchreg, const void *func); template void QuickCallFunction(ARM64Reg scratchreg, T func) { QuickCallFunction(scratchreg, (const void *)func); } }; class ARM64FloatEmitter { public: ARM64FloatEmitter(ARM64XEmitter* emit) : m_emit(emit) {} void LDR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void STR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); // Loadstore unscaled void LDUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void STUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm); // Loadstore single structure void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn); void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm); void LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn); void ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn); void ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm); // Loadstore multiple structure void LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn); void ST1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn); // Scalar - 1 Source void FABS(ARM64Reg Rd, ARM64Reg Rn); void FNEG(ARM64Reg Rd, ARM64Reg Rn); void FSQRT(ARM64Reg Rd, ARM64Reg Rn); void FMOV(ARM64Reg Rd, ARM64Reg Rn, bool top = false); // Also generalized move between GPR/FP // Scalar - 2 Source void FADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FMAX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FMIN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FMAXNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FMINNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FNMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); // Scalar - 3 Source. Note - the accumulator is last on ARM! void FMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void FMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void FNMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void FNMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); // Scalar floating point immediate void FMOV(ARM64Reg Rd, uint8_t imm8); // Vector void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void BSL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index); void FABS(u8 size, ARM64Reg Rd, ARM64Reg Rn); void FADD(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FMLS(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FCVTL(u8 size, ARM64Reg Rd, ARM64Reg Rn, bool source_upper = false); void FCVTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn); void FCVTZS(u8 size, ARM64Reg Rd, ARM64Reg Rn); void FCVTZU(u8 size, ARM64Reg Rd, ARM64Reg Rn); void FDIV(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FNEG(u8 size, ARM64Reg Rd, ARM64Reg Rn); void FRSQRTE(u8 size, ARM64Reg Rd, ARM64Reg Rn); void FSUB(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void NOT(ARM64Reg Rd, ARM64Reg Rn); void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void REV16(u8 size, ARM64Reg Rd, ARM64Reg Rn); void REV32(u8 size, ARM64Reg Rd, ARM64Reg Rn); void REV64(u8 size, ARM64Reg Rd, ARM64Reg Rn); void SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn); void UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn); void XTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn); // Move void DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn); void INS(u8 size, ARM64Reg Rd, u8 index, ARM64Reg Rn); void INS(u8 size, ARM64Reg Rd, u8 index1, ARM64Reg Rn, u8 index2); void UMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index); void SMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index); // One source void FCVT(u8 size_to, u8 size_from, ARM64Reg Rd, ARM64Reg Rn); // Scalar convert float to int, in a lot of variants. // Note that the scalar version of this operation has two encodings, one that goes to an integer register // and one that outputs to a scalar fp register. void FCVTS(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round); void FCVTU(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round); // Scalar convert int to float. No rounding mode specifier necessary. void SCVTF(ARM64Reg Rd, ARM64Reg Rn); void UCVTF(ARM64Reg Rd, ARM64Reg Rn); // Scalar fixed point to float. scale is the number of fractional bits. void SCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale); void UCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale); // Float comparison void FCMP(ARM64Reg Rn, ARM64Reg Rm); void FCMP(ARM64Reg Rn); void FCMPE(ARM64Reg Rn, ARM64Reg Rm); void FCMPE(ARM64Reg Rn); void FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn); void FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn); void FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn); void FCMLE(u8 size, ARM64Reg Rd, ARM64Reg Rn); void FCMLT(u8 size, ARM64Reg Rd, ARM64Reg Rn); // Conditional select void FCSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond); // Permute void UZP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void TRN1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void ZIP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void UZP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void TRN2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void ZIP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); // Shift by immediate void SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper = false); void USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper = false); void SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift); void SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper = false); void UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper = false); // vector x indexed element void FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index); void FMLA(u8 esize, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index); void MOVI2F(ARM64Reg Rd, float value, ARM64Reg scratch = INVALID_REG, bool negate = false); void MOVI2FDUP(ARM64Reg Rd, float value, ARM64Reg scratch = INVALID_REG); void LDP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm); void STP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm); // ABI related void ABI_PushRegisters(BitSet32 registers); void ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask = BitSet32(0)); private: ARM64XEmitter* m_emit; inline void Write32(u32 value) { m_emit->Write32(value); } // Emitting functions void EmitLoadStoreImmediate(u8 size, u32 opc, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void EmitScalar2Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd, ARM64Reg Rn); void Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn); void EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn); void EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm); void Emit1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn); void EmitConversion(bool sf, bool S, u32 type, u32 rmode, u32 opcode, ARM64Reg Rd, ARM64Reg Rn); void EmitConversion2(bool sf, bool S, bool direction, u32 type, u32 rmode, u32 opcode, int scale, ARM64Reg Rd, ARM64Reg Rn); void EmitCompare(bool M, bool S, u32 op, u32 opcode2, ARM64Reg Rn, ARM64Reg Rm); void EmitCondSelect(bool M, bool S, CCFlags cond, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void EmitPermute(u32 size, u32 op, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void EmitScalarImm(bool M, bool S, u32 type, u32 imm5, ARM64Reg Rd, u32 imm8); void EmitShiftImm(bool Q, bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn); void EmitLoadStoreMultipleStructure(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn); void EmitScalar1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn); void EmitVectorxElement(bool U, u32 size, bool L, u32 opcode, bool H, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void EmitLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void EmitConvertScalarToInt(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round, bool sign); void EmitScalar3Source(bool isDouble, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra, int opcode); }; class ARM64CodeBlock : public CodeBlock { private: void PoisonMemory() override { u32* ptr = (u32*)region; u32* maxptr = (u32*)(region + region_size); // If our memory isn't a multiple of u32 then this won't write the last remaining bytes with anything // Less than optimal, but there would be nothing we could do but throw a runtime warning anyway. // AArch64: 0xD4200000 = BRK 0 while (ptr < maxptr) *ptr++ = 0xD4200000; } }; }