ppsspp/GPU/Software/Clipper.cpp
2023-07-25 19:42:36 -07:00

423 lines
14 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include "GPU/GPUState.h"
#include "GPU/Software/BinManager.h"
#include "GPU/Software/Clipper.h"
#include "GPU/Software/Rasterizer.h"
#include "GPU/Software/RasterizerRectangle.h"
#include "GPU/Software/TransformUnit.h"
#include "Common/Profiler/Profiler.h"
namespace Clipper {
enum {
SKIP_FLAG = -1,
CLIP_NEG_Z_BIT = 0x20,
};
static inline int CalcClipMask(const ClipCoords &v) {
// This checks `x / w` compared to 1 or -1, skipping the division.
if (v.z < -v.w)
return -1;
return 0;
}
inline bool different_signs(float x, float y) {
return ((x <= 0 && y > 0) || (x > 0 && y <= 0));
}
inline float clip_dotprod(const ClipVertexData &vert, float A, float B, float C, float D) {
return (vert.clippos.x * A + vert.clippos.y * B + vert.clippos.z * C + vert.clippos.w * D);
}
inline void clip_interpolate(ClipVertexData &dest, float t, const ClipVertexData &a, const ClipVertexData &b) {
bool outsideRange = false;
dest.Lerp(t, a, b);
dest.v.screenpos = TransformUnit::ClipToScreen(dest.clippos, &outsideRange);
dest.v.clipw = dest.clippos.w;
// If the clipped coordinate is outside range, then we throw it away.
// This prevents a lot of inversions that shouldn't be drawn.
if (outsideRange)
dest.v.screenpos.x = 0x7FFFFFFF;
}
#define CLIP_POLY( PLANE_BIT, A, B, C, D ) \
{ \
if (mask & PLANE_BIT) { \
int idxPrev = inlist[0]; \
float dpPrev = clip_dotprod(*Vertices[idxPrev], A, B, C, D );\
int outcount = 0; \
\
inlist[n] = inlist[0]; \
for (int j = 1; j <= n; j++) { \
int idx = inlist[j]; \
float dp = clip_dotprod(*Vertices[idx], A, B, C, D ); \
if (dpPrev >= 0) { \
outlist[outcount++] = idxPrev; \
} \
\
/* Skipping w sign mismatches avoids inversions, but is incorrect. See #16131. */ \
/* For now, it's better to avoid inversions as they usually are undesired. */ \
if (different_signs(dp, dpPrev)) { \
auto &vert = Vertices[numVertices++]; \
if (dp < 0) { \
float t = dp / (dp - dpPrev); \
clip_interpolate(*vert, t, *Vertices[idx], *Vertices[idxPrev]); \
} else { \
float t = dpPrev / (dpPrev - dp); \
clip_interpolate(*vert, t, *Vertices[idxPrev], *Vertices[idx]); \
} \
outlist[outcount++] = numVertices - 1; \
} \
\
idxPrev = idx; \
dpPrev = dp; \
} \
\
if (outcount < 3) \
continue; \
\
{ \
int *tmp = inlist; \
inlist = outlist; \
outlist = tmp; \
n = outcount; \
} \
} \
}
#define CLIP_LINE(PLANE_BIT, A, B, C, D) \
{ \
if (mask & PLANE_BIT) { \
float dp0 = clip_dotprod(*Vertices[0], A, B, C, D ); \
float dp1 = clip_dotprod(*Vertices[1], A, B, C, D ); \
\
if (mask0 & PLANE_BIT) { \
if (dp0 < 0) { \
float t = dp1 / (dp1 - dp0); \
clip_interpolate(*Vertices[0], t, *Vertices[1], *Vertices[0]); \
} \
} \
dp0 = clip_dotprod(*Vertices[0], A, B, C, D ); \
\
if (mask1 & PLANE_BIT) { \
if (dp1 < 0) { \
float t = dp1 / (dp1- dp0); \
clip_interpolate(*Vertices[1], t, *Vertices[1], *Vertices[0]); \
} \
} \
} \
}
static inline bool CheckOutsideZ(ClipCoords p, int &pos, int &neg) {
constexpr float outsideValue = 1.000030517578125f;
float z = p.z / p.w;
if (z >= outsideValue) {
pos++;
return true;
}
if (-z >= outsideValue) {
neg++;
return true;
}
return false;
}
static void RotateUV(const VertexData &tl, const VertexData &br, VertexData &tr, VertexData &bl) {
const int x1 = tl.screenpos.x;
const int x2 = br.screenpos.x;
const int y1 = tl.screenpos.y;
const int y2 = br.screenpos.y;
if ((x1 < x2 && y1 > y2) || (x1 > x2 && y1 < y2)) {
std::swap(bl.texturecoords, tr.texturecoords);
}
}
// This is used for rectangle texture projection, which is very uncommon.
// To avoid complicating the common rectangle path, this just uses triangles.
static void AddTriangleRect(const VertexData &v0, const VertexData &v1, BinManager &binner) {
VertexData buf[4];
buf[0] = v1;
buf[0].screenpos = ScreenCoords(v0.screenpos.x, v0.screenpos.y, v1.screenpos.z);
buf[0].texturecoords = v0.texturecoords;
buf[1] = v1;
buf[1].screenpos = ScreenCoords(v0.screenpos.x, v1.screenpos.y, v1.screenpos.z);
buf[1].texturecoords = Vec3Packed<float>(v0.texturecoords.x, v1.texturecoords.y, v0.texturecoords.z);
buf[2] = v1;
buf[2].screenpos = ScreenCoords(v1.screenpos.x, v0.screenpos.y, v1.screenpos.z);
buf[2].texturecoords = Vec3Packed<float>(v1.texturecoords.x, v0.texturecoords.y, v1.texturecoords.z);
buf[3] = v1;
VertexData *topleft = &buf[0];
VertexData *topright = &buf[1];
VertexData *bottomleft = &buf[2];
VertexData *bottomright = &buf[3];
// DrawTriangle always culls, so sort out the drawing order.
for (int i = 0; i < 4; ++i) {
if (buf[i].screenpos.x < topleft->screenpos.x && buf[i].screenpos.y < topleft->screenpos.y)
topleft = &buf[i];
if (buf[i].screenpos.x > topright->screenpos.x && buf[i].screenpos.y < topright->screenpos.y)
topright = &buf[i];
if (buf[i].screenpos.x < bottomleft->screenpos.x && buf[i].screenpos.y > bottomleft->screenpos.y)
bottomleft = &buf[i];
if (buf[i].screenpos.x > bottomright->screenpos.x && buf[i].screenpos.y > bottomright->screenpos.y)
bottomright = &buf[i];
}
RotateUV(v0, v1, *topright, *bottomleft);
binner.AddTriangle(*topleft, *topright, *bottomleft);
binner.AddTriangle(*bottomleft, *topright, *topleft);
binner.AddTriangle(*topright, *bottomright, *bottomleft);
binner.AddTriangle(*bottomleft, *bottomright, *topright);
}
void ProcessRect(const ClipVertexData &v0, const ClipVertexData &v1, BinManager &binner) {
if (!binner.State().throughMode) {
// If any verts were outside range, throw the entire prim away.
if (v0.OutsideRange() || v1.OutsideRange())
return;
// We may discard the entire rect based on depth values.
int outsidePos = 0, outsideNeg = 0;
CheckOutsideZ(v0.clippos, outsidePos, outsideNeg);
CheckOutsideZ(v1.clippos, outsidePos, outsideNeg);
// With depth clamp off, we discard the rectangle if even one vert is outside.
if (outsidePos + outsideNeg > 0 && !gstate.isDepthClampEnabled())
return;
// With it on, both must be outside in the same direction.
else if (outsidePos >= 2 || outsideNeg >= 2)
return;
bool splitFog = v0.v.fogdepth != v1.v.fogdepth;
if (splitFog) {
// If they match the same 1/255, we can consider the fog flat. Seen in Resistance.
// More efficient if we can avoid splitting.
static constexpr float foghalfstep = 0.5f / 255.0f;
if (v1.v.fogdepth - foghalfstep <= v0.v.fogdepth && v1.v.fogdepth + foghalfstep >= v0.v.fogdepth)
splitFog = false;
}
if (splitFog) {
// Rectangles seem to always use nearest along X for fog depth, but reversed.
// TODO: Check exactness of middle.
VertexData vhalf0 = v1.v;
vhalf0.screenpos.x = v0.v.screenpos.x + (v1.v.screenpos.x - v0.v.screenpos.x) / 2;
vhalf0.texturecoords.x = v0.v.texturecoords.x + (v1.v.texturecoords.x - v0.v.texturecoords.x) / 2;
VertexData vhalf1 = v1.v;
vhalf1.screenpos.x = v0.v.screenpos.x + (v1.v.screenpos.x - v0.v.screenpos.x) / 2;
vhalf1.screenpos.y = v0.v.screenpos.y;
vhalf1.texturecoords.x = v0.v.texturecoords.x + (v1.v.texturecoords.x - v0.v.texturecoords.x) / 2;
vhalf1.texturecoords.y = v0.v.texturecoords.y;
VertexData vrev1 = v1.v;
vrev1.fogdepth = v0.v.fogdepth;
if (binner.State().textureProj) {
AddTriangleRect(v0.v, vhalf0, binner);
AddTriangleRect(vhalf1, vrev1, binner);
} else {
binner.AddRect(v0.v, vhalf0);
binner.AddRect(vhalf1, vrev1);
}
} else if (binner.State().textureProj) {
AddTriangleRect(v0.v, v1.v, binner);
} else {
binner.AddRect(v0.v, v1.v);
}
} else {
// through mode handling
if (Rasterizer::RectangleFastPath(v0.v, v1.v, binner)) {
return;
} else if (gstate.isModeClear() && !gstate.isDitherEnabled()) {
binner.AddClearRect(v0.v, v1.v);
} else {
binner.AddRect(v0.v, v1.v);
}
}
}
void ProcessPoint(const ClipVertexData &v0, BinManager &binner) {
// If any verts were outside range, throw the entire prim away.
if (!binner.State().throughMode) {
if (v0.OutsideRange())
return;
}
// Points need no clipping. Will be bounds checked in the rasterizer (which seems backwards?)
binner.AddPoint(v0.v);
}
void ProcessLine(const ClipVertexData &v0, const ClipVertexData &v1, BinManager &binner) {
if (binner.State().throughMode) {
// Actually, should clip this one too so we don't need to do bounds checks in the rasterizer.
binner.AddLine(v0.v, v1.v);
return;
}
// If any verts were outside range, throw the entire prim away.
if (v0.OutsideRange() || v1.OutsideRange())
return;
int outsidePos = 0, outsideNeg = 0;
CheckOutsideZ(v0.clippos, outsidePos, outsideNeg);
CheckOutsideZ(v1.clippos, outsidePos, outsideNeg);
// With depth clamp off, we discard the line if even one vert is outside.
if (outsidePos + outsideNeg > 0 && !gstate.isDepthClampEnabled())
return;
// With it on, both must be outside in the same direction.
else if (outsidePos >= 2 || outsideNeg >= 2)
return;
int mask0 = CalcClipMask(v0.clippos);
int mask1 = CalcClipMask(v1.clippos);
int mask = mask0 | mask1;
if ((mask & CLIP_NEG_Z_BIT) == 0) {
binner.AddLine(v0.v, v1.v);
return;
}
ClipVertexData ClippedVertices[2] = { v0, v1 };
ClipVertexData *Vertices[2] = { &ClippedVertices[0], &ClippedVertices[1] };
CLIP_LINE(CLIP_NEG_Z_BIT, 0, 0, 1, 1);
ClipVertexData data[2] = { *Vertices[0], *Vertices[1] };
if (!data[0].OutsideRange() && !data[1].OutsideRange())
binner.AddLine(data[0].v, data[1].v);
}
void ProcessTriangle(const ClipVertexData &v0, const ClipVertexData &v1, const ClipVertexData &v2, const ClipVertexData &provoking, BinManager &binner) {
int mask = 0;
if (!binner.State().throughMode) {
// If any verts were outside range, throw the entire prim away.
if (v0.OutsideRange() || v1.OutsideRange() || v2.OutsideRange())
return;
// If all verts have negative W, we also cull.
if (v0.clippos.w < 0.0f && v1.clippos.w < 0.0f && v2.clippos.w < 0.0f)
return;
mask |= CalcClipMask(v0.clippos);
mask |= CalcClipMask(v1.clippos);
mask |= CalcClipMask(v2.clippos);
// We may discard the entire triangle based on depth values. First check what's outside.
int outsidePos = 0, outsideNeg = 0;
CheckOutsideZ(v0.clippos, outsidePos, outsideNeg);
CheckOutsideZ(v1.clippos, outsidePos, outsideNeg);
CheckOutsideZ(v2.clippos, outsidePos, outsideNeg);
// With depth clamp off, we discard the triangle if even one vert is outside.
if (outsidePos + outsideNeg > 0 && !gstate.isDepthClampEnabled())
return;
// With it on, all three must be outside in the same direction.
else if (outsidePos >= 3 || outsideNeg >= 3)
return;
}
// No clipping is common, let's skip processing if we can.
if ((mask & CLIP_NEG_Z_BIT) == 0) {
if (gstate.getShadeMode() == GE_SHADE_FLAT) {
// So that the order of clipping doesn't matter...
VertexData corrected2 = v2.v;
corrected2.color0 = provoking.v.color0;
corrected2.color1 = provoking.v.color1;
binner.AddTriangle(v0.v, v1.v, corrected2);
} else {
binner.AddTriangle(v0.v, v1.v, v2.v);
}
return;
}
enum { NUM_CLIPPED_VERTICES = 3, NUM_INDICES = NUM_CLIPPED_VERTICES + 3 };
ClipVertexData* Vertices[NUM_INDICES];
ClipVertexData ClippedVertices[NUM_INDICES];
for (int i = 0; i < NUM_INDICES; ++i)
Vertices[i] = &ClippedVertices[i];
// TODO: Change logic when it's a backface (why? In what way?)
ClippedVertices[0] = v0;
ClippedVertices[1] = v1;
ClippedVertices[2] = v2;
int indices[NUM_INDICES] = { 0, 1, 2, SKIP_FLAG, SKIP_FLAG, SKIP_FLAG };
int numIndices = 3;
for (int i = 0; i < 3; i += 3) {
int vlist[2][2*6+1];
int *inlist = vlist[0], *outlist = vlist[1];
int n = 3;
int numVertices = 3;
inlist[0] = 0;
inlist[1] = 1;
inlist[2] = 2;
// mark this triangle as unused in case it should be completely clipped
indices[0] = SKIP_FLAG;
indices[1] = SKIP_FLAG;
indices[2] = SKIP_FLAG;
// The PSP only clips on negative Z (importantly, regardless of viewport.)
CLIP_POLY(CLIP_NEG_Z_BIT, 0, 0, 1, 1);
// transform the poly in inlist into triangles
indices[0] = inlist[0];
indices[1] = inlist[1];
indices[2] = inlist[2];
for (int j = 3; j < n; ++j) {
indices[numIndices++] = inlist[0];
indices[numIndices++] = inlist[j - 1];
indices[numIndices++] = inlist[j];
}
}
for (int i = 0; i + 3 <= numIndices; i += 3) {
if (indices[i] != SKIP_FLAG) {
ClipVertexData &subv0 = *Vertices[indices[i + 0]];
ClipVertexData &subv1 = *Vertices[indices[i + 1]];
ClipVertexData &subv2 = *Vertices[indices[i + 2]];
if (subv0.OutsideRange() || subv1.OutsideRange() || subv2.OutsideRange())
continue;
if (gstate.getShadeMode() == GE_SHADE_FLAT) {
// So that the order of clipping doesn't matter...
subv2.v.color0 = provoking.v.color0;
subv2.v.color1 = provoking.v.color1;
}
binner.AddTriangle(subv0.v, subv1.v, subv2.v);
}
}
}
} // namespace