ppsspp/Core/HLE/sceDisplay.cpp

1144 lines
39 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include <cmath>
#include <map>
#include <mutex>
#include <vector>
// TODO: Move this somewhere else, cleanup.
#ifndef _WIN32
#include <unistd.h>
#include <sys/time.h>
#endif
#include "Common/Data/Text/I18n.h"
#include "Common/Profiler/Profiler.h"
#include "Common/System/System.h"
#include "Common/System/OSD.h"
#include "Common/Serialize/Serializer.h"
#include "Common/Serialize/SerializeFuncs.h"
#include "Common/Serialize/SerializeMap.h"
#include "Common/TimeUtil.h"
#include "Core/Config.h"
#include "Core/CoreTiming.h"
#include "Core/CoreParameter.h"
#include "Core/FrameTiming.h"
#include "Core/Reporting.h"
#include "Core/Core.h"
#include "Core/System.h"
#include "Core/HLE/HLE.h"
#include "Core/HLE/FunctionWrappers.h"
#include "Core/HLE/sceDisplay.h"
#include "Core/HLE/sceKernel.h"
#include "Core/HLE/sceKernelThread.h"
#include "Core/HLE/sceKernelInterrupt.h"
#include "Core/HW/Display.h"
#include "Core/Util/PPGeDraw.h"
#include "Core/RetroAchievements.h"
#include "GPU/GPU.h"
#include "GPU/GPUState.h"
#include "GPU/GPUInterface.h"
#include "GPU/Common/FramebufferManagerCommon.h"
#include "GPU/Common/PostShader.h"
#include "GPU/Debugger/Record.h"
struct FrameBufferState {
u32 topaddr;
GEBufferFormat fmt;
int stride;
};
struct WaitVBlankInfo {
WaitVBlankInfo(u32 tid) : threadID(tid), vcountUnblock(1) {}
WaitVBlankInfo(u32 tid, int vcount) : threadID(tid), vcountUnblock(vcount) {}
SceUID threadID;
// Number of vcounts to block for.
int vcountUnblock;
void DoState(PointerWrap &p) {
auto s = p.Section("WaitVBlankInfo", 1);
if (!s)
return;
Do(p, threadID);
Do(p, vcountUnblock);
}
};
// STATE BEGIN
static FrameBufferState framebuf;
static FrameBufferState latchedFramebuf;
static bool framebufIsLatched;
static int enterVblankEvent = -1;
static int leaveVblankEvent = -1;
static int afterFlipEvent = -1;
static int lagSyncEvent = -1;
static double lastLagSync = 0.0;
static bool lagSyncScheduled = false;
static int numSkippedFrames;
static bool hasSetMode;
static int resumeMode;
static int holdMode;
static int brightnessLevel;
static int mode;
static int width;
static int height;
static bool wasPaused;
static bool flippedThisFrame;
static int framerate;
// 1.001f to compensate for the classic 59.94 NTSC framerate that the PSP seems to have.
static double timePerVblank;
// Don't include this in the state, time increases regardless of state.
static double curFrameTime;
static double lastFrameTime;
static double nextFrameTime;
static int numVBlanksSinceFlip;
const int PSP_DISPLAY_MODE_LCD = 0;
std::vector<WaitVBlankInfo> vblankWaitingThreads;
// Key is the callback id it was for, or if no callback, the thread id.
// Value is the goal vcount number (in case the callback takes >= 1 vcount to return.)
std::map<SceUID, int> vblankPausedWaits;
// STATE END
// The vblank period is 731.5 us (0.7315 ms)
const double vblankMs = 0.7315;
// These are guesses based on tests.
const double vsyncStartMs = 0.5925;
const double vsyncEndMs = 0.7265;
double frameMs;
enum {
PSP_DISPLAY_SETBUF_IMMEDIATE = 0,
PSP_DISPLAY_SETBUF_NEXTFRAME = 1
};
// For the "max 60 fps" setting.
static int lastFlipsTooFrequent = 0;
static u64 lastFlipCycles = 0;
static u64 nextFlipCycles = 0;
void hleEnterVblank(u64 userdata, int cyclesLate);
void hleLeaveVblank(u64 userdata, int cyclesLate);
void hleAfterFlip(u64 userdata, int cyclesLate);
void hleLagSync(u64 userdata, int cyclesLate);
void __DisplayVblankBeginCallback(SceUID threadID, SceUID prevCallbackId);
void __DisplayVblankEndCallback(SceUID threadID, SceUID prevCallbackId);
void __DisplayFlip(int cyclesLate);
static void __DisplaySetFramerate(void);
static bool UseLagSync() {
return g_Config.bForceLagSync && !g_Config.bAutoFrameSkip;
}
static void ScheduleLagSync(int over = 0) {
lagSyncScheduled = UseLagSync();
if (lagSyncScheduled) {
// Reset over if it became too high, such as after pausing or initial loading.
// There's no real sense in it being more than 1/60th of a second.
if (over > 1000000 / framerate) {
over = 0;
}
CoreTiming::ScheduleEvent(usToCycles(1000 + over), lagSyncEvent, 0);
lastLagSync = time_now_d();
}
}
void __DisplayInit() {
__DisplaySetFramerate();
DisplayHWInit();
hasSetMode = false;
mode = 0;
resumeMode = 0;
holdMode = 0;
brightnessLevel = 84;
width = 480;
height = 272;
numSkippedFrames = 0;
numVBlanksSinceFlip = 0;
flippedThisFrame = false;
framebufIsLatched = false;
framebuf.topaddr = 0x04000000;
framebuf.fmt = GE_FORMAT_8888;
framebuf.stride = 512;
memcpy(&latchedFramebuf, &framebuf, sizeof(latchedFramebuf));
lastFlipsTooFrequent = 0;
lastFlipCycles = 0;
nextFlipCycles = 0;
wasPaused = false;
enterVblankEvent = CoreTiming::RegisterEvent("EnterVBlank", &hleEnterVblank);
leaveVblankEvent = CoreTiming::RegisterEvent("LeaveVBlank", &hleLeaveVblank);
afterFlipEvent = CoreTiming::RegisterEvent("AfterFlip", &hleAfterFlip);
lagSyncEvent = CoreTiming::RegisterEvent("LagSync", &hleLagSync);
ScheduleLagSync();
CoreTiming::ScheduleEvent(msToCycles(frameMs - vblankMs), enterVblankEvent, 0);
curFrameTime = 0.0;
nextFrameTime = 0.0;
lastFrameTime = 0.0;
__KernelRegisterWaitTypeFuncs(WAITTYPE_VBLANK, __DisplayVblankBeginCallback, __DisplayVblankEndCallback);
}
struct GPUStatistics_v0 {
int firstInts[11];
double msProcessingDisplayLists;
int moreInts[15];
};
void __DisplayDoState(PointerWrap &p) {
auto s = p.Section("sceDisplay", 1, 7);
if (!s)
return;
Do(p, framebuf);
Do(p, latchedFramebuf);
Do(p, framebufIsLatched);
DisplayHWDoState(p, s <= 2);
Do(p, hasSetMode);
Do(p, mode);
Do(p, resumeMode);
Do(p, holdMode);
if (s >= 4) {
Do(p, brightnessLevel);
}
Do(p, width);
Do(p, height);
WaitVBlankInfo wvi(0);
Do(p, vblankWaitingThreads, wvi);
Do(p, vblankPausedWaits);
Do(p, enterVblankEvent);
CoreTiming::RestoreRegisterEvent(enterVblankEvent, "EnterVBlank", &hleEnterVblank);
Do(p, leaveVblankEvent);
CoreTiming::RestoreRegisterEvent(leaveVblankEvent, "LeaveVBlank", &hleLeaveVblank);
Do(p, afterFlipEvent);
CoreTiming::RestoreRegisterEvent(afterFlipEvent, "AfterFlip", &hleAfterFlip);
if (s >= 5) {
Do(p, lagSyncEvent);
Do(p, lagSyncScheduled);
CoreTiming::RestoreRegisterEvent(lagSyncEvent, "LagSync", &hleLagSync);
lastLagSync = time_now_d();
if (lagSyncScheduled != UseLagSync()) {
ScheduleLagSync();
}
} else {
lagSyncEvent = -1;
CoreTiming::RestoreRegisterEvent(lagSyncEvent, "LagSync", &hleLagSync);
ScheduleLagSync();
}
Do(p, gstate);
// TODO: GPU stuff is really not the responsibility of sceDisplay.
// Display just displays the buffers the GPU has drawn, they are really completely distinct.
// Maybe a bit tricky to move at this point, though...
gstate_c.DoState(p);
if (s < 2) {
// This shouldn't have been savestated anyway, but it was.
// It's unlikely to overlap with the first value in gpuStats.
int gpuVendorTemp = 0;
p.ExpectVoid(&gpuVendorTemp, sizeof(gpuVendorTemp));
}
if (s < 6) {
GPUStatistics_v0 oldStats;
Do(p, oldStats);
}
if (s < 7) {
u64 now = CoreTiming::GetTicks();
lastFlipCycles = now;
nextFlipCycles = now;
} else {
Do(p, lastFlipCycles);
Do(p, nextFlipCycles);
}
gpu->DoState(p);
if (p.mode == p.MODE_READ) {
gpu->ReapplyGfxState();
gpu->SetDisplayFramebuffer(framebuf.topaddr, framebuf.stride, framebuf.fmt);
}
}
void __DisplayShutdown() {
DisplayHWShutdown();
vblankWaitingThreads.clear();
}
void __DisplayVblankBeginCallback(SceUID threadID, SceUID prevCallbackId) {
SceUID pauseKey = prevCallbackId == 0 ? threadID : prevCallbackId;
// This means two callbacks in a row. PSP crashes if the same callback waits inside itself (may need more testing.)
// TODO: Handle this better?
if (vblankPausedWaits.find(pauseKey) != vblankPausedWaits.end()) {
return;
}
WaitVBlankInfo waitData(0);
for (size_t i = 0; i < vblankWaitingThreads.size(); i++) {
WaitVBlankInfo *t = &vblankWaitingThreads[i];
if (t->threadID == threadID) {
waitData = *t;
vblankWaitingThreads.erase(vblankWaitingThreads.begin() + i);
break;
}
}
if (waitData.threadID != threadID) {
WARN_LOG_REPORT(Log::sceDisplay, "sceDisplayWaitVblankCB: could not find waiting thread info.");
return;
}
vblankPausedWaits[pauseKey] = __DisplayGetVCount() + waitData.vcountUnblock;
DEBUG_LOG(Log::sceDisplay, "sceDisplayWaitVblankCB: Suspending vblank wait for callback");
}
void __DisplayVblankEndCallback(SceUID threadID, SceUID prevCallbackId) {
SceUID pauseKey = prevCallbackId == 0 ? threadID : prevCallbackId;
// Probably should not be possible.
if (vblankPausedWaits.find(pauseKey) == vblankPausedWaits.end()) {
__KernelResumeThreadFromWait(threadID, 0);
return;
}
int vcountUnblock = vblankPausedWaits[pauseKey];
vblankPausedWaits.erase(pauseKey);
if (vcountUnblock <= __DisplayGetVCount()) {
__KernelResumeThreadFromWait(threadID, 0);
return;
}
// Still have to wait a bit longer.
vblankWaitingThreads.push_back(WaitVBlankInfo(__KernelGetCurThread(), vcountUnblock - __DisplayGetVCount()));
DEBUG_LOG(Log::sceDisplay, "sceDisplayWaitVblankCB: Resuming vblank wait from callback");
}
void __DisplaySetWasPaused() {
wasPaused = true;
}
// TOOD: Should return 59.997?
static int FrameTimingLimit() {
bool challenge = Achievements::HardcoreModeActive();
auto fixRate = [=](int limit) {
int minRate = challenge ? 60 : 1;
if (limit != 0) {
return std::max(limit, minRate);
} else {
return limit;
}
};
// Note: Fast-forward is OK in hardcore mode.
if (PSP_CoreParameter().fastForward)
return 0;
// Can't slow down in hardcore mode.
if (PSP_CoreParameter().fpsLimit == FPSLimit::CUSTOM1)
return fixRate(g_Config.iFpsLimit1);
if (PSP_CoreParameter().fpsLimit == FPSLimit::CUSTOM2)
return fixRate(g_Config.iFpsLimit2);
if (PSP_CoreParameter().fpsLimit == FPSLimit::ANALOG)
return fixRate(PSP_CoreParameter().analogFpsLimit);
return framerate;
}
static bool FrameTimingThrottled() {
return FrameTimingLimit() != 0;
}
static void DoFrameDropLogging(float scaledTimestep) {
if (lastFrameTime != 0.0 && !wasPaused && lastFrameTime + scaledTimestep < curFrameTime) {
const double actualTimestep = curFrameTime - lastFrameTime;
char stats[4096];
__DisplayGetDebugStats(stats, sizeof(stats));
NOTICE_LOG(Log::sceDisplay, "Dropping frames - budget = %.2fms / %.1ffps, actual = %.2fms (+%.2fms) / %.1ffps\n%s", scaledTimestep * 1000.0, 1.0 / scaledTimestep, actualTimestep * 1000.0, (actualTimestep - scaledTimestep) * 1000.0, 1.0 / actualTimestep, stats);
}
}
// All the throttling and frameskipping logic is here.
// This is called just before we drop out of the main loop, in order to allow the submit and present to happen.
static void DoFrameTiming(bool throttle, bool *skipFrame, float scaledTimestep, bool endOfFrame) {
PROFILE_THIS_SCOPE("timing");
*skipFrame = false;
// Check if the frameskipping code should be enabled. If neither throttling or frameskipping is on,
// we have nothing to do here.
bool doFrameSkip = g_Config.iFrameSkip != 0;
if (!throttle && !doFrameSkip)
return;
if (lastFrameTime == 0.0 || wasPaused) {
nextFrameTime = time_now_d() + scaledTimestep;
} else {
// Advance lastFrameTime by a constant amount each frame,
// but don't let it get too far behind as things can get very jumpy.
const double maxFallBehindFrames = 5.5;
nextFrameTime = std::max(lastFrameTime + scaledTimestep, time_now_d() - maxFallBehindFrames * scaledTimestep);
}
curFrameTime = time_now_d();
if (g_Config.bLogFrameDrops) {
DoFrameDropLogging(scaledTimestep);
}
// Auto-frameskip automatically if speed limit is set differently than the default.
int frameSkipNum = DisplayCalculateFrameSkip();
if (g_Config.bAutoFrameSkip) {
// autoframeskip
// Argh, we are falling behind! Let's skip a frame and see if we catch up.
if (curFrameTime > nextFrameTime && doFrameSkip) {
*skipFrame = true;
}
} else if (frameSkipNum >= 1) {
// fixed frameskip
if (numSkippedFrames >= frameSkipNum)
*skipFrame = false;
else
*skipFrame = true;
}
if (curFrameTime < nextFrameTime && throttle) {
// If time gap is huge just jump (somebody fast-forwarded)
if (nextFrameTime - curFrameTime > 2*scaledTimestep) {
nextFrameTime = curFrameTime;
} else {
// Wait until we've caught up.
// If we're ending the frame here, we'll defer the sleep until after the command buffers
// have been handed off to the render thread, for some more overlap.
if (endOfFrame) {
g_frameTiming.DeferWaitUntil(nextFrameTime, &curFrameTime);
} else {
WaitUntil(curFrameTime, nextFrameTime, "display-wait");
curFrameTime = time_now_d(); // I guess we could also just set it to nextFrameTime...
}
}
}
lastFrameTime = nextFrameTime;
wasPaused = false;
}
static void DoFrameIdleTiming() {
PROFILE_THIS_SCOPE("timing");
if (!FrameTimingThrottled() || !g_Config.bEnableSound || wasPaused) {
return;
}
double before = time_now_d();
double dist = before - lastFrameTime;
// Ignore if the distance is just crazy. May mean wrap or pause.
if (dist < 0.0 || dist >= 15.0 * timePerVblank) {
return;
}
float scaledVblank = timePerVblank;
int fpsLimit = FrameTimingLimit();
if (fpsLimit != 0 && fpsLimit != framerate) {
// 0 is handled in FrameTimingThrottled().
scaledVblank *= (float)framerate / fpsLimit;
}
// If we have over at least a vblank of spare time, maintain at least 30fps in delay.
// This prevents fast forward during loading screens.
// Give a little extra wiggle room in case the next vblank does more work.
const double goal = lastFrameTime + (numVBlanksSinceFlip - 1) * scaledVblank - 0.001;
if (numVBlanksSinceFlip >= 2 && before < goal) {
double cur_time;
while ((cur_time = time_now_d()) < goal) {
#ifdef _WIN32
sleep_ms(1, "frame-idle");
#else
const double left = goal - cur_time;
if (left > 0.0f && left < 1.0f) { // Sanity check
usleep((long)(left * 1000000));
}
#endif
}
if ((DebugOverlay)g_Config.iDebugOverlay == DebugOverlay::FRAME_GRAPH || coreCollectDebugStats) {
DisplayNotifySleep(time_now_d() - before);
}
}
}
void hleEnterVblank(u64 userdata, int cyclesLate) {
int vbCount = userdata;
VERBOSE_LOG(Log::sceDisplay, "Enter VBlank %i", vbCount);
DisplayFireVblankStart();
CoreTiming::ScheduleEvent(msToCycles(vblankMs) - cyclesLate, leaveVblankEvent, vbCount + 1);
// Trigger VBlank interrupt handlers.
__TriggerInterrupt(PSP_INTR_IMMEDIATE | PSP_INTR_ONLY_IF_ENABLED | PSP_INTR_ALWAYS_RESCHED, PSP_VBLANK_INTR, PSP_INTR_SUB_ALL);
// Wake up threads waiting for VBlank
u32 error;
bool wokeThreads = false;
for (size_t i = 0; i < vblankWaitingThreads.size(); i++) {
if (--vblankWaitingThreads[i].vcountUnblock == 0) {
// Only wake it if it wasn't already released by someone else.
SceUID waitID = __KernelGetWaitID(vblankWaitingThreads[i].threadID, WAITTYPE_VBLANK, error);
if (waitID == 1) {
__KernelResumeThreadFromWait(vblankWaitingThreads[i].threadID, 0);
wokeThreads = true;
}
vblankWaitingThreads.erase(vblankWaitingThreads.begin() + i--);
}
}
if (wokeThreads) {
__KernelReSchedule("entered vblank");
}
numVBlanksSinceFlip++;
// TODO: Should this be done here or in hleLeaveVblank?
if (framebufIsLatched) {
DEBUG_LOG(Log::sceDisplay, "Setting latched framebuffer %08x (prev: %08x)", latchedFramebuf.topaddr, framebuf.topaddr);
framebuf = latchedFramebuf;
framebufIsLatched = false;
gpu->SetDisplayFramebuffer(framebuf.topaddr, framebuf.stride, framebuf.fmt);
__DisplayFlip(cyclesLate);
} else if (!flippedThisFrame) {
// Gotta flip even if sceDisplaySetFramebuf was not called.
__DisplayFlip(cyclesLate);
}
}
static void NotifyUserIfSlow() {
// Let the user know if we're running slow, so they know to adjust settings.
// Sometimes users just think the sound emulation is broken.
static bool hasNotifiedSlow = false;
if (!g_Config.bHideSlowWarnings &&
!hasNotifiedSlow &&
PSP_CoreParameter().fpsLimit == FPSLimit::NORMAL &&
DisplayIsRunningSlow()) {
#ifndef _DEBUG
auto err = GetI18NCategory(I18NCat::ERRORS);
if (g_Config.bSoftwareRendering) {
g_OSD.Show(OSDType::MESSAGE_INFO, err->T("Running slow: Try turning off Software Rendering"), 5.0f);
} else {
g_OSD.Show(OSDType::MESSAGE_INFO, err->T("Running slow: try frameskip, sound is choppy when slow"));
}
#endif
hasNotifiedSlow = true;
}
}
void __DisplayFlip(int cyclesLate) {
__DisplaySetFramerate();
flippedThisFrame = true;
// We flip only if the framebuffer was dirty. This eliminates flicker when using
// non-buffered rendering. The interaction with frame skipping seems to need
// some work.
// But, let's flip at least once every 10 vblanks, to update fps, etc.
const bool noRecentFlip = !g_Config.bSkipBufferEffects && numVBlanksSinceFlip >= 10;
// Also let's always flip for animated shaders.
bool postEffectRequiresFlip = false;
bool duplicateFrames = g_Config.bRenderDuplicateFrames && g_Config.iFrameSkip == 0;
bool fastForwardSkipFlip = g_Config.iFastForwardMode != (int)FastForwardMode::CONTINUOUS;
if (gpu) {
Draw::DrawContext *draw = gpu->GetDrawContext();
if (draw) {
g_frameTiming.presentMode = ComputePresentMode(draw, &g_frameTiming.presentInterval);
if (!draw->GetDeviceCaps().presentInstantModeChange && g_frameTiming.presentMode == Draw::PresentMode::FIFO) {
// Some backends can't just flip into MAILBOX/IMMEDIATE mode instantly.
// Vulkan doesn't support the interval setting, so we force skipping the flip.
// TODO: We'll clean this up in a more backend-independent way later.
fastForwardSkipFlip = true;
}
} else {
g_frameTiming.presentMode = Draw::PresentMode::FIFO;
g_frameTiming.presentInterval = 1;
}
}
if (!g_Config.bSkipBufferEffects) {
postEffectRequiresFlip = duplicateFrames || g_Config.bShaderChainRequires60FPS;
}
if (!FrameTimingThrottled()) {
// NOTICE_LOG(Log::System, "Throttle: %d %d", (int)fastForwardSkipFlip, (int)postEffectRequiresFlip);
}
const bool fbDirty = gpu->FramebufferDirty();
bool needFlip = fbDirty || noRecentFlip || postEffectRequiresFlip;
if (!needFlip) {
// Okay, there's no new frame to draw, game might be sitting in a static loading screen
// or similar, and not long enough to trigger noRecentFlip. But audio may be playing, so we need to time still.
DoFrameIdleTiming();
return;
}
// Debugger integration
int frameSleepPos = DisplayGetSleepPos();
double frameSleepStart = time_now_d();
DisplayFireFlip();
NotifyUserIfSlow();
bool forceNoFlip = false;
float refreshRate = System_GetPropertyFloat(SYSPROP_DISPLAY_REFRESH_RATE);
// Avoid skipping on devices that have 58 or 59 FPS, except when alternate speed is set.
bool refreshRateNeedsSkip = FrameTimingLimit() != framerate && FrameTimingLimit() > refreshRate;
// Alternative to frameskip fast-forward, where we draw everything.
// Useful if skipping a frame breaks graphics or for checking drawing speed.
if (fastForwardSkipFlip && (!FrameTimingThrottled() || refreshRateNeedsSkip)) {
static double lastFlip = 0;
double now = time_now_d();
if ((now - lastFlip) < 1.0f / refreshRate) {
forceNoFlip = true;
} else {
lastFlip = now;
}
}
// Setting CORE_NEXTFRAME (which Core_NextFrame does) causes a swap.
const bool fbReallyDirty = gpu->FramebufferReallyDirty();
bool nextFrame = false;
if (fbReallyDirty || noRecentFlip || postEffectRequiresFlip) {
// Check first though, might've just quit / been paused.
if (!forceNoFlip)
nextFrame = Core_NextFrame();
if (nextFrame) {
gpu->CopyDisplayToOutput(fbReallyDirty);
if (fbReallyDirty) {
DisplayFireActualFlip();
}
} else {
WARN_LOG(Log::sceDisplay, "Core_NextFrame returned false");
}
}
if (fbDirty) {
gpuStats.numFlips++;
}
bool throttle = FrameTimingThrottled();
int fpsLimit = FrameTimingLimit();
float scaledTimestep = (float)numVBlanksSinceFlip * timePerVblank;
if (fpsLimit > 0 && fpsLimit != framerate) {
scaledTimestep *= (float)framerate / fpsLimit;
}
bool skipFrame;
DoFrameTiming(throttle, &skipFrame, scaledTimestep, nextFrame);
int maxFrameskip = 8;
int frameSkipNum = DisplayCalculateFrameSkip();
if (throttle) {
// 4 here means 1 drawn, 4 skipped - so 12 fps minimum.
maxFrameskip = frameSkipNum;
}
if (numSkippedFrames >= maxFrameskip || GPURecord::IsActivePending()) {
skipFrame = false;
}
if (skipFrame) {
// Tell the emulated GPU to skip the next frame.
gstate_c.skipDrawReason |= SKIPDRAW_SKIPFRAME;
numSkippedFrames++;
} else {
gstate_c.skipDrawReason &= ~SKIPDRAW_SKIPFRAME;
numSkippedFrames = 0;
}
// Returning here with coreState == CORE_NEXTFRAME causes a buffer flip to happen (next frame).
// Right after, we regain control for a little bit in hleAfterFlip. I think that's a great
// place to do housekeeping.
CoreTiming::ScheduleEvent(0 - cyclesLate, afterFlipEvent, 0);
numVBlanksSinceFlip = 0;
if ((DebugOverlay)g_Config.iDebugOverlay == DebugOverlay::FRAME_GRAPH || coreCollectDebugStats) {
// Track how long we sleep (whether vsync or sleep_ms.)
DisplayNotifySleep(time_now_d() - frameSleepStart, frameSleepPos);
}
}
void hleAfterFlip(u64 userdata, int cyclesLate) {
gpu->PSPFrame();
PPGeNotifyFrame();
// This seems like as good a time as any to check if the config changed.
if (lagSyncScheduled != UseLagSync()) {
ScheduleLagSync();
}
}
void hleLeaveVblank(u64 userdata, int cyclesLate) {
flippedThisFrame = false;
VERBOSE_LOG(Log::sceDisplay,"Leave VBlank %i", (int)userdata - 1);
CoreTiming::ScheduleEvent(msToCycles(frameMs - vblankMs) - cyclesLate, enterVblankEvent, userdata);
// Fire the vblank listeners after the vblank completes.
DisplayFireVblankEnd();
}
void hleLagSync(u64 userdata, int cyclesLate) {
// The goal here is to prevent network, audio, and input lag from the real world.
// Our normal timing is very "stop and go". This is efficient, but causes real world lag.
// This event (optionally) runs every 1ms to sync with the real world.
PROFILE_THIS_SCOPE("timing");
if (!FrameTimingThrottled()) {
lagSyncScheduled = false;
return;
}
float scale = 1.0f;
int fpsLimit = FrameTimingLimit();
if (fpsLimit != 0 && fpsLimit != framerate) {
// 0 is handled in FrameTimingThrottled().
scale = (float)framerate / fpsLimit;
}
const double goal = lastLagSync + (scale / 1000.0f);
double before = time_now_d();
// Don't lag too long ever, if they leave it paused.
double now = before;
while (now < goal && goal < now + 0.01) {
// Tight loop on win32 - intentionally, as timing is otherwise not precise enough.
#ifndef _WIN32
const double left = goal - now;
if (left > 0.0f && left < 1.0f) { // Sanity check
usleep((long)(left * 1000000.0));
}
#else
yield();
#endif
now = time_now_d();
}
const int emuOver = (int)cyclesToUs(cyclesLate);
const int over = (int)((now - goal) * 1000000);
ScheduleLagSync(over - emuOver);
if ((DebugOverlay)g_Config.iDebugOverlay == DebugOverlay::FRAME_GRAPH || coreCollectDebugStats) {
DisplayNotifySleep(now - before);
}
}
static u32 sceDisplayIsVblank() {
return hleLogSuccessI(Log::sceDisplay, DisplayIsVblank());
}
static int DisplayWaitForVblanks(const char *reason, int vblanks, bool callbacks = false) {
const s64 ticksIntoFrame = CoreTiming::GetTicks() - DisplayFrameStartTicks();
const s64 cyclesToNextVblank = msToCycles(frameMs) - ticksIntoFrame;
// These syscalls take about 115 us, so if the next vblank is before then, we're waiting extra.
// At least, on real firmware a wait >= 16500 into the frame will wait two.
if (cyclesToNextVblank <= usToCycles(115)) {
++vblanks;
}
vblankWaitingThreads.push_back(WaitVBlankInfo(__KernelGetCurThread(), vblanks));
__KernelWaitCurThread(WAITTYPE_VBLANK, 1, 0, 0, callbacks, reason);
return hleLogSuccessVerboseI(Log::sceDisplay, 0, "waiting for %d vblanks", vblanks);
}
void __DisplayWaitForVblanks(const char* reason, int vblanks, bool callbacks) {
DisplayWaitForVblanks(reason, vblanks, callbacks);
}
static u32 sceDisplaySetMode(int displayMode, int displayWidth, int displayHeight) {
if (displayMode != PSP_DISPLAY_MODE_LCD || displayWidth != 480 || displayHeight != 272) {
WARN_LOG_REPORT(Log::sceDisplay, "Video out requested, not supported: mode=%d size=%d,%d", displayMode, displayWidth, displayHeight);
}
if (displayMode != PSP_DISPLAY_MODE_LCD) {
return hleLogWarning(Log::sceDisplay, SCE_KERNEL_ERROR_INVALID_MODE, "invalid mode");
}
if (displayWidth != 480 || displayHeight != 272) {
return hleLogWarning(Log::sceDisplay, SCE_KERNEL_ERROR_INVALID_SIZE, "invalid size");
}
hasSetMode = true;
mode = displayMode;
width = displayWidth;
height = displayHeight;
hleLogSuccessI(Log::sceDisplay, 0);
// On success, this implicitly waits for a vblank start.
return DisplayWaitForVblanks("display mode", 1);
}
void __DisplaySetFramebuf(u32 topaddr, int linesize, int pixelFormat, int sync) {
FrameBufferState fbstate = {0};
fbstate.topaddr = topaddr;
fbstate.fmt = (GEBufferFormat)pixelFormat;
fbstate.stride = linesize;
if (sync == PSP_DISPLAY_SETBUF_IMMEDIATE) {
// Write immediately to the current framebuffer parameters.
framebuf = fbstate;
// Also update latchedFramebuf for any sceDisplayGetFramebuf() after this.
latchedFramebuf = fbstate;
gpu->SetDisplayFramebuffer(framebuf.topaddr, framebuf.stride, framebuf.fmt);
// IMMEDIATE means that the buffer is fine. We can just flip immediately.
// Doing it in non-buffered though creates problems (black screen) on occasion though
// so let's not.
if (!flippedThisFrame && !g_Config.bSkipBufferEffects) {
double before_flip = time_now_d();
__DisplayFlip(0);
double after_flip = time_now_d();
// Ignore for debug stats.
hleSetFlipTime(after_flip - before_flip);
}
} else {
// Delay the write until vblank
latchedFramebuf = fbstate;
framebufIsLatched = true;
// If we update the format or stride, this affects the current framebuf immediately.
framebuf.fmt = latchedFramebuf.fmt;
framebuf.stride = latchedFramebuf.stride;
}
}
// Some games (GTA) never call this during gameplay, so bad place to put a framerate counter.
u32 sceDisplaySetFramebuf(u32 topaddr, int linesize, int pixelformat, int sync) {
if (sync != PSP_DISPLAY_SETBUF_IMMEDIATE && sync != PSP_DISPLAY_SETBUF_NEXTFRAME) {
return hleLogError(Log::sceDisplay, SCE_KERNEL_ERROR_INVALID_MODE, "invalid sync mode");
}
if (topaddr != 0 && !Memory::IsRAMAddress(topaddr) && !Memory::IsVRAMAddress(topaddr)) {
return hleLogError(Log::sceDisplay, SCE_KERNEL_ERROR_INVALID_POINTER, "invalid address");
}
if ((topaddr & 0xF) != 0) {
return hleLogError(Log::sceDisplay, SCE_KERNEL_ERROR_INVALID_POINTER, "misaligned address");
}
if ((linesize & 0x3F) != 0 || (linesize == 0 && topaddr != 0)) {
return hleLogError(Log::sceDisplay, SCE_KERNEL_ERROR_INVALID_SIZE, "invalid stride");
}
if (pixelformat < 0 || pixelformat > GE_FORMAT_8888) {
return hleLogError(Log::sceDisplay, SCE_KERNEL_ERROR_INVALID_FORMAT, "invalid format");
}
if (sync == PSP_DISPLAY_SETBUF_IMMEDIATE) {
if ((GEBufferFormat)pixelformat != latchedFramebuf.fmt || linesize != latchedFramebuf.stride) {
return hleReportError(Log::sceDisplay, SCE_KERNEL_ERROR_INVALID_MODE, "must change latched framebuf first");
}
}
hleEatCycles(290);
s64 delayCycles = 0;
// Don't count transitions between display off and display on.
if (topaddr != 0 &&
(topaddr != framebuf.topaddr || PSP_CoreParameter().compat.flags().SplitFramebufferMargin) &&
framebuf.topaddr != 0 &&
PSP_CoreParameter().compat.flags().ForceMax60FPS) {
// sceDisplaySetFramebuf() isn't supposed to delay threads at all. This is a hack.
// So let's only delay when it's more than 1ms.
const s64 FLIP_DELAY_CYCLES_MIN = usToCycles(1000);
// Some games (like Final Fantasy 4) only call this too much in spurts.
// The goal is to fix games where this would result in a consistent overhead.
const int FLIP_DELAY_MIN_FLIPS = 30;
// Since we move nextFlipCycles forward a whole frame each time, we allow it to be a little ahead.
// Otherwise it'll always be ahead if the game messes up even once.
const s64 LEEWAY_CYCLES_PER_FLIP = usToCycles(10);
u64 now = CoreTiming::GetTicks();
s64 cyclesAhead = nextFlipCycles - now;
if (cyclesAhead > FLIP_DELAY_CYCLES_MIN) {
if (lastFlipsTooFrequent >= FLIP_DELAY_MIN_FLIPS) {
delayCycles = cyclesAhead;
} else {
++lastFlipsTooFrequent;
}
} else if (-lastFlipsTooFrequent < FLIP_DELAY_MIN_FLIPS) {
--lastFlipsTooFrequent;
}
// 1001 to account for NTSC timing (59.94 fps.)
u64 expected = msToCycles(1001) / framerate - LEEWAY_CYCLES_PER_FLIP;
lastFlipCycles = now;
nextFlipCycles = std::max(lastFlipCycles, nextFlipCycles) + expected;
}
__DisplaySetFramebuf(topaddr, linesize, pixelformat, sync);
// No delaying while inside an interrupt. It'll cause idle threads to starve.
if (delayCycles > 0 && !__IsInInterrupt()) {
// Okay, the game is going at too high a frame rate. God of War and Fat Princess both do this.
// Simply eating the cycles works and is fast, but breaks other games (like Jeanne d'Arc.)
// So, instead, we delay this HLE thread only (a small deviation from correct behavior.)
return hleDelayResult(hleLogSuccessI(Log::sceDisplay, 0, "delaying frame thread"), "set framebuf", cyclesToUs(delayCycles));
} else {
if (topaddr == 0) {
return hleLogSuccessI(Log::sceDisplay, 0, "disabling display");
} else {
return hleLogSuccessI(Log::sceDisplay, 0);
}
}
}
bool __DisplayGetFramebuf(PSPPointer<u8> *topaddr, u32 *linesize, u32 *pixelFormat, int latchedMode) {
const FrameBufferState &fbState = latchedMode == PSP_DISPLAY_SETBUF_NEXTFRAME ? latchedFramebuf : framebuf;
if (topaddr != nullptr)
(*topaddr).ptr = fbState.topaddr;
if (linesize != nullptr)
*linesize = fbState.stride;
if (pixelFormat != nullptr)
*pixelFormat = fbState.fmt;
return true;
}
static u32 sceDisplayGetFramebuf(u32 topaddrPtr, u32 linesizePtr, u32 pixelFormatPtr, int latchedMode) {
const FrameBufferState &fbState = latchedMode == PSP_DISPLAY_SETBUF_NEXTFRAME ? latchedFramebuf : framebuf;
if (Memory::IsValidAddress(topaddrPtr))
Memory::Write_U32(fbState.topaddr, topaddrPtr);
if (Memory::IsValidAddress(linesizePtr))
Memory::Write_U32(fbState.stride, linesizePtr);
if (Memory::IsValidAddress(pixelFormatPtr))
Memory::Write_U32(fbState.fmt, pixelFormatPtr);
return hleLogSuccessI(Log::sceDisplay, 0);
}
static int DisplayWaitForVblanksCB(const char *reason, int vblanks) {
return DisplayWaitForVblanks(reason, vblanks, true);
}
static u32 sceDisplayWaitVblankStart() {
return DisplayWaitForVblanks("vblank start waited", 1);
}
static u32 sceDisplayWaitVblank() {
if (!DisplayIsVblank()) {
return DisplayWaitForVblanks("vblank waited", 1);
} else {
hleEatCycles(1110);
hleReSchedule("vblank wait skipped");
return hleLogSuccessI(Log::sceDisplay, 1, "not waiting since in vblank");
}
}
static u32 sceDisplayWaitVblankStartMulti(int vblanks) {
if (vblanks <= 0) {
return hleLogWarning(Log::sceDisplay, SCE_KERNEL_ERROR_INVALID_VALUE, "invalid number of vblanks");
}
if (!__KernelIsDispatchEnabled())
return hleLogWarning(Log::sceDisplay, SCE_KERNEL_ERROR_CAN_NOT_WAIT, "dispatch disabled");
if (__IsInInterrupt())
return hleLogWarning(Log::sceDisplay, SCE_KERNEL_ERROR_ILLEGAL_CONTEXT, "in interrupt");
return DisplayWaitForVblanks("vblank start multi waited", vblanks);
}
static u32 sceDisplayWaitVblankCB() {
if (!DisplayIsVblank()) {
return DisplayWaitForVblanksCB("vblank waited", 1);
} else {
hleEatCycles(1110);
hleReSchedule("vblank wait skipped");
return hleLogSuccessI(Log::sceDisplay, 1, "not waiting since in vblank");
}
}
static u32 sceDisplayWaitVblankStartCB() {
return DisplayWaitForVblanksCB("vblank start waited", 1);
}
static u32 sceDisplayWaitVblankStartMultiCB(int vblanks) {
if (vblanks <= 0) {
return hleLogWarning(Log::sceDisplay, SCE_KERNEL_ERROR_INVALID_VALUE, "invalid number of vblanks");
}
if (!__KernelIsDispatchEnabled())
return hleLogWarning(Log::sceDisplay, SCE_KERNEL_ERROR_CAN_NOT_WAIT, "dispatch disabled");
if (__IsInInterrupt())
return hleLogWarning(Log::sceDisplay, SCE_KERNEL_ERROR_ILLEGAL_CONTEXT, "in interrupt");
return DisplayWaitForVblanksCB("vblank start multi waited", vblanks);
}
static u32 sceDisplayGetVcount() {
hleEatCycles(150);
hleReSchedule("get vcount");
return hleLogSuccessVerboseI(Log::sceDisplay, __DisplayGetVCount());
}
static u32 sceDisplayGetCurrentHcount() {
hleEatCycles(275);
return hleLogSuccessI(Log::sceDisplay, __DisplayGetCurrentHcount());
}
static int sceDisplayAdjustAccumulatedHcount(int value) {
if (value < 0) {
return hleLogError(Log::sceDisplay, SCE_KERNEL_ERROR_INVALID_VALUE, "invalid value");
}
// Since it includes the current hCount, find the difference to apply to the base.
u32 accumHCount = __DisplayGetAccumulatedHcount();
int diff = value - accumHCount;
DisplayAdjustAccumulatedHcount(diff);
return hleLogSuccessI(Log::sceDisplay, 0);
}
static int sceDisplayGetAccumulatedHcount() {
u32 accumHCount = __DisplayGetAccumulatedHcount();
hleEatCycles(235);
return hleLogSuccessI(Log::sceDisplay, accumHCount);
}
static float sceDisplayGetFramePerSec() {
const static float framePerSec = 59.9400599f;
VERBOSE_LOG(Log::sceDisplay,"%f=sceDisplayGetFramePerSec()", framePerSec);
return framePerSec; // (9MHz * 1)/(525 * 286)
}
static u32 sceDisplayIsForeground() {
int result = hasSetMode && framebuf.topaddr != 0 ? 1 : 0;
return hleLogSuccessI(Log::sceDisplay, result);
}
static u32 sceDisplayGetMode(u32 modeAddr, u32 widthAddr, u32 heightAddr) {
if (Memory::IsValidAddress(modeAddr))
Memory::Write_U32(mode, modeAddr);
if (Memory::IsValidAddress(widthAddr))
Memory::Write_U32(width, widthAddr);
if (Memory::IsValidAddress(heightAddr))
Memory::Write_U32(height, heightAddr);
return hleLogSuccessI(Log::sceDisplay, 0);
}
static u32 sceDisplayIsVsync() {
u64 now = CoreTiming::GetTicks();
u64 start = DisplayFrameStartTicks() + msToCycles(vsyncStartMs);
u64 end = DisplayFrameStartTicks() + msToCycles(vsyncEndMs);
return hleLogSuccessI(Log::sceDisplay, now >= start && now <= end ? 1 : 0);
}
static u32 sceDisplayGetResumeMode(u32 resumeModeAddr) {
if (Memory::IsValidAddress(resumeModeAddr))
Memory::Write_U32(resumeMode, resumeModeAddr);
return hleLogSuccessI(Log::sceDisplay, 0);
}
static u32 sceDisplaySetResumeMode(u32 rMode) {
// Not sure what this does, seems to do nothing in tests and accept all values.
resumeMode = rMode;
return hleReportError(Log::sceDisplay, 0, "unsupported");
}
static u32 sceDisplayGetBrightness(u32 levelAddr, u32 otherAddr) {
// Standard levels on a PSP: 44, 60, 72, 84 (AC only)
if (Memory::IsValidAddress(levelAddr)) {
Memory::Write_U32(brightnessLevel, levelAddr);
}
// Always seems to write zero?
if (Memory::IsValidAddress(otherAddr)) {
Memory::Write_U32(0, otherAddr);
}
return hleLogWarning(Log::sceDisplay, 0);
}
static u32 sceDisplaySetBrightness(int level, int other) {
// Note: Only usable in kernel mode.
brightnessLevel = level;
return hleLogWarning(Log::sceDisplay, 0);
}
static u32 sceDisplaySetHoldMode(u32 hMode) {
// Not sure what this does, seems to do nothing in tests and accept all values.
holdMode = hMode;
return hleReportError(Log::sceDisplay, 0, "unsupported");
}
const HLEFunction sceDisplay[] = {
{0X0E20F177, &WrapU_III<sceDisplaySetMode>, "sceDisplaySetMode", 'x', "iii" },
{0X289D82FE, &WrapU_UIII<sceDisplaySetFramebuf>, "sceDisplaySetFrameBuf", 'x', "xiii"},
{0XEEDA2E54, &WrapU_UUUI<sceDisplayGetFramebuf>, "sceDisplayGetFrameBuf", 'x', "pppi"},
{0X36CDFADE, &WrapU_V<sceDisplayWaitVblank>, "sceDisplayWaitVblank", 'x', "", HLE_NOT_DISPATCH_SUSPENDED },
{0X984C27E7, &WrapU_V<sceDisplayWaitVblankStart>, "sceDisplayWaitVblankStart", 'x', "", HLE_NOT_IN_INTERRUPT | HLE_NOT_DISPATCH_SUSPENDED },
{0X40F1469C, &WrapU_I<sceDisplayWaitVblankStartMulti>, "sceDisplayWaitVblankStartMulti", 'x', "i" },
{0X8EB9EC49, &WrapU_V<sceDisplayWaitVblankCB>, "sceDisplayWaitVblankCB", 'x', "", HLE_NOT_DISPATCH_SUSPENDED },
{0X46F186C3, &WrapU_V<sceDisplayWaitVblankStartCB>, "sceDisplayWaitVblankStartCB", 'x', "", HLE_NOT_IN_INTERRUPT | HLE_NOT_DISPATCH_SUSPENDED },
{0X77ED8B3A, &WrapU_I<sceDisplayWaitVblankStartMultiCB>, "sceDisplayWaitVblankStartMultiCB", 'x', "i" },
{0XDBA6C4C4, &WrapF_V<sceDisplayGetFramePerSec>, "sceDisplayGetFramePerSec", 'f', "" },
{0X773DD3A3, &WrapU_V<sceDisplayGetCurrentHcount>, "sceDisplayGetCurrentHcount", 'x', "" },
{0X210EAB3A, &WrapI_V<sceDisplayGetAccumulatedHcount>, "sceDisplayGetAccumulatedHcount", 'i', "" },
{0XA83EF139, &WrapI_I<sceDisplayAdjustAccumulatedHcount>, "sceDisplayAdjustAccumulatedHcount", 'i', "i" },
{0X9C6EAAD7, &WrapU_V<sceDisplayGetVcount>, "sceDisplayGetVcount", 'x', "" },
{0XDEA197D4, &WrapU_UUU<sceDisplayGetMode>, "sceDisplayGetMode", 'x', "ppp" },
{0X7ED59BC4, &WrapU_U<sceDisplaySetHoldMode>, "sceDisplaySetHoldMode", 'x', "x" },
{0XA544C486, &WrapU_U<sceDisplaySetResumeMode>, "sceDisplaySetResumeMode", 'x', "x" },
{0XBF79F646, &WrapU_U<sceDisplayGetResumeMode>, "sceDisplayGetResumeMode", 'x', "p" },
{0XB4F378FA, &WrapU_V<sceDisplayIsForeground>, "sceDisplayIsForeground", 'x', "" },
{0X31C4BAA8, &WrapU_UU<sceDisplayGetBrightness>, "sceDisplayGetBrightness", 'x', "pp" },
{0X9E3C6DC6, &WrapU_II<sceDisplaySetBrightness>, "sceDisplaySetBrightness", 'x', "ii" },
{0X4D4E10EC, &WrapU_V<sceDisplayIsVblank>, "sceDisplayIsVblank", 'x', "" },
{0X21038913, &WrapU_V<sceDisplayIsVsync>, "sceDisplayIsVsync", 'x', "" },
};
void Register_sceDisplay() {
RegisterModule("sceDisplay", ARRAY_SIZE(sceDisplay), sceDisplay);
}
void Register_sceDisplay_driver() {
RegisterModule("sceDisplay_driver", ARRAY_SIZE(sceDisplay), sceDisplay);
}
static void __DisplaySetFramerate(void) {
if (System_GetPropertyInt(SYSPROP_DEVICE_TYPE) == DEVICE_TYPE_VR)
framerate = g_Config.bForce72Hz ? 72 : 60;
else
framerate = g_Config.iDisplayRefreshRate;
timePerVblank = 1.001 / (double)framerate;
frameMs = 1001.0 / (double)framerate;
}