ppsspp/GPU/Debugger/Record.cpp
2024-11-01 20:27:09 +01:00

868 lines
23 KiB
C++

// Copyright (c) 2017- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include <atomic>
#include <cstring>
#include <functional>
#include <set>
#include <vector>
#include <mutex>
#include <zstd.h>
#include "Common/CommonTypes.h"
#include "Common/File/FileUtil.h"
#include "Common/Thread/ParallelLoop.h"
#include "Common/Log.h"
#include "Common/StringUtils.h"
#include "Common/System/System.h"
#include "Core/Core.h"
#include "Core/ELF/ParamSFO.h"
#include "Core/HLE/sceDisplay.h"
#include "Core/MemMap.h"
#include "Core/System.h"
#include "Core/ThreadPools.h"
#include "GPU/Common/GPUDebugInterface.h"
#include "GPU/GPUInterface.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Common/VertexDecoderCommon.h"
#include "GPU/Debugger/Record.h"
#include "GPU/Debugger/RecordFormat.h"
namespace GPURecord {
static bool active = false;
static std::atomic<bool> nextFrame = false;
static int flipLastAction = -1;
static int flipFinishAt = -1;
static uint32_t lastEdramTrans = 0x400;
static std::function<void(const Path &)> writeCallback;
static std::vector<u8> pushbuf;
static std::vector<Command> commands;
static std::vector<u32> lastRegisters;
static std::vector<u32> lastTextures;
static std::set<u32> lastRenderTargets;
static std::vector<u8> lastVRAM;
enum class DirtyVRAMFlag : uint8_t {
CLEAN = 0,
UNKNOWN = 1,
DIRTY = 2,
DRAWN = 3,
};
static constexpr uint32_t DIRTY_VRAM_SHIFT = 8;
static constexpr uint32_t DIRTY_VRAM_ROUND = (1 << DIRTY_VRAM_SHIFT) - 1;
static constexpr uint32_t DIRTY_VRAM_SIZE = (2 * 1024 * 1024) >> DIRTY_VRAM_SHIFT;
static constexpr uint32_t DIRTY_VRAM_MASK = (2 * 1024 * 1024 - 1) >> DIRTY_VRAM_SHIFT;
static DirtyVRAMFlag dirtyVRAM[DIRTY_VRAM_SIZE];
static void FlushRegisters() {
if (!lastRegisters.empty()) {
Command last{CommandType::REGISTERS};
last.ptr = (u32)pushbuf.size();
last.sz = (u32)(lastRegisters.size() * sizeof(u32));
pushbuf.resize(pushbuf.size() + last.sz);
memcpy(pushbuf.data() + last.ptr, lastRegisters.data(), last.sz);
lastRegisters.clear();
commands.push_back(last);
}
}
static Path GenRecordingFilename() {
const Path dumpDir = GetSysDirectory(DIRECTORY_DUMP);
File::CreateFullPath(dumpDir);
const std::string prefix = g_paramSFO.GetDiscID();
for (int n = 1; n < 10000; ++n) {
std::string filename = StringFromFormat("%s_%04d.ppdmp", prefix.c_str(), n);
const Path path = dumpDir / filename;
if (!File::Exists(path)) {
return path;
}
}
return dumpDir / StringFromFormat("%s_%04d.ppdmp", prefix.c_str(), 9999);
}
static void DirtyAllVRAM(DirtyVRAMFlag flag) {
if (flag == DirtyVRAMFlag::UNKNOWN) {
for (uint32_t i = 0; i < DIRTY_VRAM_SIZE; ++i) {
if (dirtyVRAM[i] == DirtyVRAMFlag::CLEAN)
dirtyVRAM[i] = DirtyVRAMFlag::UNKNOWN;
}
} else {
for (uint32_t i = 0; i < DIRTY_VRAM_SIZE; ++i)
dirtyVRAM[i] = flag;
}
}
static void DirtyVRAM(u32 start, u32 sz, DirtyVRAMFlag flag) {
u32 count = (sz + DIRTY_VRAM_ROUND) >> DIRTY_VRAM_SHIFT;
u32 first = (start >> DIRTY_VRAM_SHIFT) & DIRTY_VRAM_MASK;
if (first + count > DIRTY_VRAM_SIZE) {
DirtyAllVRAM(flag);
return;
}
for (u32 i = 0; i < count; ++i)
dirtyVRAM[first + i] = flag;
}
static void DirtyDrawnVRAM() {
int w = std::min(gstate.getScissorX2(), gstate.getRegionX2()) + 1;
int h = std::min(gstate.getScissorY2(), gstate.getRegionY2()) + 1;
bool drawZ = !gstate.isModeClear() && gstate.isDepthWriteEnabled() && gstate.isDepthTestEnabled();
bool clearZ = gstate.isModeClear() && gstate.isClearModeDepthMask();
if (drawZ || clearZ) {
int bytes = 2 * gstate.DepthBufStride() * h;
if (w > gstate.DepthBufStride())
bytes += 2 * (w - gstate.DepthBufStride());
DirtyVRAM(gstate.getDepthBufAddress(), bytes, DirtyVRAMFlag::DRAWN);
}
int bpp = gstate.FrameBufFormat() == GE_FORMAT_8888 ? 4 : 2;
int bytes = bpp * gstate.FrameBufStride() * h;
if (w > gstate.FrameBufStride())
bytes += bpp * (w - gstate.FrameBufStride());
DirtyVRAM(gstate.getFrameBufAddress(), bytes, DirtyVRAMFlag::DRAWN);
}
static bool BeginRecording() {
if (PSP_CoreParameter().fileType == IdentifiedFileType::PPSSPP_GE_DUMP) {
// Can't record a GE dump.
return false;
}
active = true;
nextFrame = false;
lastTextures.clear();
lastRenderTargets.clear();
flipLastAction = gpuStats.numFlips;
flipFinishAt = -1;
u32 ptr = (u32)pushbuf.size();
u32 sz = 512 * 4;
pushbuf.resize(pushbuf.size() + sz);
gstate.Save((u32_le *)(pushbuf.data() + ptr));
commands.push_back({CommandType::INIT, sz, ptr});
lastVRAM.resize(2 * 1024 * 1024);
// Also save the initial CLUT.
GPUDebugBuffer clut;
if (gpuDebug->GetCurrentClut(clut)) {
sz = clut.GetStride() * clut.PixelSize();
_assert_msg_(sz == 1024, "CLUT should be 1024 bytes");
ptr = (u32)pushbuf.size();
pushbuf.resize(pushbuf.size() + sz);
memcpy(pushbuf.data() + ptr, clut.GetData(), sz);
commands.push_back({ CommandType::CLUT, sz, ptr });
}
DirtyAllVRAM(DirtyVRAMFlag::DIRTY);
return true;
}
static void WriteCompressed(FILE *fp, const void *p, size_t sz) {
size_t compressed_size = ZSTD_compressBound(sz);
u8 *compressed = new u8[compressed_size];
compressed_size = ZSTD_compress(compressed, compressed_size, p, sz, 6);
u32 write_size = (u32)compressed_size;
fwrite(&write_size, sizeof(write_size), 1, fp);
fwrite(compressed, compressed_size, 1, fp);
delete [] compressed;
}
static Path WriteRecording() {
FlushRegisters();
const Path filename = GenRecordingFilename();
NOTICE_LOG(Log::G3D, "Recording filename: %s", filename.c_str());
FILE *fp = File::OpenCFile(filename, "wb");
Header header{};
strncpy(header.magic, HEADER_MAGIC, sizeof(header.magic));
header.version = VERSION;
strncpy(header.gameID, g_paramSFO.GetDiscID().c_str(), sizeof(header.gameID));
fwrite(&header, sizeof(header), 1, fp);
u32 sz = (u32)commands.size();
fwrite(&sz, sizeof(sz), 1, fp);
u32 bufsz = (u32)pushbuf.size();
fwrite(&bufsz, sizeof(bufsz), 1, fp);
WriteCompressed(fp, commands.data(), commands.size() * sizeof(Command));
WriteCompressed(fp, pushbuf.data(), bufsz);
fclose(fp);
return filename;
}
static void GetVertDataSizes(int vcount, const void *indices, u32 &vbytes, u32 &ibytes) {
VertexDecoder vdec;
VertexDecoderOptions opts{};
vdec.SetVertexType(gstate.vertType, opts);
if (indices) {
u16 lower = 0;
u16 upper = 0;
GetIndexBounds(indices, vcount, gstate.vertType, &lower, &upper);
vbytes = (upper + 1) * vdec.VertexSize();
u32 idx = gstate.vertType & GE_VTYPE_IDX_MASK;
if (idx == GE_VTYPE_IDX_8BIT) {
ibytes = vcount * sizeof(u8);
} else if (idx == GE_VTYPE_IDX_16BIT) {
ibytes = vcount * sizeof(u16);
} else if (idx == GE_VTYPE_IDX_32BIT) {
ibytes = vcount * sizeof(u32);
}
} else {
vbytes = vcount * vdec.VertexSize();
}
}
static const u8 *mymemmem(const u8 *haystack, size_t off, size_t hlen, const u8 *needle, size_t nlen, uintptr_t align) {
if (!nlen) {
return nullptr;
}
const u8 *last_possible = haystack + hlen - nlen;
const u8 *first_possible = haystack + off;
int first = *needle;
const u8 *result = nullptr;
std::mutex resultLock;
int range = (int)(last_possible - first_possible);
ParallelRangeLoop(&g_threadManager, [&](int l, int h) {
const u8 *p = haystack + off + l;
const u8 *pend = haystack + off + h;
const uintptr_t align_mask = align - 1;
auto poffset = [&]() {
return ((uintptr_t)(p - haystack) & align_mask);
};
auto alignp = [&]() {
uintptr_t offset = poffset();
if (offset != 0)
p += align - offset;
};
alignp();
while (p <= pend) {
p = (const u8 *)memchr(p, first, pend - p + 1);
if (!p) {
return;
}
if (poffset() == 0 && !memcmp(p, needle, nlen)) {
std::lock_guard<std::mutex> guard(resultLock);
// Take the lowest result so we get the same file for any # of threads.
if (!result || p < result)
result = p;
return;
}
p++;
alignp();
}
}, 0, range, 128 * 1024, TaskPriority::LOW);
return result;
}
static Command EmitCommandWithRAM(CommandType t, const void *p, u32 sz, u32 align) {
FlushRegisters();
Command cmd{t, sz, 0};
if (sz) {
// If at all possible, try to find it already in the buffer.
const u8 *prev = nullptr;
const size_t NEAR_WINDOW = std::max((int)sz * 2, 1024 * 10);
// Let's try nearby first... it will often be nearby.
if (pushbuf.size() > NEAR_WINDOW) {
prev = mymemmem(pushbuf.data(), pushbuf.size() - NEAR_WINDOW, pushbuf.size(), (const u8 *)p, sz, align);
}
if (!prev) {
prev = mymemmem(pushbuf.data(), 0, pushbuf.size(), (const u8 *)p, sz, align);
}
if (prev) {
cmd.ptr = (u32)(prev - pushbuf.data());
} else {
cmd.ptr = (u32)pushbuf.size();
int pad = 0;
if (cmd.ptr & (align - 1)) {
pad = align - (cmd.ptr & (align - 1));
cmd.ptr += pad;
}
pushbuf.resize(pushbuf.size() + sz + pad);
if (pad) {
memset(pushbuf.data() + cmd.ptr - pad, 0, pad);
}
memcpy(pushbuf.data() + cmd.ptr, p, sz);
}
}
commands.push_back(cmd);
return cmd;
}
static void UpdateLastVRAM(u32 addr, u32 bytes) {
u32 base = addr & 0x001FFFFF;
if (base + bytes > 0x00200000) {
memcpy(&lastVRAM[base], Memory::GetPointerUnchecked(0x04000000 | base), 0x00200000 - base);
bytes = base + bytes - 0x00200000;
base = 0;
}
memcpy(&lastVRAM[base], Memory::GetPointerUnchecked(0x04000000 | base), bytes);
}
static void ClearLastVRAM(u32 addr, u8 c, u32 bytes) {
u32 base = addr & 0x001FFFFF;
if (base + bytes > 0x00200000) {
memset(&lastVRAM[base], c, 0x00200000 - base);
bytes = base + bytes - 0x00200000;
base = 0;
}
memset(&lastVRAM[base], c, bytes);
}
static int CompareLastVRAM(u32 addr, u32 bytes) {
u32 base = addr & 0x001FFFFF;
if (base + bytes > 0x00200000) {
int result = memcmp(&lastVRAM[base], Memory::GetPointerUnchecked(0x04000000 | base), 0x00200000 - base);
if (result != 0)
return result;
bytes = base + bytes - 0x00200000;
base = 0;
}
return memcmp(&lastVRAM[base], Memory::GetPointerUnchecked(0x04000000 | base), bytes);
}
static u32 GetTargetFlags(u32 addr, u32 sizeInRAM) {
addr &= 0x041FFFFF;
const bool isTarget = lastRenderTargets.find(addr) != lastRenderTargets.end();
bool isUnknownVRAM = false;
bool isDirtyVRAM = false;
bool isDrawnVRAM = false;
uint32_t start = (addr >> DIRTY_VRAM_SHIFT) & DIRTY_VRAM_MASK;
uint32_t blocks = (sizeInRAM + DIRTY_VRAM_ROUND) >> DIRTY_VRAM_SHIFT;
if (start + blocks >= DIRTY_VRAM_SIZE)
return 0;
bool startEven = (addr & DIRTY_VRAM_ROUND) == 0;
bool endEven = ((addr + sizeInRAM) & DIRTY_VRAM_ROUND) == 0;
for (uint32_t i = 0; i < blocks; ++i) {
DirtyVRAMFlag flag = dirtyVRAM[start + i];
isUnknownVRAM = (isUnknownVRAM || flag == DirtyVRAMFlag::UNKNOWN) && flag != DirtyVRAMFlag::DIRTY && flag != DirtyVRAMFlag::DRAWN;
isDirtyVRAM = isDirtyVRAM || flag != DirtyVRAMFlag::CLEAN;
isDrawnVRAM = isDrawnVRAM || flag == DirtyVRAMFlag::DRAWN;
// Mark the VRAM clean now that it's been copied to VRAM.
if (flag == DirtyVRAMFlag::UNKNOWN || flag == DirtyVRAMFlag::DIRTY) {
if ((i > 0 || startEven) && (i < blocks || endEven))
dirtyVRAM[start + i] = DirtyVRAMFlag::CLEAN;
}
}
if (isUnknownVRAM && isDirtyVRAM) {
// This means it's only UNKNOWN/CLEAN and not known to be actually dirty.
// Let's check our shadow copy of what we last sent for this VRAM.
int diff = CompareLastVRAM(addr, sizeInRAM);
if (diff == 0)
isDirtyVRAM = false;
}
// The isTarget flag is mostly used for replay of dumps on a PSP.
u32 flags = isTarget ? 1 : 0;
// The unchangedVRAM flag tells us we can skip recopying.
if (!isDirtyVRAM)
flags |= 2;
// And the drawn flag tells us this data was potentially drawn to.
if (isDrawnVRAM)
flags |= 4;
return flags;
}
static void EmitTextureData(int level, u32 texaddr) {
GETextureFormat format = gstate.getTextureFormat();
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
int bufw = GetTextureBufw(level, texaddr, format);
int extraw = w > bufw ? w - bufw : 0;
u32 sizeInRAM = (textureBitsPerPixel[format] * (bufw * h + extraw)) / 8;
CommandType type = CommandType((int)CommandType::TEXTURE0 + level);
const u8 *p = Memory::GetPointerUnchecked(texaddr);
u32 bytes = Memory::ValidSize(texaddr, sizeInRAM);
std::vector<u8> framebufData;
if (Memory::IsVRAMAddress(texaddr)) {
struct FramebufData {
u32 addr;
int bufw;
u32 flags;
u32 pad;
};
u32 flags = GetTargetFlags(texaddr, bytes);
FramebufData framebuf{ texaddr, bufw, flags };
framebufData.resize(sizeof(framebuf) + bytes);
memcpy(&framebufData[0], &framebuf, sizeof(framebuf));
memcpy(&framebufData[sizeof(framebuf)], p, bytes);
p = &framebufData[0];
if ((flags & 2) == 0)
UpdateLastVRAM(texaddr, bytes);
// Okay, now we'll just emit this instead.
type = CommandType((int)CommandType::FRAMEBUF0 + level);
bytes += (u32)sizeof(framebuf);
}
if (bytes > 0) {
FlushRegisters();
// Dumps are huge - let's try to find this already emitted.
for (u32 prevptr : lastTextures) {
if (pushbuf.size() < prevptr + bytes) {
continue;
}
if (memcmp(pushbuf.data() + prevptr, p, bytes) == 0) {
commands.push_back({type, bytes, prevptr});
// Okay, that was easy. Bail out.
return;
}
}
// Not there, gotta emit anew.
Command cmd = EmitCommandWithRAM(type, p, bytes, 16);
lastTextures.push_back(cmd.ptr);
}
}
static void FlushPrimState(int vcount) {
// TODO: Eventually, how do we handle texturing from framebuf/zbuf?
// TODO: Do we need to preload color/depth/stencil (in case from last frame)?
lastRenderTargets.insert(PSP_GetVidMemBase() | gstate.getFrameBufRawAddress());
lastRenderTargets.insert(PSP_GetVidMemBase() | gstate.getDepthBufRawAddress());
// We re-flush textures always in case the game changed them... kinda expensive.
bool textureEnabled = gstate.isTextureMapEnabled() || gstate.isAntiAliasEnabled();
// Play it safe and allow texture coords to emit data too.
bool textureCoords = (gstate.vertType & GE_VTYPE_TC_MASK) != 0;
for (int level = 0; level < 8; ++level) {
u32 texaddr = gstate.getTextureAddress(level);
if (texaddr && (textureEnabled || textureCoords)) {
EmitTextureData(level, texaddr);
}
}
const void *verts = Memory::GetPointer(gstate_c.vertexAddr);
const void *indices = nullptr;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
indices = Memory::GetPointer(gstate_c.indexAddr);
}
u32 ibytes = 0;
u32 vbytes = 0;
GetVertDataSizes(vcount, indices, vbytes, ibytes);
if (indices && ibytes > 0) {
EmitCommandWithRAM(CommandType::INDICES, indices, ibytes, 4);
}
if (verts && vbytes > 0) {
EmitCommandWithRAM(CommandType::VERTICES, verts, vbytes, 4);
}
}
static void EmitTransfer(u32 op) {
FlushRegisters();
// This may not make a lot of sense right now, unless it's to a framebuf...
u32 dstBasePtr = gstate.getTransferDstAddress();
if (!Memory::IsVRAMAddress(dstBasePtr)) {
// Skip, not VRAM, so can't affect drawing (we flush textures each prim.)
return;
}
u32 srcBasePtr = gstate.getTransferSrcAddress();
u32 srcStride = gstate.getTransferSrcStride();
int srcX = gstate.getTransferSrcX();
int srcY = gstate.getTransferSrcY();
u32 dstStride = gstate.getTransferDstStride();
int dstX = gstate.getTransferDstX();
int dstY = gstate.getTransferDstY();
int width = gstate.getTransferWidth();
int height = gstate.getTransferHeight();
int bpp = gstate.getTransferBpp();
u32 srcBytes = ((srcY + height - 1) * srcStride + (srcX + width)) * bpp;
srcBytes = Memory::ValidSize(srcBasePtr, srcBytes);
u32 dstBytes = ((dstY + height - 1) * dstStride + (dstX + width)) * bpp;
dstBytes = Memory::ValidSize(dstBasePtr, dstBytes);
if (srcBytes != 0) {
EmitCommandWithRAM(CommandType::TRANSFERSRC, Memory::GetPointerUnchecked(srcBasePtr), srcBytes, 16);
DirtyVRAM(dstBasePtr, dstBytes, DirtyVRAMFlag::DIRTY);
}
lastRegisters.push_back(op);
}
static void EmitClut(u32 op) {
u32 addr = gstate.getClutAddress();
// Hardware rendering may be using a framebuffer as CLUT.
// To get at this, we first run the command (normally we're called right before it has run.)
if (Memory::IsVRAMAddress(addr))
gpuDebug->SetCmdValue(op);
// Actually should only be 0x3F, but we allow enhanced CLUTs. See #15727.
u32 blocks = (op & 0x7F) == 0x40 ? 0x40 : (op & 0x3F);
u32 bytes = blocks * 32;
bytes = Memory::ValidSize(addr, bytes);
if (bytes != 0) {
// Send the original address so VRAM can be reasoned about.
if (Memory::IsVRAMAddress(addr)) {
struct ClutAddrData {
u32 addr;
u32 flags;
};
u32 flags = GetTargetFlags(addr, bytes);
ClutAddrData data{ addr, flags };
FlushRegisters();
Command cmd{CommandType::CLUTADDR, sizeof(data), (u32)pushbuf.size()};
pushbuf.resize(pushbuf.size() + sizeof(data));
memcpy(pushbuf.data() + cmd.ptr, &data, sizeof(data));
commands.push_back(cmd);
if ((flags & 2) == 0)
UpdateLastVRAM(addr, bytes);
}
EmitCommandWithRAM(CommandType::CLUT, Memory::GetPointerUnchecked(addr), bytes, 16);
}
lastRegisters.push_back(op);
}
static void EmitPrim(u32 op) {
FlushPrimState(op & 0x0000FFFF);
lastRegisters.push_back(op);
DirtyDrawnVRAM();
}
static void EmitBezierSpline(u32 op) {
int ucount = op & 0xFF;
int vcount = (op >> 8) & 0xFF;
FlushPrimState(ucount * vcount);
lastRegisters.push_back(op);
DirtyDrawnVRAM();
}
bool IsActive() {
return active;
}
bool IsActivePending() {
return nextFrame || active;
}
bool RecordNextFrame(const std::function<void(const Path &)> callback) {
if (!nextFrame) {
flipLastAction = gpuStats.numFlips;
flipFinishAt = -1;
writeCallback = callback;
nextFrame = true;
return true;
}
return false;
}
void ClearCallback() {
// Not super thread safe..
writeCallback = nullptr;
}
static void FinishRecording() {
// We're done - this was just to write the result out.
if (!active) {
return;
}
Path filename = WriteRecording();
commands.clear();
pushbuf.clear();
lastVRAM.clear();
NOTICE_LOG(Log::System, "Recording finished");
active = false;
flipLastAction = gpuStats.numFlips;
flipFinishAt = -1;
lastEdramTrans = 0x400;
if (writeCallback) {
writeCallback(filename);
}
writeCallback = nullptr;
}
static void CheckEdramTrans() {
if (!gpuDebug)
return;
uint32_t value = gpuDebug->GetAddrTranslation();
if (value == lastEdramTrans)
return;
lastEdramTrans = value;
FlushRegisters();
Command cmd{CommandType::EDRAMTRANS, sizeof(value), (u32)pushbuf.size()};
pushbuf.resize(pushbuf.size() + sizeof(value));
memcpy(pushbuf.data() + cmd.ptr, &value, sizeof(value));
commands.push_back(cmd);
}
void NotifyCommand(u32 pc) {
if (!active) {
return;
}
CheckEdramTrans();
const u32 op = Memory::Read_U32(pc);
const GECommand cmd = GECommand(op >> 24);
switch (cmd) {
case GE_CMD_VADDR:
case GE_CMD_IADDR:
case GE_CMD_JUMP:
case GE_CMD_CALL:
case GE_CMD_RET:
case GE_CMD_END:
case GE_CMD_SIGNAL:
case GE_CMD_FINISH:
case GE_CMD_BASE:
case GE_CMD_OFFSETADDR:
case GE_CMD_ORIGIN:
// These just prepare future commands, and are flushed with those commands.
// TODO: Maybe add a command just to log that these were hit?
break;
case GE_CMD_BOUNDINGBOX:
case GE_CMD_BJUMP:
// Since we record each command, this is theoretically not relevant.
// TODO: Output a CommandType to validate this.
break;
case GE_CMD_PRIM:
EmitPrim(op);
break;
case GE_CMD_BEZIER:
case GE_CMD_SPLINE:
EmitBezierSpline(op);
break;
case GE_CMD_LOADCLUT:
EmitClut(op);
break;
case GE_CMD_TRANSFERSTART:
EmitTransfer(op);
break;
default:
lastRegisters.push_back(op);
break;
}
}
void NotifyMemcpy(u32 dest, u32 src, u32 sz) {
if (!active) {
return;
}
CheckEdramTrans();
if (Memory::IsVRAMAddress(dest)) {
FlushRegisters();
Command cmd{CommandType::MEMCPYDEST, sizeof(dest), (u32)pushbuf.size()};
pushbuf.resize(pushbuf.size() + sizeof(dest));
memcpy(pushbuf.data() + cmd.ptr, &dest, sizeof(dest));
commands.push_back(cmd);
sz = Memory::ValidSize(dest, sz);
if (sz != 0) {
EmitCommandWithRAM(CommandType::MEMCPYDATA, Memory::GetPointerUnchecked(dest), sz, 1);
UpdateLastVRAM(dest, sz);
DirtyVRAM(dest, sz, DirtyVRAMFlag::CLEAN);
}
}
}
void NotifyMemset(u32 dest, int v, u32 sz) {
if (!active) {
return;
}
CheckEdramTrans();
struct MemsetCommand {
u32 dest;
int value;
u32 sz;
};
if (Memory::IsVRAMAddress(dest)) {
sz = Memory::ValidSize(dest, sz);
MemsetCommand data{dest, v, sz};
FlushRegisters();
Command cmd{CommandType::MEMSET, sizeof(data), (u32)pushbuf.size()};
pushbuf.resize(pushbuf.size() + sizeof(data));
memcpy(pushbuf.data() + cmd.ptr, &data, sizeof(data));
commands.push_back(cmd);
ClearLastVRAM(dest, v, sz);
DirtyVRAM(dest, sz, DirtyVRAMFlag::CLEAN);
}
}
void NotifyUpload(u32 dest, u32 sz) {
// This also checks the edram translation value and dirties VRAM.
NotifyMemcpy(dest, dest, sz);
}
static bool HasDrawCommands() {
if (commands.empty())
return false;
for (const Command &cmd : commands) {
switch (cmd.type) {
case CommandType::INIT:
case CommandType::DISPLAY:
continue;
default:
return true;
}
}
// Only init and display commands, keep going.
return false;
}
void NotifyDisplay(u32 framebuf, int stride, int fmt) {
bool writePending = false;
if (active && HasDrawCommands()) {
writePending = true;
}
if (!active && nextFrame && (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) == 0) {
NOTICE_LOG(Log::System, "Recording starting on display...");
BeginRecording(); // TODO: Handle return value.
}
if (!active) {
return;
}
CheckEdramTrans();
struct DisplayBufData {
PSPPointer<u8> topaddr;
int linesize, pixelFormat;
};
DisplayBufData disp{ { framebuf }, stride, fmt };
FlushRegisters();
u32 ptr = (u32)pushbuf.size();
u32 sz = (u32)sizeof(disp);
pushbuf.resize(pushbuf.size() + sz);
memcpy(pushbuf.data() + ptr, &disp, sz);
commands.push_back({ CommandType::DISPLAY, sz, ptr });
if (writePending) {
NOTICE_LOG(Log::System, "Recording complete on display");
FinishRecording();
}
}
void NotifyBeginFrame() {
const bool noDisplayAction = flipLastAction + 4 < gpuStats.numFlips;
// We do this only to catch things that don't call NotifyDisplay.
if (active && HasDrawCommands() && (noDisplayAction || gpuStats.numFlips == flipFinishAt)) {
NOTICE_LOG(Log::System, "Recording complete on frame");
CheckEdramTrans();
struct DisplayBufData {
PSPPointer<u8> topaddr;
u32 linesize, pixelFormat;
};
DisplayBufData disp;
__DisplayGetFramebuf(&disp.topaddr, &disp.linesize, &disp.pixelFormat, 0);
FlushRegisters();
u32 ptr = (u32)pushbuf.size();
u32 sz = (u32)sizeof(disp);
pushbuf.resize(pushbuf.size() + sz);
memcpy(pushbuf.data() + ptr, &disp, sz);
commands.push_back({ CommandType::DISPLAY, sz, ptr });
FinishRecording();
}
if (!active && nextFrame && (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) == 0 && noDisplayAction) {
NOTICE_LOG(Log::System, "Recording starting on frame...");
BeginRecording();
// If we began on a BeginFrame, end on a BeginFrame.
flipFinishAt = gpuStats.numFlips + 1;
}
}
void NotifyCPU() {
if (!active) {
return;
}
DirtyAllVRAM(DirtyVRAMFlag::UNKNOWN);
}
};