ppsspp/GPU/Software/DrawPixel.cpp

1000 lines
28 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#include <mutex>
#include "Common/Common.h"
#include "Common/Data/Convert/ColorConv.h"
#include "Core/Config.h"
#include "GPU/GPUState.h"
#include "GPU/Software/BinManager.h"
#include "GPU/Software/DrawPixel.h"
#include "GPU/Software/FuncId.h"
#include "GPU/Software/Rasterizer.h"
#include "GPU/Software/SoftGpu.h"
using namespace Math3D;
namespace Rasterizer {
std::mutex jitCacheLock;
PixelJitCache *jitCache = nullptr;
void Init() {
jitCache = new PixelJitCache();
}
void FlushJit() {
jitCache->Flush();
}
void Shutdown() {
delete jitCache;
jitCache = nullptr;
}
bool DescribeCodePtr(const u8 *ptr, std::string &name) {
if (!jitCache->IsInSpace(ptr)) {
return false;
}
name = jitCache->DescribeCodePtr(ptr);
return true;
}
static inline u8 GetPixelStencil(GEBufferFormat fmt, int fbStride, int x, int y) {
if (fmt == GE_FORMAT_565) {
// Always treated as 0 for comparison purposes.
return 0;
} else if (fmt == GE_FORMAT_5551) {
return ((fb.Get16(x, y, fbStride) & 0x8000) != 0) ? 0xFF : 0;
} else if (fmt == GE_FORMAT_4444) {
return Convert4To8(fb.Get16(x, y, fbStride) >> 12);
} else {
return fb.Get32(x, y, fbStride) >> 24;
}
}
static inline void SetPixelStencil(GEBufferFormat fmt, int fbStride, uint32_t targetWriteMask, int x, int y, u8 value) {
if (fmt == GE_FORMAT_565) {
// Do nothing
} else if (fmt == GE_FORMAT_5551) {
if ((targetWriteMask & 0x8000) == 0) {
u16 pixel = fb.Get16(x, y, fbStride) & ~0x8000;
pixel |= (value & 0x80) << 8;
fb.Set16(x, y, fbStride, pixel);
}
} else if (fmt == GE_FORMAT_4444) {
const u16 write_mask = targetWriteMask | 0x0FFF;
u16 pixel = fb.Get16(x, y, fbStride) & write_mask;
pixel |= ((u16)value << 8) & ~write_mask;
fb.Set16(x, y, fbStride, pixel);
} else {
const u32 write_mask = targetWriteMask | 0x00FFFFFF;
u32 pixel = fb.Get32(x, y, fbStride) & write_mask;
pixel |= ((u32)value << 24) & ~write_mask;
fb.Set32(x, y, fbStride, pixel);
}
}
static inline u16 GetPixelDepth(int x, int y, int stride) {
return depthbuf.Get16(x, y, stride);
}
static inline void SetPixelDepth(int x, int y, int stride, u16 value) {
depthbuf.Set16(x, y, stride, value);
}
// NOTE: These likely aren't endian safe
static inline u32 GetPixelColor(GEBufferFormat fmt, int fbStride, int x, int y) {
switch (fmt) {
case GE_FORMAT_565:
// A should be zero for the purposes of alpha blending.
return RGB565ToRGBA8888(fb.Get16(x, y, fbStride)) & 0x00FFFFFF;
case GE_FORMAT_5551:
return RGBA5551ToRGBA8888(fb.Get16(x, y, fbStride));
case GE_FORMAT_4444:
return RGBA4444ToRGBA8888(fb.Get16(x, y, fbStride));
case GE_FORMAT_8888:
return fb.Get32(x, y, fbStride);
default:
return 0;
}
}
static inline void SetPixelColor(GEBufferFormat fmt, int fbStride, int x, int y, u32 value, u32 old_value, u32 targetWriteMask) {
switch (fmt) {
case GE_FORMAT_565:
value = RGBA8888ToRGB565(value);
if (targetWriteMask != 0) {
old_value = RGBA8888ToRGB565(old_value);
value = (value & ~targetWriteMask) | (old_value & targetWriteMask);
}
fb.Set16(x, y, fbStride, value);
break;
case GE_FORMAT_5551:
value = RGBA8888ToRGBA5551(value);
if (targetWriteMask != 0) {
old_value = RGBA8888ToRGBA5551(old_value);
value = (value & ~targetWriteMask) | (old_value & targetWriteMask);
}
fb.Set16(x, y, fbStride, value);
break;
case GE_FORMAT_4444:
value = RGBA8888ToRGBA4444(value);
if (targetWriteMask != 0) {
old_value = RGBA8888ToRGBA4444(old_value);
value = (value & ~targetWriteMask) | (old_value & targetWriteMask);
}
fb.Set16(x, y, fbStride, value);
break;
case GE_FORMAT_8888:
value = (value & ~targetWriteMask) | (old_value & targetWriteMask);
fb.Set32(x, y, fbStride, value);
break;
default:
break;
}
}
static inline bool AlphaTestPassed(const PixelFuncID &pixelID, int alpha) {
const u8 ref = pixelID.alphaTestRef;
if (pixelID.hasAlphaTestMask)
alpha &= pixelID.cached.alphaTestMask;
switch (pixelID.AlphaTestFunc()) {
case GE_COMP_NEVER:
return false;
case GE_COMP_ALWAYS:
return true;
case GE_COMP_EQUAL:
return (alpha == ref);
case GE_COMP_NOTEQUAL:
return (alpha != ref);
case GE_COMP_LESS:
return (alpha < ref);
case GE_COMP_LEQUAL:
return (alpha <= ref);
case GE_COMP_GREATER:
return (alpha > ref);
case GE_COMP_GEQUAL:
return (alpha >= ref);
}
return true;
}
static inline bool ColorTestPassed(const PixelFuncID &pixelID, const Vec3<int> &color) {
const u32 mask = pixelID.cached.colorTestMask;
const u32 c = color.ToRGB() & mask;
const u32 ref = pixelID.cached.colorTestRef;
switch (pixelID.cached.colorTestFunc) {
case GE_COMP_NEVER:
return false;
case GE_COMP_ALWAYS:
return true;
case GE_COMP_EQUAL:
return c == ref;
case GE_COMP_NOTEQUAL:
return c != ref;
default:
return true;
}
}
static inline bool StencilTestPassed(const PixelFuncID &pixelID, u8 stencil) {
if (pixelID.hasStencilTestMask)
stencil &= pixelID.cached.stencilTestMask;
u8 ref = pixelID.stencilTestRef;
switch (pixelID.StencilTestFunc()) {
case GE_COMP_NEVER:
return false;
case GE_COMP_ALWAYS:
return true;
case GE_COMP_EQUAL:
return ref == stencil;
case GE_COMP_NOTEQUAL:
return ref != stencil;
case GE_COMP_LESS:
return ref < stencil;
case GE_COMP_LEQUAL:
return ref <= stencil;
case GE_COMP_GREATER:
return ref > stencil;
case GE_COMP_GEQUAL:
return ref >= stencil;
}
return true;
}
static inline u8 ApplyStencilOp(GEBufferFormat fmt, uint8_t stencilReplace, GEStencilOp op, u8 old_stencil) {
switch (op) {
case GE_STENCILOP_KEEP:
return old_stencil;
case GE_STENCILOP_ZERO:
return 0;
case GE_STENCILOP_REPLACE:
return stencilReplace;
case GE_STENCILOP_INVERT:
return ~old_stencil;
case GE_STENCILOP_INCR:
switch (fmt) {
case GE_FORMAT_8888:
if (old_stencil != 0xFF) {
return old_stencil + 1;
}
return old_stencil;
case GE_FORMAT_5551:
return 0xFF;
case GE_FORMAT_4444:
if (old_stencil < 0xF0) {
return old_stencil + 0x10;
}
return old_stencil;
default:
return old_stencil;
}
break;
case GE_STENCILOP_DECR:
switch (fmt) {
case GE_FORMAT_4444:
if (old_stencil >= 0x10)
return old_stencil - 0x10;
break;
case GE_FORMAT_5551:
return 0;
default:
if (old_stencil != 0)
return old_stencil - 1;
return old_stencil;
}
break;
}
return old_stencil;
}
static inline bool DepthTestPassed(GEComparison func, int x, int y, int stride, u16 z) {
u16 reference_z = GetPixelDepth(x, y, stride);
switch (func) {
case GE_COMP_NEVER:
return false;
case GE_COMP_ALWAYS:
return true;
case GE_COMP_EQUAL:
return (z == reference_z);
case GE_COMP_NOTEQUAL:
return (z != reference_z);
case GE_COMP_LESS:
return (z < reference_z);
case GE_COMP_LEQUAL:
return (z <= reference_z);
case GE_COMP_GREATER:
return (z > reference_z);
case GE_COMP_GEQUAL:
return (z >= reference_z);
default:
return 0;
}
}
bool CheckDepthTestPassed(GEComparison func, int x, int y, int stride, u16 z) {
return DepthTestPassed(func, x, y, stride, z);
}
static inline u32 ApplyLogicOp(GELogicOp op, u32 old_color, u32 new_color) {
// All of the operations here intentionally preserve alpha/stencil.
switch (op) {
case GE_LOGIC_CLEAR:
new_color &= 0xFF000000;
break;
case GE_LOGIC_AND:
new_color = new_color & (old_color | 0xFF000000);
break;
case GE_LOGIC_AND_REVERSE:
new_color = new_color & (~old_color | 0xFF000000);
break;
case GE_LOGIC_COPY:
// No change to new_color.
break;
case GE_LOGIC_AND_INVERTED:
new_color = (~new_color & (old_color & 0x00FFFFFF)) | (new_color & 0xFF000000);
break;
case GE_LOGIC_NOOP:
new_color = (old_color & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_XOR:
new_color = new_color ^ (old_color & 0x00FFFFFF);
break;
case GE_LOGIC_OR:
new_color = new_color | (old_color & 0x00FFFFFF);
break;
case GE_LOGIC_NOR:
new_color = (~(new_color | old_color) & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_EQUIV:
new_color = (~(new_color ^ old_color) & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_INVERTED:
new_color = (~old_color & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_OR_REVERSE:
new_color = new_color | (~old_color & 0x00FFFFFF);
break;
case GE_LOGIC_COPY_INVERTED:
new_color = (~new_color & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_OR_INVERTED:
new_color = ((~new_color | old_color) & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_NAND:
new_color = (~(new_color & old_color) & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_SET:
new_color |= 0x00FFFFFF;
break;
}
return new_color;
}
static inline Vec3<int> GetSourceFactor(PixelBlendFactor factor, const Vec4<int> &source, const Vec4<int> &dst, uint32_t fix) {
switch (factor) {
case PixelBlendFactor::OTHERCOLOR:
return dst.rgb();
case PixelBlendFactor::INVOTHERCOLOR:
return Vec3<int>::AssignToAll(255) - dst.rgb();
case PixelBlendFactor::SRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3)));
#elif PPSSPP_ARCH(ARM64_NEON)
return Vec3<int>(vdupq_laneq_s32(source.ivec, 3));
#else
return Vec3<int>::AssignToAll(source.a());
#endif
case PixelBlendFactor::INVSRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_sub_epi32(_mm_set1_epi32(255), _mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3))));
#elif PPSSPP_ARCH(ARM64_NEON)
return Vec3<int>(vsubq_s32(vdupq_n_s32(255), vdupq_laneq_s32(source.ivec, 3)));
#else
return Vec3<int>::AssignToAll(255 - source.a());
#endif
case PixelBlendFactor::DSTALPHA:
return Vec3<int>::AssignToAll(dst.a());
case PixelBlendFactor::INVDSTALPHA:
return Vec3<int>::AssignToAll(255 - dst.a());
case PixelBlendFactor::DOUBLESRCALPHA:
return Vec3<int>::AssignToAll(2 * source.a());
case PixelBlendFactor::DOUBLEINVSRCALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * source.a(), 255));
case PixelBlendFactor::DOUBLEDSTALPHA:
return Vec3<int>::AssignToAll(2 * dst.a());
case PixelBlendFactor::DOUBLEINVDSTALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * dst.a(), 255));
case PixelBlendFactor::FIX:
default:
// All other dest factors (> 10) are treated as FIXA.
return Vec3<int>::FromRGB(fix);
case PixelBlendFactor::ZERO:
return Vec3<int>::AssignToAll(0);
case PixelBlendFactor::ONE:
return Vec3<int>::AssignToAll(255);
}
}
static inline Vec3<int> GetDestFactor(PixelBlendFactor factor, const Vec4<int> &source, const Vec4<int> &dst, uint32_t fix) {
switch (factor) {
case PixelBlendFactor::OTHERCOLOR:
return source.rgb();
case PixelBlendFactor::INVOTHERCOLOR:
return Vec3<int>::AssignToAll(255) - source.rgb();
case PixelBlendFactor::SRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3)));
#elif PPSSPP_ARCH(ARM64_NEON)
return Vec3<int>(vdupq_laneq_s32(source.ivec, 3));
#else
return Vec3<int>::AssignToAll(source.a());
#endif
case PixelBlendFactor::INVSRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_sub_epi32(_mm_set1_epi32(255), _mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3))));
#elif PPSSPP_ARCH(ARM64_NEON)
return Vec3<int>(vsubq_s32(vdupq_n_s32(255), vdupq_laneq_s32(source.ivec, 3)));
#else
return Vec3<int>::AssignToAll(255 - source.a());
#endif
case PixelBlendFactor::DSTALPHA:
return Vec3<int>::AssignToAll(dst.a());
case PixelBlendFactor::INVDSTALPHA:
return Vec3<int>::AssignToAll(255 - dst.a());
case PixelBlendFactor::DOUBLESRCALPHA:
return Vec3<int>::AssignToAll(2 * source.a());
case PixelBlendFactor::DOUBLEINVSRCALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * source.a(), 255));
case PixelBlendFactor::DOUBLEDSTALPHA:
return Vec3<int>::AssignToAll(2 * dst.a());
case PixelBlendFactor::DOUBLEINVDSTALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * dst.a(), 255));
case PixelBlendFactor::FIX:
default:
// All other dest factors (> 10) are treated as FIXB.
return Vec3<int>::FromRGB(fix);
case PixelBlendFactor::ZERO:
return Vec3<int>::AssignToAll(0);
case PixelBlendFactor::ONE:
return Vec3<int>::AssignToAll(255);
}
}
// Removed inline here - it was never chosen to be inlined by the compiler anyway, too complex.
static Vec3<int> AlphaBlendingResult(const PixelFuncID &pixelID, const Vec4<int> &source, const Vec4<int> &dst) {
// Note: These factors cannot go below 0, but they can go above 255 when doubling.
Vec3<int> srcfactor = GetSourceFactor(pixelID.AlphaBlendSrc(), source, dst, pixelID.cached.alphaBlendSrc);
Vec3<int> dstfactor = GetDestFactor(pixelID.AlphaBlendDst(), source, dst, pixelID.cached.alphaBlendDst);
switch (pixelID.AlphaBlendEq()) {
case GE_BLENDMODE_MUL_AND_ADD:
{
#if defined(_M_SSE)
// We switch to 16 bit to use mulhi, and we use 4 bits of decimal to make the 16 bit shift free.
const __m128i half = _mm_set1_epi16(1 << 3);
const __m128i srgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(source.ivec, source.ivec), 4), half);
const __m128i sf = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(srcfactor.ivec, srcfactor.ivec), 4), half);
const __m128i s = _mm_mulhi_epi16(srgb, sf);
const __m128i drgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dst.ivec, dst.ivec), 4), half);
const __m128i df = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dstfactor.ivec, dstfactor.ivec), 4), half);
const __m128i d = _mm_mulhi_epi16(drgb, df);
return Vec3<int>(_mm_unpacklo_epi16(_mm_adds_epi16(s, d), _mm_setzero_si128()));
#elif PPSSPP_ARCH(ARM64_NEON)
const int32x4_t half = vdupq_n_s32(1);
const int32x4_t srgb = vaddq_s32(vshlq_n_s32(source.ivec, 1), half);
const int32x4_t sf = vaddq_s32(vshlq_n_s32(srcfactor.ivec, 1), half);
const int32x4_t s = vshrq_n_s32(vmulq_s32(srgb, sf), 10);
const int32x4_t drgb = vaddq_s32(vshlq_n_s32(dst.ivec, 1), half);
const int32x4_t df = vaddq_s32(vshlq_n_s32(dstfactor.ivec, 1), half);
const int32x4_t d = vshrq_n_s32(vmulq_s32(drgb, df), 10);
return Vec3<int>(vaddq_s32(s, d));
#else
static constexpr Vec3<int> half = Vec3<int>::AssignToAll(1);
Vec3<int> lhs = ((source.rgb() * 2 + half) * (srcfactor * 2 + half)) / 1024;
Vec3<int> rhs = ((dst.rgb() * 2 + half) * (dstfactor * 2 + half)) / 1024;
return lhs + rhs;
#endif
}
case GE_BLENDMODE_MUL_AND_SUBTRACT:
{
#if defined(_M_SSE)
const __m128i half = _mm_set1_epi16(1 << 3);
const __m128i srgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(source.ivec, source.ivec), 4), half);
const __m128i sf = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(srcfactor.ivec, srcfactor.ivec), 4), half);
const __m128i s = _mm_mulhi_epi16(srgb, sf);
const __m128i drgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dst.ivec, dst.ivec), 4), half);
const __m128i df = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dstfactor.ivec, dstfactor.ivec), 4), half);
const __m128i d = _mm_mulhi_epi16(drgb, df);
return Vec3<int>(_mm_unpacklo_epi16(_mm_max_epi16(_mm_subs_epi16(s, d), _mm_setzero_si128()), _mm_setzero_si128()));
#elif PPSSPP_ARCH(ARM64_NEON)
const int32x4_t half = vdupq_n_s32(1);
const int32x4_t srgb = vaddq_s32(vshlq_n_s32(source.ivec, 1), half);
const int32x4_t sf = vaddq_s32(vshlq_n_s32(srcfactor.ivec, 1), half);
const int32x4_t s = vshrq_n_s32(vmulq_s32(srgb, sf), 10);
const int32x4_t drgb = vaddq_s32(vshlq_n_s32(dst.ivec, 1), half);
const int32x4_t df = vaddq_s32(vshlq_n_s32(dstfactor.ivec, 1), half);
const int32x4_t d = vshrq_n_s32(vmulq_s32(drgb, df), 10);
return Vec3<int>(vqsubq_s32(s, d));
#else
static constexpr Vec3<int> half = Vec3<int>::AssignToAll(1);
Vec3<int> lhs = ((source.rgb() * 2 + half) * (srcfactor * 2 + half)) / 1024;
Vec3<int> rhs = ((dst.rgb() * 2 + half) * (dstfactor * 2 + half)) / 1024;
return lhs - rhs;
#endif
}
case GE_BLENDMODE_MUL_AND_SUBTRACT_REVERSE:
{
#if defined(_M_SSE)
const __m128i half = _mm_set1_epi16(1 << 3);
const __m128i srgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(source.ivec, source.ivec), 4), half);
const __m128i sf = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(srcfactor.ivec, srcfactor.ivec), 4), half);
const __m128i s = _mm_mulhi_epi16(srgb, sf);
const __m128i drgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dst.ivec, dst.ivec), 4), half);
const __m128i df = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dstfactor.ivec, dstfactor.ivec), 4), half);
const __m128i d = _mm_mulhi_epi16(drgb, df);
return Vec3<int>(_mm_unpacklo_epi16(_mm_max_epi16(_mm_subs_epi16(d, s), _mm_setzero_si128()), _mm_setzero_si128()));
#elif PPSSPP_ARCH(ARM64_NEON)
const int32x4_t half = vdupq_n_s32(1);
const int32x4_t srgb = vaddq_s32(vshlq_n_s32(source.ivec, 1), half);
const int32x4_t sf = vaddq_s32(vshlq_n_s32(srcfactor.ivec, 1), half);
const int32x4_t s = vshrq_n_s32(vmulq_s32(srgb, sf), 10);
const int32x4_t drgb = vaddq_s32(vshlq_n_s32(dst.ivec, 1), half);
const int32x4_t df = vaddq_s32(vshlq_n_s32(dstfactor.ivec, 1), half);
const int32x4_t d = vshrq_n_s32(vmulq_s32(drgb, df), 10);
return Vec3<int>(vqsubq_s32(d, s));
#else
static constexpr Vec3<int> half = Vec3<int>::AssignToAll(1);
Vec3<int> lhs = ((source.rgb() * 2 + half) * (srcfactor * 2 + half)) / 1024;
Vec3<int> rhs = ((dst.rgb() * 2 + half) * (dstfactor * 2 + half)) / 1024;
return rhs - lhs;
#endif
}
case GE_BLENDMODE_MIN:
#if PPSSPP_ARCH(ARM64_NEON)
return Vec3<int>(vminq_s32(source.ivec, dst.ivec));
#else
return Vec3<int>(std::min(source.r(), dst.r()),
std::min(source.g(), dst.g()),
std::min(source.b(), dst.b()));
#endif
case GE_BLENDMODE_MAX:
#if PPSSPP_ARCH(ARM64_NEON)
return Vec3<int>(vmaxq_s32(source.ivec, dst.ivec));
#else
return Vec3<int>(std::max(source.r(), dst.r()),
std::max(source.g(), dst.g()),
std::max(source.b(), dst.b()));
#endif
case GE_BLENDMODE_ABSDIFF:
#if PPSSPP_ARCH(ARM64_NEON)
return Vec3<int>(vabdq_s32(source.ivec, dst.ivec));
#else
return Vec3<int>(::abs(source.r() - dst.r()),
::abs(source.g() - dst.g()),
::abs(source.b() - dst.b()));
#endif
default:
return source.rgb();
}
}
template <bool clearMode, GEBufferFormat fbFormat>
void SOFTRAST_CALL DrawSinglePixel(int x, int y, int z, int fog, Vec4IntArg color_in, const PixelFuncID &pixelID) {
Vec4<int> prim_color = Vec4<int>(color_in).Clamp(0, 255);
// Depth range test - applied in clear mode, if not through mode.
if (pixelID.applyDepthRange && !pixelID.earlyZChecks)
if (z < pixelID.cached.minz || z > pixelID.cached.maxz)
return;
if (pixelID.AlphaTestFunc() != GE_COMP_ALWAYS && !clearMode)
if (!AlphaTestPassed(pixelID, prim_color.a()))
return;
// Fog is applied prior to color test.
if (pixelID.applyFog && !clearMode) {
Vec3<int> fogColor = Vec3<int>::FromRGB(pixelID.cached.fogColor);
// This is very similar to the BLEND texfunc, and simply always rounds up.
static constexpr Vec3<int> roundup = Vec3<int>::AssignToAll(255);
fogColor = (prim_color.rgb() * fog + fogColor * (255 - fog) + roundup) / 256;
prim_color.r() = fogColor.r();
prim_color.g() = fogColor.g();
prim_color.b() = fogColor.b();
}
if (pixelID.colorTest && !clearMode)
if (!ColorTestPassed(pixelID, prim_color.rgb()))
return;
// In clear mode, it uses the alpha color as stencil.
uint32_t targetWriteMask = pixelID.applyColorWriteMask ? pixelID.cached.colorWriteMask : 0;
u8 stencil = clearMode ? prim_color.a() : GetPixelStencil(fbFormat, pixelID.cached.framebufStride, x, y);
if (clearMode) {
if (pixelID.DepthClear())
SetPixelDepth(x, y, pixelID.cached.depthbufStride, z);
} else if (pixelID.stencilTest) {
const uint8_t stencilReplace = pixelID.hasStencilTestMask ? pixelID.cached.stencilRef : pixelID.stencilTestRef;
if (!StencilTestPassed(pixelID, stencil)) {
stencil = ApplyStencilOp(fbFormat, stencilReplace, pixelID.SFail(), stencil);
SetPixelStencil(fbFormat, pixelID.cached.framebufStride, targetWriteMask, x, y, stencil);
return;
}
// Also apply depth at the same time. If disabled, same as passing.
if (!pixelID.earlyZChecks && pixelID.DepthTestFunc() != GE_COMP_ALWAYS && !DepthTestPassed(pixelID.DepthTestFunc(), x, y, pixelID.cached.depthbufStride, z)) {
stencil = ApplyStencilOp(fbFormat, stencilReplace, pixelID.ZFail(), stencil);
SetPixelStencil(fbFormat, pixelID.cached.framebufStride, targetWriteMask, x, y, stencil);
return;
}
stencil = ApplyStencilOp(fbFormat, stencilReplace, pixelID.ZPass(), stencil);
} else if (!pixelID.earlyZChecks) {
if (pixelID.DepthTestFunc() != GE_COMP_ALWAYS && !DepthTestPassed(pixelID.DepthTestFunc(), x, y, pixelID.cached.depthbufStride, z)) {
return;
}
}
if (pixelID.depthWrite && !clearMode)
SetPixelDepth(x, y, pixelID.cached.depthbufStride, z);
const u32 old_color = GetPixelColor(fbFormat, pixelID.cached.framebufStride, x, y);
u32 new_color;
// Dithering happens before the logic op and regardless of framebuffer format or clear mode.
// We do it while alpha blending because it happens before clamping.
if (pixelID.alphaBlend && !clearMode) {
const Vec4<int> dst = Vec4<int>::FromRGBA(old_color);
Vec3<int> blended = AlphaBlendingResult(pixelID, prim_color, dst);
if (pixelID.dithering) {
blended += Vec3<int>::AssignToAll(pixelID.cached.ditherMatrix[(y & 3) * 4 + (x & 3)]);
}
// ToRGB() always automatically clamps.
new_color = blended.ToRGB();
new_color |= stencil << 24;
} else {
if (pixelID.dithering) {
// We'll discard alpha anyway.
prim_color += Vec4<int>::AssignToAll(pixelID.cached.ditherMatrix[(y & 3) * 4 + (x & 3)]);
}
#if defined(_M_SSE) || PPSSPP_ARCH(ARM64_NEON)
new_color = Vec3<int>(prim_color.ivec).ToRGB();
new_color |= stencil << 24;
#else
new_color = Vec4<int>(prim_color.r(), prim_color.g(), prim_color.b(), stencil).ToRGBA();
#endif
}
// Logic ops are applied after blending (if blending is enabled.)
if (pixelID.applyLogicOp && !clearMode) {
// Logic ops don't affect stencil, which happens inside ApplyLogicOp.
new_color = ApplyLogicOp(pixelID.cached.logicOp, old_color, new_color);
}
if (clearMode) {
if (!pixelID.ColorClear())
new_color = (new_color & 0xFF000000) | (old_color & 0x00FFFFFF);
if (!pixelID.StencilClear())
new_color = (new_color & 0x00FFFFFF) | (old_color & 0xFF000000);
}
SetPixelColor(fbFormat, pixelID.cached.framebufStride, x, y, new_color, old_color, targetWriteMask);
}
SingleFunc GetSingleFunc(const PixelFuncID &id, BinManager *binner) {
SingleFunc jitted = jitCache->GetSingle(id, binner);
if (jitted) {
return jitted;
}
return jitCache->GenericSingle(id);
}
SingleFunc PixelJitCache::GenericSingle(const PixelFuncID &id) {
if (id.clearMode) {
switch (id.fbFormat) {
case GE_FORMAT_565:
return &DrawSinglePixel<true, GE_FORMAT_565>;
case GE_FORMAT_5551:
return &DrawSinglePixel<true, GE_FORMAT_5551>;
case GE_FORMAT_4444:
return &DrawSinglePixel<true, GE_FORMAT_4444>;
case GE_FORMAT_8888:
return &DrawSinglePixel<true, GE_FORMAT_8888>;
}
}
switch (id.fbFormat) {
case GE_FORMAT_565:
return &DrawSinglePixel<false, GE_FORMAT_565>;
case GE_FORMAT_5551:
return &DrawSinglePixel<false, GE_FORMAT_5551>;
case GE_FORMAT_4444:
return &DrawSinglePixel<false, GE_FORMAT_4444>;
case GE_FORMAT_8888:
return &DrawSinglePixel<false, GE_FORMAT_8888>;
}
_assert_(false);
return nullptr;
}
thread_local PixelJitCache::LastCache PixelJitCache::lastSingle_;
int PixelJitCache::clearGen_ = 0;
// 256k should be plenty of space for plenty of variations.
PixelJitCache::PixelJitCache() : CodeBlock(1024 * 64 * 4), cache_(64) {
lastSingle_.gen = -1;
clearGen_++;
}
void PixelJitCache::Clear() {
clearGen_++;
CodeBlock::Clear();
cache_.Clear();
addresses_.clear();
constBlendHalf_11_4s_ = nullptr;
constBlendInvert_11_4s_ = nullptr;
}
std::string PixelJitCache::DescribeCodePtr(const u8 *ptr) {
constexpr bool USE_IDS = false;
ptrdiff_t dist = 0x7FFFFFFF;
if (USE_IDS) {
PixelFuncID found{};
for (const auto &it : addresses_) {
ptrdiff_t it_dist = ptr - it.second;
if (it_dist >= 0 && it_dist < dist) {
found = it.first;
dist = it_dist;
}
}
return DescribePixelFuncID(found);
}
return CodeBlock::DescribeCodePtr(ptr);
}
void PixelJitCache::Flush() {
std::unique_lock<std::mutex> guard(jitCacheLock);
for (const auto &queued : compileQueue_) {
// Might've been compiled after enqueue, but before now.
size_t queuedKey = std::hash<PixelFuncID>()(queued);
if (!cache_.ContainsKey(queuedKey))
Compile(queued);
}
compileQueue_.clear();
}
SingleFunc PixelJitCache::GetSingle(const PixelFuncID &id, BinManager *binner) {
if (!g_Config.bSoftwareRenderingJit)
return nullptr;
const size_t key = std::hash<PixelFuncID>()(id);
if (lastSingle_.Match(key, clearGen_))
return lastSingle_.func;
std::unique_lock<std::mutex> guard(jitCacheLock);
SingleFunc singleFunc;
if (cache_.Get(key, &singleFunc)) {
lastSingle_.Set(key, singleFunc, clearGen_);
return singleFunc;
}
if (!binner) {
// Can't compile, let's try to do it later when there's an opportunity.
compileQueue_.insert(id);
return nullptr;
}
guard.unlock();
binner->Flush("compile");
guard.lock();
for (const auto &queued : compileQueue_) {
// Might've been compiled after enqueue, but before now.
size_t queuedKey = std::hash<PixelFuncID>()(queued);
if (!cache_.ContainsKey(queuedKey))
Compile(queued);
}
compileQueue_.clear();
// Might've been in the queue.
if (!cache_.ContainsKey(key))
Compile(id);
if (cache_.Get(key, &singleFunc)) {
lastSingle_.Set(key, singleFunc, clearGen_);
return singleFunc;
} else {
return nullptr;
}
}
void PixelJitCache::Compile(const PixelFuncID &id) {
// x64 is typically 200-500 bytes, but let's be safe.
if (GetSpaceLeft() < 65536) {
Clear();
}
#if PPSSPP_ARCH(AMD64) && !PPSSPP_PLATFORM(UWP)
addresses_[id] = GetCodePointer();
SingleFunc func = CompileSingle(id);
cache_.Insert(std::hash<PixelFuncID>()(id), func);
#endif
}
void ComputePixelBlendState(PixelBlendState &state, const PixelFuncID &id) {
switch (id.AlphaBlendEq()) {
case GE_BLENDMODE_MUL_AND_ADD:
case GE_BLENDMODE_MUL_AND_SUBTRACT:
case GE_BLENDMODE_MUL_AND_SUBTRACT_REVERSE:
state.usesFactors = true;
break;
case GE_BLENDMODE_MIN:
case GE_BLENDMODE_MAX:
case GE_BLENDMODE_ABSDIFF:
break;
}
if (state.usesFactors) {
switch (id.AlphaBlendSrc()) {
case PixelBlendFactor::DSTALPHA:
case PixelBlendFactor::INVDSTALPHA:
case PixelBlendFactor::DOUBLEDSTALPHA:
case PixelBlendFactor::DOUBLEINVDSTALPHA:
state.usesDstAlpha = true;
break;
case PixelBlendFactor::OTHERCOLOR:
case PixelBlendFactor::INVOTHERCOLOR:
state.dstColorAsFactor = true;
break;
case PixelBlendFactor::SRCALPHA:
case PixelBlendFactor::INVSRCALPHA:
case PixelBlendFactor::DOUBLESRCALPHA:
case PixelBlendFactor::DOUBLEINVSRCALPHA:
state.srcColorAsFactor = true;
break;
default:
break;
}
switch (id.AlphaBlendDst()) {
case PixelBlendFactor::INVSRCALPHA:
state.dstFactorIsInverse = id.AlphaBlendSrc() == PixelBlendFactor::SRCALPHA;
state.srcColorAsFactor = true;
break;
case PixelBlendFactor::DOUBLEINVSRCALPHA:
state.dstFactorIsInverse = id.AlphaBlendSrc() == PixelBlendFactor::DOUBLESRCALPHA;
state.srcColorAsFactor = true;
break;
case PixelBlendFactor::DSTALPHA:
state.usesDstAlpha = true;
break;
case PixelBlendFactor::INVDSTALPHA:
state.dstFactorIsInverse = id.AlphaBlendSrc() == PixelBlendFactor::DSTALPHA;
state.usesDstAlpha = true;
break;
case PixelBlendFactor::DOUBLEDSTALPHA:
state.usesDstAlpha = true;
break;
case PixelBlendFactor::DOUBLEINVDSTALPHA:
state.dstFactorIsInverse = id.AlphaBlendSrc() == PixelBlendFactor::DOUBLEDSTALPHA;
state.usesDstAlpha = true;
break;
case PixelBlendFactor::OTHERCOLOR:
case PixelBlendFactor::INVOTHERCOLOR:
state.srcColorAsFactor = true;
break;
case PixelBlendFactor::SRCALPHA:
case PixelBlendFactor::DOUBLESRCALPHA:
state.srcColorAsFactor = true;
break;
case PixelBlendFactor::ZERO:
state.readsDstPixel = state.dstColorAsFactor || state.usesDstAlpha;
break;
default:
break;
}
}
}
};