ppsspp/GPU/Debugger/Record.cpp
Henrik Rydgård 036556c371
Merge pull request #11564 from unknownbrackets/ge-dump
GE Debugger: Preserve VRAM textures / render-to-texture in dumps
2018-11-17 23:32:20 +01:00

1214 lines
31 KiB
C++

// Copyright (c) 2017- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include <cstring>
#include <functional>
#include <set>
#include <vector>
#include <snappy-c.h>
#include "base/stringutil.h"
#include "Common/Common.h"
#include "Common/FileUtil.h"
#include "Common/Log.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/ELF/ParamSFO.h"
#include "Core/FileSystems/MetaFileSystem.h"
#include "Core/HLE/sceDisplay.h"
#include "Core/HLE/sceKernelMemory.h"
#include "Core/MemMap.h"
#include "Core/MIPS/MIPS.h"
#include "Core/System.h"
#include "GPU/GPUInterface.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Common/VertexDecoderCommon.h"
#include "GPU/Debugger/Record.h"
namespace GPURecord {
static const char *HEADER = "PPSSPPGE";
// Version 1: Uncompressed
// Version 2: Uses snappy
// Version 3: Adds FRAMEBUF0-FRAMEBUF9
static const int VERSION = 3;
static const int MIN_VERSION = 2;
static bool active = false;
static bool nextFrame = false;
static bool writePending = false;
static std::function<void(const std::string &)> writeCallback;
enum class CommandType : u8 {
INIT = 0,
REGISTERS = 1,
VERTICES = 2,
INDICES = 3,
CLUT = 4,
TRANSFERSRC = 5,
MEMSET = 6,
MEMCPYDEST = 7,
MEMCPYDATA = 8,
DISPLAY = 9,
TEXTURE0 = 0x10,
TEXTURE1 = 0x11,
TEXTURE2 = 0x12,
TEXTURE3 = 0x13,
TEXTURE4 = 0x14,
TEXTURE5 = 0x15,
TEXTURE6 = 0x16,
TEXTURE7 = 0x17,
FRAMEBUF0 = 0x18,
FRAMEBUF1 = 0x19,
FRAMEBUF2 = 0x1A,
FRAMEBUF3 = 0x1B,
FRAMEBUF4 = 0x1C,
FRAMEBUF5 = 0x1D,
FRAMEBUF6 = 0x1E,
FRAMEBUF7 = 0x1F,
};
#pragma pack(push, 1)
struct Command {
CommandType type;
u32 sz;
u32 ptr;
};
#pragma pack(pop)
static std::vector<u8> pushbuf;
static std::vector<Command> commands;
static std::vector<u32> lastRegisters;
static std::vector<u32> lastTextures;
static std::set<u32> lastRenderTargets;
// TODO: Maybe move execute to another file?
class DumpExecute {
public:
~DumpExecute();
bool Run();
private:
void SyncStall();
bool SubmitCmds(void *p, u32 sz);
void SubmitListEnd();
void Init(u32 ptr, u32 sz);
void Registers(u32 ptr, u32 sz);
void Vertices(u32 ptr, u32 sz);
void Indices(u32 ptr, u32 sz);
void Clut(u32 ptr, u32 sz);
void TransferSrc(u32 ptr, u32 sz);
void Memset(u32 ptr, u32 sz);
void MemcpyDest(u32 ptr, u32 sz);
void Memcpy(u32 ptr, u32 sz);
void Texture(int level, u32 ptr, u32 sz);
void Framebuf(int level, u32 ptr, u32 sz);
void Display(u32 ptr, u32 sz);
u32 execMemcpyDest = 0;
u32 execListBuf = 0;
u32 execListPos = 0;
u32 execListID = 0;
const int LIST_BUF_SIZE = 256 * 1024;
std::vector<u32> execListQueue;
u16 lastBufw_[8]{};
};
// This class maps pushbuffer (dump data) sections to PSP memory.
// Dumps can be larger than available PSP memory, because they include generated data too.
//
// If possible, it maps to dynamically allocated "slabs" so nearby access is fast.
// Otherwise it uses "extra" allocations to manage sections that straddle two slabs.
// Slabs are managed with LRU, extra buffers are round-robin.
class BufMapping {
public:
// Returns a pointer to contiguous memory for this access, or else 0 (failure).
u32 Map(u32 bufpos, u32 sz, const std::function<void()> &flush);
// Clear and reset allocations made.
void Reset() {
slabGeneration_ = 0;
extraOffset_ = 0;
for (int i = 0; i < SLAB_COUNT; ++i) {
slabs_[i].Free();
}
for (int i = 0; i < EXTRA_COUNT; ++i) {
extra_[i].Free();
}
}
protected:
u32 MapSlab(u32 bufpos, const std::function<void()> &flush);
u32 MapExtra(u32 bufpos, u32 sz, const std::function<void()> &flush);
enum {
// These numbers kept low because we only have 24 MB of user memory to map into.
SLAB_SIZE = 1 * 1024 * 1024,
// 10 is the number of texture units + verts + inds.
// In the worst case, we could concurrently need 10 slabs/extras at the same time.
SLAB_COUNT = 10,
EXTRA_COUNT = 10,
};
// The current "generation". Static simply as a convenience for access.
// This increments on every allocation, for a simple LRU.
static int slabGeneration_;
// An aligned large mapping of the pushbuffer in PSP RAM.
struct SlabInfo {
u32 psp_pointer_;
u32 buf_pointer_;
int last_used_;
bool Matches(u32 bufpos) {
// We check psp_pointer_ because bufpos = 0 is valid, and the initial value.
return buf_pointer_ == bufpos && psp_pointer_ != 0;
}
// Automatically marks used for LRU purposes.
u32 Ptr(u32 bufpos) {
last_used_ = slabGeneration_;
return psp_pointer_ + (bufpos - buf_pointer_);
}
int Age() const {
// If not allocated, it's as expired as it's gonna get.
if (psp_pointer_ == 0)
return std::numeric_limits<int>::max();
return slabGeneration_ - last_used_;
}
bool Alloc();
void Free();
bool Setup(u32 bufpos);
};
// An adhoc mapping of the pushbuffer (either larger than a slab or straddling slabs.)
// Remember: texture data, verts, etc. must be contiguous.
struct ExtraInfo {
u32 psp_pointer_;
u32 buf_pointer_;
u32 size_;
bool Matches(u32 bufpos, u32 sz) {
// We check psp_pointer_ because bufpos = 0 is valid, and the initial value.
return buf_pointer_ == bufpos && psp_pointer_ != 0 && size_ >= sz;
}
u32 Ptr() {
return psp_pointer_;
}
bool Alloc(u32 bufpos, u32 sz);
void Free();
};
SlabInfo slabs_[SLAB_COUNT];
u32 extraOffset_ = 0;
ExtraInfo extra_[EXTRA_COUNT];
};
static BufMapping execMapping;
u32 BufMapping::Map(u32 bufpos, u32 sz, const std::function<void()> &flush) {
int slab1 = bufpos / SLAB_SIZE;
int slab2 = (bufpos + sz - 1) / SLAB_SIZE;
if (slab1 == slab2) {
// Doesn't straddle, so we can just map to a slab.
return MapSlab(bufpos, flush);
} else {
// We need contiguous, so we'll just allocate separately.
return MapExtra(bufpos, sz, flush);
}
}
u32 BufMapping::MapSlab(u32 bufpos, const std::function<void()> &flush) {
u32 slab_pos = (bufpos / SLAB_SIZE) * SLAB_SIZE;
int best = 0;
for (int i = 0; i < SLAB_COUNT; ++i) {
if (slabs_[i].Matches(slab_pos)) {
return slabs_[i].Ptr(bufpos);
}
if (slabs_[i].Age() > slabs_[best].Age()) {
best = i;
}
}
// Stall before mapping a new slab.
flush();
// Okay, we need to allocate.
if (!slabs_[best].Setup(slab_pos)) {
return 0;
}
return slabs_[best].Ptr(bufpos);
}
u32 BufMapping::MapExtra(u32 bufpos, u32 sz, const std::function<void()> &flush) {
for (int i = 0; i < EXTRA_COUNT; ++i) {
// Might be likely to reuse larger buffers straddling slabs.
if (extra_[i].Matches(bufpos, sz)) {
return extra_[i].Ptr();
}
}
// Stall first, so we don't stomp existing RAM.
flush();
int i = extraOffset_;
extraOffset_ = (extraOffset_ + 1) % EXTRA_COUNT;
if (!extra_[i].Alloc(bufpos, sz)) {
// Let's try to power on - hopefully none of these are still in use.
for (int i = 0; i < EXTRA_COUNT; ++i) {
extra_[i].Free();
}
if (!extra_[i].Alloc(bufpos, sz)) {
return 0;
}
}
return extra_[i].Ptr();
}
bool BufMapping::SlabInfo::Alloc() {
u32 sz = SLAB_SIZE;
psp_pointer_ = userMemory.Alloc(sz, false, "Slab");
if (psp_pointer_ == -1) {
psp_pointer_ = 0;
}
return psp_pointer_ != 0;
}
void BufMapping::SlabInfo::Free() {
if (psp_pointer_) {
userMemory.Free(psp_pointer_);
psp_pointer_ = 0;
buf_pointer_ = 0;
last_used_ = 0;
}
}
bool BufMapping::ExtraInfo::Alloc(u32 bufpos, u32 sz) {
// Make sure we've freed any previous allocation first.
Free();
u32 allocSize = sz;
psp_pointer_ = userMemory.Alloc(allocSize, false, "Straddle extra");
if (psp_pointer_ == -1) {
psp_pointer_ = 0;
}
if (psp_pointer_ == 0) {
return false;
}
buf_pointer_ = bufpos;
size_ = sz;
Memory::MemcpyUnchecked(psp_pointer_, pushbuf.data() + bufpos, sz);
return true;
}
void BufMapping::ExtraInfo::Free() {
if (psp_pointer_) {
userMemory.Free(psp_pointer_);
psp_pointer_ = 0;
buf_pointer_ = 0;
}
}
bool BufMapping::SlabInfo::Setup(u32 bufpos) {
// If it already has RAM, we're simply taking it over. Slabs come only in one size.
if (psp_pointer_ == 0) {
if (!Alloc()) {
return false;
}
}
buf_pointer_ = bufpos;
u32 sz = std::min((u32)SLAB_SIZE, (u32)pushbuf.size() - bufpos);
Memory::MemcpyUnchecked(psp_pointer_, pushbuf.data() + bufpos, sz);
slabGeneration_++;
last_used_ = slabGeneration_;
return true;
}
int BufMapping::slabGeneration_ = 0;
static void FlushRegisters() {
if (!lastRegisters.empty()) {
Command last{CommandType::REGISTERS};
last.ptr = (u32)pushbuf.size();
last.sz = (u32)(lastRegisters.size() * sizeof(u32));
pushbuf.resize(pushbuf.size() + last.sz);
memcpy(pushbuf.data() + last.ptr, lastRegisters.data(), last.sz);
lastRegisters.clear();
commands.push_back(last);
}
}
static std::string GenRecordingFilename() {
const std::string dumpDir = GetSysDirectory(DIRECTORY_DUMP);
const std::string prefix = dumpDir + g_paramSFO.GetDiscID();
File::CreateFullPath(dumpDir);
for (int n = 1; n < 10000; ++n) {
std::string filename = StringFromFormat("%s_%04d.ppdmp", prefix.c_str(), n);
if (!File::Exists(filename)) {
return filename;
}
}
return StringFromFormat("%s_%04d.ppdmp", prefix.c_str(), 9999);
}
static void BeginRecording() {
u32 ptr = (u32)pushbuf.size();
u32 sz = 512 * 4;
pushbuf.resize(pushbuf.size() + sz);
gstate.Save((u32_le *)(pushbuf.data() + ptr));
commands.push_back({CommandType::INIT, sz, ptr});
}
static void WriteCompressed(FILE *fp, const void *p, size_t sz) {
size_t compressed_size = snappy_max_compressed_length(sz);
u8 *compressed = new u8[compressed_size];
snappy_compress((const char *)p, sz, (char *)compressed, &compressed_size);
u32 write_size = (u32)compressed_size;
fwrite(&write_size, sizeof(write_size), 1, fp);
fwrite(compressed, compressed_size, 1, fp);
delete [] compressed;
}
static std::string WriteRecording() {
FlushRegisters();
const std::string filename = GenRecordingFilename();
NOTICE_LOG(G3D, "Recording filename: %s", filename.c_str());
FILE *fp = File::OpenCFile(filename, "wb");
fwrite(HEADER, 8, 1, fp);
fwrite(&VERSION, sizeof(VERSION), 1, fp);
u32 sz = (u32)commands.size();
fwrite(&sz, sizeof(sz), 1, fp);
u32 bufsz = (u32)pushbuf.size();
fwrite(&bufsz, sizeof(bufsz), 1, fp);
WriteCompressed(fp, commands.data(), commands.size() * sizeof(Command));
WriteCompressed(fp, pushbuf.data(), bufsz);
fclose(fp);
return filename;
}
static void GetVertDataSizes(int vcount, const void *indices, u32 &vbytes, u32 &ibytes) {
VertexDecoder vdec;
VertexDecoderOptions opts{};
vdec.SetVertexType(gstate.vertType, opts);
if (indices) {
u16 lower = 0;
u16 upper = 0;
GetIndexBounds(indices, vcount, gstate.vertType, &lower, &upper);
vbytes = (upper + 1) * vdec.VertexSize();
u32 idx = gstate.vertType & GE_VTYPE_IDX_MASK;
if (idx == GE_VTYPE_IDX_8BIT) {
ibytes = vcount * sizeof(u8);
} else if (idx == GE_VTYPE_IDX_16BIT) {
ibytes = vcount * sizeof(u16);
} else if (idx == GE_VTYPE_IDX_32BIT) {
ibytes = vcount * sizeof(u32);
}
} else {
vbytes = vcount * vdec.VertexSize();
}
}
static const u8 *mymemmem(const u8 *haystack, size_t hlen, const u8 *needle, size_t nlen) {
if (!nlen) {
return nullptr;
}
const u8 *last_possible = haystack + hlen - nlen;
int first = *needle;
const u8 *p = haystack;
while (p <= last_possible) {
p = (const u8 *)memchr(p, first, last_possible - p + 1);
if (!p) {
return nullptr;
}
if (!memcmp(p, needle, nlen)) {
return p;
}
p++;
}
return nullptr;
}
static Command EmitCommandWithRAM(CommandType t, const void *p, u32 sz) {
FlushRegisters();
Command cmd{t, sz, 0};
if (sz) {
// If at all possible, try to find it already in the buffer.
const u8 *prev = nullptr;
const size_t NEAR_WINDOW = std::max((int)sz * 2, 1024 * 10);
// Let's try nearby first... it will often be nearby.
if (pushbuf.size() > NEAR_WINDOW) {
prev = mymemmem(pushbuf.data() + pushbuf.size() - NEAR_WINDOW, NEAR_WINDOW, (const u8 *)p, sz);
}
if (!prev) {
prev = mymemmem(pushbuf.data(), pushbuf.size(), (const u8 *)p, sz);
}
if (prev) {
cmd.ptr = (u32)(prev - pushbuf.data());
} else {
cmd.ptr = (u32)pushbuf.size();
int pad = 0;
if (cmd.ptr & 0xF) {
pad = 0x10 - (cmd.ptr & 0xF);
cmd.ptr += pad;
}
pushbuf.resize(pushbuf.size() + sz + pad);
if (pad) {
memset(pushbuf.data() + cmd.ptr - pad, 0, pad);
}
memcpy(pushbuf.data() + cmd.ptr, p, sz);
}
}
commands.push_back(cmd);
return cmd;
}
static void EmitTextureData(int level, u32 texaddr) {
GETextureFormat format = gstate.getTextureFormat();
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
int bufw = GetTextureBufw(level, texaddr, format);
int extraw = w > bufw ? w - bufw : 0;
u32 sizeInRAM = (textureBitsPerPixel[format] * (bufw * h + extraw)) / 8;
const bool isTarget = lastRenderTargets.find(texaddr) != lastRenderTargets.end();
CommandType type = CommandType((int)CommandType::TEXTURE0 + level);
const u8 *p = Memory::GetPointerUnchecked(texaddr);
u32 bytes = Memory::ValidSize(texaddr, sizeInRAM);
std::vector<u8> framebufData;
if (Memory::IsVRAMAddress(texaddr)) {
struct FramebufData {
u32 addr;
int bufw;
u32 flags;
u32 pad;
};
// The isTarget flag is mostly used for replay of dumps on a PSP.
u32 flags = isTarget ? 1 : 0;
FramebufData framebuf{ texaddr, bufw, flags };
framebufData.resize(sizeof(framebuf) + bytes);
memcpy(&framebufData[0], &framebuf, sizeof(framebuf));
memcpy(&framebufData[sizeof(framebuf)], p, bytes);
p = &framebufData[0];
// Okay, now we'll just emit this instead.
type = CommandType((int)CommandType::FRAMEBUF0 + level);
bytes += (u32)sizeof(framebuf);
}
if (bytes > 0) {
FlushRegisters();
// Dumps are huge - let's try to find this already emitted.
for (u32 prevptr : lastTextures) {
if (pushbuf.size() < prevptr + bytes) {
continue;
}
if (memcmp(pushbuf.data() + prevptr, p, bytes) == 0) {
commands.push_back({type, bytes, prevptr});
// Okay, that was easy. Bail out.
return;
}
}
// Not there, gotta emit anew.
Command cmd = EmitCommandWithRAM(type, p, bytes);
lastTextures.push_back(cmd.ptr);
}
}
static void FlushPrimState(int vcount) {
// TODO: Eventually, how do we handle texturing from framebuf/zbuf?
// TODO: Do we need to preload color/depth/stencil (in case from last frame)?
lastRenderTargets.insert(PSP_GetVidMemBase() | gstate.getFrameBufRawAddress());
lastRenderTargets.insert(PSP_GetVidMemBase() | gstate.getDepthBufRawAddress());
// We re-flush textures always in case the game changed them... kinda expensive.
// TODO: Dirty textures on transfer/stall/etc. somehow?
// TODO: Or maybe de-dup by validating if it has changed?
for (int level = 0; level < 8; ++level) {
u32 texaddr = gstate.getTextureAddress(level);
if (texaddr) {
EmitTextureData(level, texaddr);
}
}
const void *verts = Memory::GetPointer(gstate_c.vertexAddr);
const void *indices = nullptr;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
indices = Memory::GetPointer(gstate_c.indexAddr);
}
u32 ibytes = 0;
u32 vbytes = 0;
GetVertDataSizes(vcount, indices, vbytes, ibytes);
if (indices) {
EmitCommandWithRAM(CommandType::INDICES, indices, ibytes);
}
if (verts) {
EmitCommandWithRAM(CommandType::VERTICES, verts, vbytes);
}
}
static void EmitTransfer(u32 op) {
FlushRegisters();
// This may not make a lot of sense right now, unless it's to a framebuf...
if (!Memory::IsVRAMAddress(gstate.getTransferDstAddress())) {
// Skip, not VRAM, so can't affect drawing (we flush textures each prim.)
return;
}
u32 srcBasePtr = gstate.getTransferSrcAddress();
u32 srcStride = gstate.getTransferSrcStride();
int srcX = gstate.getTransferSrcX();
int srcY = gstate.getTransferSrcY();
int width = gstate.getTransferWidth();
int height = gstate.getTransferHeight();
int bpp = gstate.getTransferBpp();
u32 srcBytes = ((srcY + height - 1) * srcStride + (srcX + width)) * bpp;
srcBytes = Memory::ValidSize(srcBasePtr, srcBytes);
EmitCommandWithRAM(CommandType::TRANSFERSRC, Memory::GetPointerUnchecked(srcBasePtr), srcBytes);
lastRegisters.push_back(op);
}
static void EmitClut(u32 op) {
u32 addr = gstate.getClutAddress();
u32 bytes = (op & 0x3F) * 32;
bytes = Memory::ValidSize(addr, bytes);
EmitCommandWithRAM(CommandType::CLUT, Memory::GetPointerUnchecked(addr), bytes);
lastRegisters.push_back(op);
}
static void EmitPrim(u32 op) {
FlushPrimState(op & 0x0000FFFF);
lastRegisters.push_back(op);
}
static void EmitBezierSpline(u32 op) {
int ucount = op & 0xFF;
int vcount = (op >> 8) & 0xFF;
FlushPrimState(ucount * vcount);
lastRegisters.push_back(op);
}
bool IsActive() {
return active;
}
bool IsActivePending() {
return nextFrame || active;
}
bool Activate() {
if (!nextFrame) {
nextFrame = true;
return true;
}
return false;
}
void SetCallback(const std::function<void(const std::string &)> callback) {
writeCallback = callback;
}
static void FinishRecording() {
// We're done - this was just to write the result out.
std::string filename = WriteRecording();
commands.clear();
pushbuf.clear();
NOTICE_LOG(SYSTEM, "Recording finished");
writePending = false;
active = false;
if (writeCallback)
writeCallback(filename);
writeCallback = nullptr;
}
void NotifyCommand(u32 pc) {
if (!active) {
return;
}
if (writePending) {
FinishRecording();
return;
}
const u32 op = Memory::Read_U32(pc);
const GECommand cmd = GECommand(op >> 24);
switch (cmd) {
case GE_CMD_VADDR:
case GE_CMD_IADDR:
case GE_CMD_JUMP:
case GE_CMD_CALL:
case GE_CMD_RET:
case GE_CMD_END:
case GE_CMD_SIGNAL:
case GE_CMD_FINISH:
case GE_CMD_BASE:
case GE_CMD_OFFSETADDR:
case GE_CMD_ORIGIN:
// These just prepare future commands, and are flushed with those commands.
// TODO: Maybe add a command just to log that these were hit?
break;
case GE_CMD_BOUNDINGBOX:
case GE_CMD_BJUMP:
// Since we record each command, this is theoretically not relevant.
// TODO: Output a CommandType to validate this.
break;
case GE_CMD_PRIM:
EmitPrim(op);
break;
case GE_CMD_BEZIER:
case GE_CMD_SPLINE:
EmitBezierSpline(op);
break;
case GE_CMD_LOADCLUT:
EmitClut(op);
break;
case GE_CMD_TRANSFERSTART:
EmitTransfer(op);
break;
default:
lastRegisters.push_back(op);
break;
}
}
void NotifyMemcpy(u32 dest, u32 src, u32 sz) {
if (!active) {
return;
}
if (Memory::IsVRAMAddress(dest)) {
FlushRegisters();
Command cmd{CommandType::MEMCPYDEST, sizeof(dest), (u32)pushbuf.size()};
pushbuf.resize(pushbuf.size() + sizeof(dest));
memcpy(pushbuf.data() + cmd.ptr, &dest, sizeof(dest));
sz = Memory::ValidSize(dest, sz);
EmitCommandWithRAM(CommandType::MEMCPYDATA, Memory::GetPointer(dest), sz);
}
}
void NotifyMemset(u32 dest, int v, u32 sz) {
if (!active) {
return;
}
struct MemsetCommand {
u32 dest;
int value;
u32 sz;
};
if (Memory::IsVRAMAddress(dest)) {
sz = Memory::ValidSize(dest, sz);
MemsetCommand data{dest, v, sz};
FlushRegisters();
Command cmd{CommandType::MEMSET, sizeof(data), (u32)pushbuf.size()};
pushbuf.resize(pushbuf.size() + sizeof(data));
memcpy(pushbuf.data() + cmd.ptr, &data, sizeof(data));
}
}
void NotifyUpload(u32 dest, u32 sz) {
if (!active) {
return;
}
NotifyMemcpy(dest, dest, sz);
}
void NotifyDisplay(u32 framebuf, int stride, int fmt) {
if (!active) {
return;
}
struct DisplayBufData {
PSPPointer<u8> topaddr;
int linesize, pixelFormat;
};
DisplayBufData disp{ framebuf, stride, fmt };
FlushRegisters();
u32 ptr = (u32)pushbuf.size();
u32 sz = (u32)sizeof(disp);
pushbuf.resize(pushbuf.size() + sz);
memcpy(pushbuf.data() + ptr, &disp, sz);
commands.push_back({ CommandType::DISPLAY, sz, ptr });
}
void NotifyFrame() {
if (active && !writePending && !commands.empty()) {
// Delay write until the first command of the next frame, so we get the right display buf.
NOTICE_LOG(SYSTEM, "Recording complete - waiting to get display buffer");
writePending = true;
}
if (nextFrame && (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) == 0) {
NOTICE_LOG(SYSTEM, "Recording starting...");
active = true;
nextFrame = false;
lastTextures.clear();
lastRenderTargets.clear();
BeginRecording();
}
}
void DumpExecute::SyncStall() {
gpu->UpdateStall(execListID, execListPos);
s64 listTicks = gpu->GetListTicks(execListID);
if (listTicks != -1) {
currentMIPS->downcount -= listTicks - CoreTiming::GetTicks();
}
// Make sure downcount doesn't overflow.
CoreTiming::ForceCheck();
}
bool DumpExecute::SubmitCmds(void *p, u32 sz) {
if (execListBuf == 0) {
u32 allocSize = LIST_BUF_SIZE;
execListBuf = userMemory.Alloc(allocSize, "List buf");
if (execListBuf == -1) {
execListBuf = 0;
}
if (execListBuf == 0) {
ERROR_LOG(SYSTEM, "Unable to allocate for display list");
return false;
}
execListPos = execListBuf;
Memory::Write_U32(GE_CMD_NOP << 24, execListPos);
execListPos += 4;
gpu->EnableInterrupts(false);
auto optParam = PSPPointer<PspGeListArgs>::Create(0);
execListID = gpu->EnqueueList(execListBuf, execListPos, -1, optParam, false);
gpu->EnableInterrupts(true);
}
u32 pendingSize = (int)execListQueue.size() * sizeof(u32);
// Validate space for jump.
u32 allocSize = pendingSize + sz + 8;
if (execListPos + allocSize >= execListBuf + LIST_BUF_SIZE) {
Memory::Write_U32((GE_CMD_BASE << 24) | ((execListBuf >> 8) & 0x00FF0000), execListPos);
Memory::Write_U32((GE_CMD_JUMP << 24) | (execListBuf & 0x00FFFFFF), execListPos + 4);
execListPos = execListBuf;
// Don't continue until we've stalled.
SyncStall();
}
Memory::MemcpyUnchecked(execListPos, execListQueue.data(), pendingSize);
execListPos += pendingSize;
u32 writePos = execListPos;
Memory::MemcpyUnchecked(execListPos, p, sz);
execListPos += sz;
// TODO: Unfortunate. Maybe Texture commands should contain the bufw instead.
// The goal here is to realistically combine prims in dumps. Stalling for the bufw flushes.
u32_le *ops = (u32_le *)Memory::GetPointer(writePos);
for (u32 i = 0; i < sz / 4; ++i) {
u32 cmd = ops[i] >> 24;
if (cmd >= GE_CMD_TEXBUFWIDTH0 && cmd <= GE_CMD_TEXBUFWIDTH7) {
int level = cmd - GE_CMD_TEXBUFWIDTH0;
u16 bufw = ops[i] & 0xFFFF;
// NOP the address part of the command to avoid a flush too.
if (bufw == lastBufw_[level])
ops[i] = GE_CMD_NOP << 24;
else
ops[i] = (gstate.texbufwidth[level] & 0xFFFF0000) | bufw;
lastBufw_[level] = bufw;
}
// Since we're here anyway, also NOP out texture addresses.
// This makes Step Tex not hit phantom textures.
if (cmd >= GE_CMD_TEXADDR0 && cmd <= GE_CMD_TEXADDR7) {
ops[i] = GE_CMD_NOP << 24;
}
}
execListQueue.clear();
return true;
}
void DumpExecute::SubmitListEnd() {
if (execListPos == 0) {
return;
}
// There's always space for the end, same size as a jump.
Memory::Write_U32(GE_CMD_FINISH << 24, execListPos);
Memory::Write_U32(GE_CMD_END << 24, execListPos + 4);
execListPos += 8;
SyncStall();
gpu->ListSync(execListID, 0);
}
void DumpExecute::Init(u32 ptr, u32 sz) {
gstate.Restore((u32_le *)(pushbuf.data() + ptr));
gpu->ReapplyGfxState();
}
void DumpExecute::Registers(u32 ptr, u32 sz) {
SubmitCmds(pushbuf.data() + ptr, sz);
}
void DumpExecute::Vertices(u32 ptr, u32 sz) {
u32 psp = execMapping.Map(ptr, sz, std::bind(&DumpExecute::SyncStall, this));
if (psp == 0) {
ERROR_LOG(SYSTEM, "Unable to allocate for vertices");
return;
}
execListQueue.push_back((GE_CMD_BASE << 24) | ((psp >> 8) & 0x00FF0000));
execListQueue.push_back((GE_CMD_VADDR << 24) | (psp & 0x00FFFFFF));
}
void DumpExecute::Indices(u32 ptr, u32 sz) {
u32 psp = execMapping.Map(ptr, sz, std::bind(&DumpExecute::SyncStall, this));
if (psp == 0) {
ERROR_LOG(SYSTEM, "Unable to allocate for indices");
return;
}
execListQueue.push_back((GE_CMD_BASE << 24) | ((psp >> 8) & 0x00FF0000));
execListQueue.push_back((GE_CMD_IADDR << 24) | (psp & 0x00FFFFFF));
}
void DumpExecute::Clut(u32 ptr, u32 sz) {
u32 psp = execMapping.Map(ptr, sz, std::bind(&DumpExecute::SyncStall, this));
if (psp == 0) {
ERROR_LOG(SYSTEM, "Unable to allocate for clut");
return;
}
execListQueue.push_back((GE_CMD_CLUTADDRUPPER << 24) | ((psp >> 8) & 0x00FF0000));
execListQueue.push_back((GE_CMD_CLUTADDR << 24) | (psp & 0x00FFFFFF));
}
void DumpExecute::TransferSrc(u32 ptr, u32 sz) {
u32 psp = execMapping.Map(ptr, sz, std::bind(&DumpExecute::SyncStall, this));
if (psp == 0) {
ERROR_LOG(SYSTEM, "Unable to allocate for transfer");
return;
}
// Need to sync in order to access gstate.transfersrcw.
SyncStall();
execListQueue.push_back((gstate.transfersrcw & 0xFF00FFFF) | ((psp >> 8) & 0x00FF0000));
execListQueue.push_back(((GE_CMD_TRANSFERSRC) << 24) | (psp & 0x00FFFFFF));
}
void DumpExecute::Memset(u32 ptr, u32 sz) {
struct MemsetCommand {
u32 dest;
int value;
u32 sz;
};
const MemsetCommand *data = (const MemsetCommand *)(pushbuf.data() + ptr);
if (Memory::IsVRAMAddress(data->dest)) {
SyncStall();
gpu->PerformMemorySet(data->dest, (u8)data->value, data->sz);
}
}
void DumpExecute::MemcpyDest(u32 ptr, u32 sz) {
execMemcpyDest = *(const u32 *)(pushbuf.data() + ptr);
}
void DumpExecute::Memcpy(u32 ptr, u32 sz) {
if (Memory::IsVRAMAddress(execMemcpyDest)) {
SyncStall();
Memory::MemcpyUnchecked(execMemcpyDest, pushbuf.data() + ptr, sz);
gpu->PerformMemoryUpload(execMemcpyDest, sz);
}
}
void DumpExecute::Texture(int level, u32 ptr, u32 sz) {
u32 psp = execMapping.Map(ptr, sz, std::bind(&DumpExecute::SyncStall, this));
if (psp == 0) {
ERROR_LOG(SYSTEM, "Unable to allocate for texture");
return;
}
u32 bufwCmd = GE_CMD_TEXBUFWIDTH0 + level;
u32 addrCmd = GE_CMD_TEXADDR0 + level;
execListQueue.push_back((bufwCmd << 24) | ((psp >> 8) & 0x00FF0000) | lastBufw_[level]);
execListQueue.push_back((addrCmd << 24) | (psp & 0x00FFFFFF));
}
void DumpExecute::Framebuf(int level, u32 ptr, u32 sz) {
struct FramebufData {
u32 addr;
int bufw;
u32 flags;
u32 pad;
};
FramebufData *framebuf = (FramebufData *)(pushbuf.data() + ptr);
u32 bufwCmd = GE_CMD_TEXBUFWIDTH0 + level;
u32 addrCmd = GE_CMD_TEXADDR0 + level;
execListQueue.push_back((bufwCmd << 24) | ((framebuf->addr >> 8) & 0x00FF0000) | framebuf->bufw);
execListQueue.push_back((addrCmd << 24) | (framebuf->addr & 0x00FFFFFF));
lastBufw_[level] = framebuf->bufw;
// And now also copy the data into VRAM (in case it wasn't actually rendered.)
u32 headerSize = (u32)sizeof(FramebufData);
u32 pspSize = sz - headerSize;
const bool isTarget = (framebuf->flags & 1) != 0;
// Could potentially always skip if !isTarget, but playing it safe for offset texture behavior.
if (Memory::IsValidRange(framebuf->addr, pspSize) && (!isTarget || !g_Config.bSoftwareRendering)) {
// Intentionally don't trigger an upload here.
Memory::MemcpyUnchecked(framebuf->addr, pushbuf.data() + ptr + headerSize, pspSize);
}
}
void DumpExecute::Display(u32 ptr, u32 sz) {
struct DisplayBufData {
PSPPointer<u8> topaddr;
int linesize, pixelFormat;
};
DisplayBufData *disp = (DisplayBufData *)(pushbuf.data() + ptr);
// Sync up drawing.
SyncStall();
__DisplaySetFramebuf(disp->topaddr.ptr, disp->linesize, disp->pixelFormat, 1);
__DisplaySetFramebuf(disp->topaddr.ptr, disp->linesize, disp->pixelFormat, 0);
}
DumpExecute::~DumpExecute() {
execMemcpyDest = 0;
if (execListBuf) {
userMemory.Free(execListBuf);
execListBuf = 0;
}
execListPos = 0;
execMapping.Reset();
commands.clear();
pushbuf.clear();
}
bool DumpExecute::Run() {
for (const Command &cmd : commands) {
switch (cmd.type) {
case CommandType::INIT:
Init(cmd.ptr, cmd.sz);
break;
case CommandType::REGISTERS:
Registers(cmd.ptr, cmd.sz);
break;
case CommandType::VERTICES:
Vertices(cmd.ptr, cmd.sz);
break;
case CommandType::INDICES:
Indices(cmd.ptr, cmd.sz);
break;
case CommandType::CLUT:
Clut(cmd.ptr, cmd.sz);
break;
case CommandType::TRANSFERSRC:
TransferSrc(cmd.ptr, cmd.sz);
break;
case CommandType::MEMSET:
Memset(cmd.ptr, cmd.sz);
break;
case CommandType::MEMCPYDEST:
MemcpyDest(cmd.ptr, cmd.sz);
break;
case CommandType::MEMCPYDATA:
Memcpy(cmd.ptr, cmd.sz);
break;
case CommandType::TEXTURE0:
case CommandType::TEXTURE1:
case CommandType::TEXTURE2:
case CommandType::TEXTURE3:
case CommandType::TEXTURE4:
case CommandType::TEXTURE5:
case CommandType::TEXTURE6:
case CommandType::TEXTURE7:
Texture((int)cmd.type - (int)CommandType::TEXTURE0, cmd.ptr, cmd.sz);
break;
case CommandType::FRAMEBUF0:
case CommandType::FRAMEBUF1:
case CommandType::FRAMEBUF2:
case CommandType::FRAMEBUF3:
case CommandType::FRAMEBUF4:
case CommandType::FRAMEBUF5:
case CommandType::FRAMEBUF6:
case CommandType::FRAMEBUF7:
Framebuf((int)cmd.type - (int)CommandType::FRAMEBUF0, cmd.ptr, cmd.sz);
break;
case CommandType::DISPLAY:
Display(cmd.ptr, cmd.sz);
break;
default:
ERROR_LOG(SYSTEM, "Unsupported GE dump command: %d", (int)cmd.type);
return false;
}
}
SubmitListEnd();
return true;
}
static bool ReadCompressed(u32 fp, void *dest, size_t sz) {
u32 compressed_size = 0;
if (pspFileSystem.ReadFile(fp, (u8 *)&compressed_size, sizeof(compressed_size)) != sizeof(compressed_size)) {
return false;
}
u8 *compressed = new u8[compressed_size];
if (pspFileSystem.ReadFile(fp, compressed, compressed_size) != compressed_size) {
delete [] compressed;
return false;
}
size_t real_size = sz;
snappy_uncompress((const char *)compressed, compressed_size, (char *)dest, &real_size);
delete [] compressed;
return real_size == sz;
}
bool RunMountedReplay(const std::string &filename) {
_assert_msg_(SYSTEM, !active && !nextFrame, "Cannot run replay while recording.");
u32 fp = pspFileSystem.OpenFile(filename, FILEACCESS_READ);
u8 header[8]{};
int version = 0;
pspFileSystem.ReadFile(fp, header, sizeof(header));
pspFileSystem.ReadFile(fp, (u8 *)&version, sizeof(version));
if (memcmp(header, HEADER, sizeof(header)) != 0 || version > VERSION || version < MIN_VERSION) {
ERROR_LOG(SYSTEM, "Invalid GE dump or unsupported version");
pspFileSystem.CloseFile(fp);
return false;
}
u32 sz = 0;
pspFileSystem.ReadFile(fp, (u8 *)&sz, sizeof(sz));
u32 bufsz = 0;
pspFileSystem.ReadFile(fp, (u8 *)&bufsz, sizeof(bufsz));
commands.resize(sz);
pushbuf.resize(bufsz);
bool truncated = false;
truncated = truncated || !ReadCompressed(fp, commands.data(), sizeof(Command) * sz);
truncated = truncated || !ReadCompressed(fp, pushbuf.data(), bufsz);
pspFileSystem.CloseFile(fp);
if (truncated) {
ERROR_LOG(SYSTEM, "Truncated GE dump");
return false;
}
DumpExecute executor;
return executor.Run();
}
};