ppsspp/GPU/Common/GeometryShaderGenerator.cpp
2023-05-09 18:44:24 +02:00

316 lines
12 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cstdio>
#include <cstdlib>
#include <locale.h>
#include "Common/StringUtils.h"
#include "Common/GPU/OpenGL/GLFeatures.h"
#include "Common/GPU/ShaderWriter.h"
#include "Common/GPU/thin3d.h"
#include "Core/Config.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h"
#include "GPU/Common/ShaderId.h"
#include "GPU/Common/ShaderUniforms.h"
#include "GPU/Common/GeometryShaderGenerator.h"
#undef WRITE
#define WRITE(p, ...) p.F(__VA_ARGS__)
// TODO: Could support VK_NV_geometry_shader_passthrough, though the hardware that supports
// it is already pretty fast at geometry shaders..
bool GenerateGeometryShader(const GShaderID &id, char *buffer, const ShaderLanguageDesc &compat, const Draw::Bugs bugs, std::string *errorString) {
std::vector<const char*> extensions;
if (ShaderLanguageIsOpenGL(compat.shaderLanguage)) {
if (gl_extensions.EXT_gpu_shader4) {
extensions.push_back("#extension GL_EXT_gpu_shader4 : enable");
}
}
bool vertexRangeCulling = !id.Bit(GS_BIT_CURVE);
bool clipClampedDepth = gstate_c.Use(GPU_USE_DEPTH_CLAMP);
ShaderWriter p(buffer, compat, ShaderStage::Geometry, extensions);
p.F("// %s\n", GeometryShaderDesc(id).c_str());
p.C("layout(triangles) in;\n");
if (clipClampedDepth && vertexRangeCulling && !gstate_c.Use(GPU_USE_CLIP_DISTANCE)) {
p.C("layout(triangle_strip, max_vertices = 12) out;\n");
} else {
p.C("layout(triangle_strip, max_vertices = 6) out;\n");
}
if (compat.shaderLanguage == GLSL_VULKAN) {
WRITE(p, "\n");
WRITE(p, "layout (std140, set = 0, binding = 3) uniform baseVars {\n%s};\n", ub_baseStr);
} else if (compat.shaderLanguage == HLSL_D3D11) {
WRITE(p, "cbuffer base : register(b0) {\n%s};\n", ub_baseStr);
}
std::vector<VaryingDef> varyings, outVaryings;
if (id.Bit(GS_BIT_DO_TEXTURE)) {
varyings.push_back(VaryingDef{ "vec3", "v_texcoord", Draw::SEM_TEXCOORD0, 0, "highp" });
outVaryings.push_back(VaryingDef{ "vec3", "v_texcoordOut", Draw::SEM_TEXCOORD0, 0, "highp" });
}
varyings.push_back(VaryingDef{ "vec4", "v_color0", Draw::SEM_COLOR0, 1, "lowp" });
outVaryings.push_back(VaryingDef{ "vec4", "v_color0Out", Draw::SEM_COLOR0, 1, "lowp" });
if (id.Bit(GS_BIT_LMODE)) {
varyings.push_back(VaryingDef{ "vec3", "v_color1", Draw::SEM_COLOR1, 2, "lowp" });
outVaryings.push_back(VaryingDef{ "vec3", "v_color1Out", Draw::SEM_COLOR1, 2, "lowp" });
}
varyings.push_back(VaryingDef{ "float", "v_fogdepth", Draw::SEM_TEXCOORD1, 3, "highp" });
outVaryings.push_back(VaryingDef{ "float", "v_fogdepthOut", Draw::SEM_TEXCOORD1, 3, "highp" });
p.BeginGSMain(varyings, outVaryings);
// Apply culling.
if (vertexRangeCulling) {
p.C(" bool anyInside = false;\n");
}
// And apply manual clipping if necessary.
if (!gstate_c.Use(GPU_USE_CLIP_DISTANCE)) {
p.C(" float clip0[3];\n");
if (clipClampedDepth) {
p.C(" float clip1[3];\n");
}
}
p.C(" for (int i = 0; i < 3; i++) {\n"); // TODO: 3 or gl_in.length()? which will be faster?
p.C(" vec4 outPos = gl_in[i].gl_Position;\n");
p.C(" vec3 projPos = outPos.xyz / outPos.w;\n");
if (vertexRangeCulling) {
p.C(" float projZ = (projPos.z - u_depthRange.z) * u_depthRange.w;\n");
// Vertex range culling doesn't happen when Z clips, note sign of w is important.
p.C(" if (u_cullRangeMin.w <= 0.0 || projZ * outPos.w > -outPos.w) {\n");
const char *outMin = "projPos.x < u_cullRangeMin.x || projPos.y < u_cullRangeMin.y";
const char *outMax = "projPos.x > u_cullRangeMax.x || projPos.y > u_cullRangeMax.y";
p.F(" if ((%s) || (%s)) {\n", outMin, outMax);
p.C(" return;\n"); // Cull!
p.C(" }\n");
p.C(" }\n");
p.C(" if (u_cullRangeMin.w <= 0.0) {\n");
p.C(" if (projPos.z < u_cullRangeMin.z || projPos.z > u_cullRangeMax.z) {\n");
// When not clamping depth, cull the triangle of Z is outside the valid range (not based on clip Z.)
p.C(" return;\n");
p.C(" }\n");
p.C(" } else {\n");
p.C(" if (projPos.z >= u_cullRangeMin.z) { anyInside = true; }\n");
p.C(" if (projPos.z <= u_cullRangeMax.z) { anyInside = true; }\n");
p.C(" }\n");
}
if (!gstate_c.Use(GPU_USE_CLIP_DISTANCE)) {
// This is basically the same value as gl_ClipDistance would take, z + w.
if (vertexRangeCulling) {
// We add a small amount to prevent error as in #15816 (PSP Z is only 16-bit fixed point, anyway.)
p.F(" clip0[i] = projZ * outPos.w + outPos.w + %f;\n", 0.0625 / 65536.0);
} else {
// Let's not complicate the code overly for this case. We'll clipClampedDepth.
p.C(" clip0[i] = 0.0;\n");
}
// This one does happen for rectangles.
if (clipClampedDepth) {
if (ShaderLanguageIsOpenGL(compat.shaderLanguage)) {
// On OpenGL/GLES, these values account for the -1 -> 1 range.
p.C(" if (u_depthRange.y - u_depthRange.x >= 1.0) {\n");
p.C(" clip1[i] = outPos.w + outPos.z;\n");
} else {
// Everywhere else, it's 0 -> 1, simpler.
p.C(" if (u_depthRange.y >= 1.0) {\n");
p.C(" clip1[i] = outPos.z;\n");
}
// This is similar, but for maxz when it's below 65535.0. -1/0 don't matter here.
p.C(" } else if (u_depthRange.x + u_depthRange.y <= 65534.0) {\n");
p.C(" clip1[i] = outPos.w - outPos.z;\n");
p.C(" } else {\n");
p.C(" clip1[i] = 0.0;\n");
p.C(" }\n");
}
}
p.C(" } // for\n");
// Cull any triangle fully outside in the same direction when depth clamp enabled.
// Basically simulate cull distances.
if (vertexRangeCulling) {
p.C(" if (u_cullRangeMin.w > 0.0 && !anyInside) {\n");
p.C(" return;\n");
p.C(" }\n");
}
if (!gstate_c.Use(GPU_USE_CLIP_DISTANCE)) {
// Clipping against one half-space cuts a triangle (17/27), culls (7/27), or creates two triangles (3/27).
// We clip against two, so we can generate up to 4 triangles, a polygon with 6 points.
p.C(" int indices[6];\n");
p.C(" float factors[6];\n");
p.C(" int ind = 0;\n");
// Pass 1 - clip against first half-space.
p.C(" for (int i = 0; i < 3; i++) {\n");
// First, use this vertex if it doesn't need clipping.
p.C(" if (clip0[i] >= 0.0) {\n");
p.C(" indices[ind] = i;\n");
p.C(" factors[ind] = 0.0;\n");
p.C(" ind++;\n");
p.C(" }\n");
// Next, we generate an interpolated vertex if signs differ.
p.C(" int inext = i == 2 ? 0 : i + 1;\n");
p.C(" if (clip0[i] * clip0[inext] < 0.0) {\n");
p.C(" float t = clip0[i] < 0.0 ? clip0[i] / (clip0[i] - clip0[inext]) : 1.0 - (clip0[inext] / (clip0[inext] - clip0[i]));\n");
p.C(" indices[ind] = i;\n");
p.C(" factors[ind] = t;\n");
p.C(" ind++;\n");
p.C(" }\n");
p.C(" }\n");
// Pass 2 - further clip against clamped Z.
if (clipClampedDepth) {
p.C(" int count0 = ind;\n");
p.C(" int indices1[6];\n");
p.C(" float factors1[6];\n");
p.C(" ind = 0;\n");
// Let's start by interpolating the clip values.
p.C(" float clip1after[4];\n");
p.C(" for (int i = 0; i < count0; i++) {\n");
p.C(" int idx = indices[i];\n");
p.C(" float factor = factors[i];\n");
p.C(" int next = idx == 2 ? 0 : idx + 1;\n");
p.C(" clip1after[i] = mix(clip1[idx], clip1[next], factor);\n");
p.C(" }\n");
// Alright, now time to clip, again.
p.C(" for (int i = 0; i < count0; i++) {\n");
// First, use this vertex if it doesn't need clipping.
p.C(" if (clip1after[i] >= 0.0) {\n");
p.C(" indices1[ind] = i;\n");
p.C(" factors1[ind] = 0.0;\n");
p.C(" ind++;\n");
p.C(" }\n");
// Next, we generate an interpolated vertex if signs differ.
p.C(" int inext = i == count0 - 1 ? 0 : i + 1;\n");
p.C(" if (clip1after[i] * clip1after[inext] < 0.0) {\n");
p.C(" float t = clip1after[i] < 0.0 ? clip1after[i] / (clip1after[i] - clip1after[inext]) : 1.0 - (clip1after[inext] / (clip1after[inext] - clip1after[i]));\n");
p.C(" indices1[ind] = i;\n");
p.C(" factors1[ind] = t;\n");
p.C(" ind++;\n");
p.C(" }\n");
p.C(" }\n");
}
p.C(" if (ind < 3) {\n");
p.C(" return;\n");
p.C(" }\n");
p.C(" int idx;\n");
p.C(" int next;\n");
p.C(" float factor;\n");
auto emitIndex = [&](const char *which) {
if (clipClampedDepth) {
// We have to interpolate between four vertices.
p.F(" idx = indices1[%s];\n", which);
p.F(" factor = factors1[%s];\n", which);
p.C(" next = idx == count0 - 1 ? 0 : idx + 1;\n");
p.C(" gl_Position = mix(mix(gl_in[indices[idx]].gl_Position, gl_in[(indices[idx] + 1) % 3].gl_Position, factors[idx]), mix(gl_in[indices[next]].gl_Position, gl_in[(indices[next] + 1) % 3].gl_Position, factors[next]), factor);\n");
for (size_t i = 0; i < varyings.size(); i++) {
const VaryingDef &in = varyings[i];
const VaryingDef &out = outVaryings[i];
p.F(" %s = mix(mix(%s[indices[idx]], %s[(indices[idx] + 1) % 3], factors[idx]), mix(%s[indices[next]], %s[(indices[next] + 1) % 3], factors[next]), factor);\n", out.name, in.name, in.name, in.name, in.name);
}
} else {
p.F(" idx = indices[%s];\n", which);
p.F(" factor = factors[%s];\n", which);
p.C(" next = idx == 2 ? 0 : idx + 1;\n");
p.C(" gl_Position = mix(gl_in[idx].gl_Position, gl_in[next].gl_Position, factor);\n");
for (size_t i = 0; i < varyings.size(); i++) {
const VaryingDef &in = varyings[i];
const VaryingDef &out = outVaryings[i];
p.F(" %s = mix(%s[idx], %s[next], factor);\n", out.name, in.name, in.name);
}
}
p.C(" EmitVertex();\n");
};
// Alright, time to actually emit the first triangle.
p.C(" for (int i = 0; i < 3; i++) {\n");
emitIndex("i");
p.C(" }\n");
// Did we end up with additional triangles? We'll do three points each for the rest.
p.C(" for (int i = 3; i < ind; i++) {\n");
p.C(" EndPrimitive();\n");
// Point one, always index zero.
emitIndex("0");
// After that, one less than i (basically a triangle fan.)
emitIndex("(i - 1)");
// And the new vertex itself.
emitIndex("i");
p.C(" }\n");
} else {
const char *clipSuffix0 = compat.shaderLanguage == HLSL_D3D11 ? ".x" : "[0]";
const char *clipSuffix1 = compat.shaderLanguage == HLSL_D3D11 ? ".y" : "[1]";
p.C(" for (int i = 0; i < 3; i++) {\n"); // TODO: 3 or gl_in.length()? which will be faster?
p.C(" vec4 outPos = gl_in[i].gl_Position;\n");
p.C(" vec3 projPos = outPos.xyz / outPos.w;\n");
p.C(" float projZ = (projPos.z - u_depthRange.z) * u_depthRange.w;\n");
if (clipClampedDepth) {
// Copy the clip distance from the vertex shader.
p.F(" gl_ClipDistance%s = gl_in[i].gl_ClipDistance%s;\n", clipSuffix0, clipSuffix0);
p.F(" gl_ClipDistance%s = projZ * outPos.w + outPos.w;\n", clipSuffix1);
} else {
// We shouldn't need to worry about rectangles-as-triangles here, since we don't use geometry shaders for that.
// We add a small amount to prevent error as in #15816 (PSP Z is only 16-bit fixed point, anyway.)
p.F(" gl_ClipDistance%s = projZ * outPos.w + outPos.w + %f;\n", clipSuffix0, 0.0625 / 65536.0);
}
p.C(" gl_Position = outPos;\n");
if (gstate_c.Use(GPU_USE_CLIP_DISTANCE)) {
}
for (size_t i = 0; i < varyings.size(); i++) {
const VaryingDef &in = varyings[i];
const VaryingDef &out = outVaryings[i];
p.F(" %s = %s[i];\n", out.name, in.name);
}
// Debug - null the red channel
//p.C(" if (i == 0) v_color0Out.x = 0.0;\n");
p.C(" EmitVertex();\n");
p.C(" }\n");
}
p.EndGSMain();
return true;
}