ppsspp/Core/MemMap.cpp

511 lines
14 KiB
C++

// Copyright (C) 2003 Dolphin Project / 2012 PPSSPP Project
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include "base/mutex.h"
#include "Common/Common.h"
#include "Common/MemoryUtil.h"
#ifndef __SYMBIAN32__
#include "Common/MemArena.h"
#endif
#include "Common/ChunkFile.h"
#include "Core/MemMap.h"
#include "Core/HDRemaster.h"
#include "Core/MIPS/MIPS.h"
#include "Core/HLE/HLE.h"
#include "Core/Core.h"
#include "Core/Debugger/SymbolMap.h"
#include "Core/Debugger/Breakpoints.h"
#include "Core/Config.h"
#include "Core/HLE/ReplaceTables.h"
namespace Memory {
// The base pointer to the auto-mirrored arena.
u8* base = NULL;
#ifdef __SYMBIAN32__
RChunk* memmap;
#else
// The MemArena class
MemArena g_arena;
#endif
// ==============
// 64-bit: Pointers to low-mem (sub-0x10000000) mirror
// 32-bit: Same as the corresponding physical/virtual pointers.
u8 *m_pRAM;
u8 *m_pRAM2;
u8 *m_pRAM3;
u8 *m_pScratchPad;
u8 *m_pVRAM;
u8 *m_pPhysicalScratchPad;
u8 *m_pUncachedScratchPad;
// 64-bit: Pointers to high-mem mirrors
// 32-bit: Same as above
u8 *m_pPhysicalRAM;
u8 *m_pUncachedRAM;
u8 *m_pKernelRAM; // RAM mirrored up to "kernel space". Fully accessible at all times currently.
u8 *m_pPhysicalRAM2;
u8 *m_pUncachedRAM2;
u8 *m_pKernelRAM2;
u8 *m_pPhysicalRAM3;
u8 *m_pUncachedRAM3;
u8 *m_pKernelRAM3;
// VRAM is mirrored 4 times. The second and fourth mirrors are swizzled.
// In practice, a game accessing the mirrors most likely is deswizzling the depth buffer.
u8 *m_pPhysicalVRAM1;
u8 *m_pPhysicalVRAM2;
u8 *m_pPhysicalVRAM3;
u8 *m_pPhysicalVRAM4;
u8 *m_pUncachedVRAM1;
u8 *m_pUncachedVRAM2;
u8 *m_pUncachedVRAM3;
u8 *m_pUncachedVRAM4;
// Holds the ending address of the PSP's user space.
// Required for HD Remasters to work properly.
// This replaces RAM_NORMAL_SIZE at runtime.
u32 g_MemorySize;
// Used to store the PSP model on game startup.
u32 g_PSPModel;
recursive_mutex g_shutdownLock;
// We don't declare the IO region in here since its handled by other means.
static MemoryView views[] =
{
{&m_pScratchPad, &m_pPhysicalScratchPad, 0x00010000, SCRATCHPAD_SIZE, 0},
{NULL, &m_pUncachedScratchPad, 0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS},
{&m_pVRAM, &m_pPhysicalVRAM1, 0x04000000, 0x00200000, 0},
{NULL, &m_pPhysicalVRAM2, 0x04200000, 0x00200000, MV_MIRROR_PREVIOUS},
{NULL, &m_pPhysicalVRAM3, 0x04400000, 0x00200000, MV_MIRROR_PREVIOUS},
{NULL, &m_pPhysicalVRAM4, 0x04600000, 0x00200000, MV_MIRROR_PREVIOUS},
{NULL, &m_pUncachedVRAM1, 0x44000000, 0x00200000, MV_MIRROR_PREVIOUS},
{NULL, &m_pUncachedVRAM2, 0x44200000, 0x00200000, MV_MIRROR_PREVIOUS},
{NULL, &m_pUncachedVRAM3, 0x44400000, 0x00200000, MV_MIRROR_PREVIOUS},
{NULL, &m_pUncachedVRAM4, 0x44600000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pRAM, &m_pPhysicalRAM, 0x08000000, g_MemorySize, MV_IS_PRIMARY_RAM}, // only from 0x08800000 is it usable (last 24 megs)
{NULL, &m_pUncachedRAM, 0x48000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
{NULL, &m_pKernelRAM, 0x88000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
// Starts at memory + 31 MB.
{&m_pRAM2, &m_pPhysicalRAM2, 0x09F00000, g_MemorySize, MV_IS_EXTRA1_RAM},
{NULL, &m_pUncachedRAM2, 0x49F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM},
{NULL, &m_pKernelRAM2, 0x89F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM},
// Starts at memory + 31 * 2 MB.
{&m_pRAM3, &m_pPhysicalRAM3, 0x0BE00000, g_MemorySize, MV_IS_EXTRA2_RAM},
{NULL, &m_pUncachedRAM3, 0x4BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM},
{NULL, &m_pKernelRAM3, 0x8BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM},
// TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to
// implement those.
};
static const int num_views = sizeof(views) / sizeof(MemoryView);
inline static bool CanIgnoreView(const MemoryView &view) {
#ifdef _ARCH_32
// Basically, 32-bit platforms can ignore views that are masked out anyway.
return (view.flags & MV_MIRROR_PREVIOUS) && (view.virtual_address & ~MEMVIEW32_MASK) != 0;
#else
return false;
#endif
}
// yeah, this could also be done in like two bitwise ops...
#define SKIP(a_flags, b_flags)
// if (!(a_flags & MV_WII_ONLY) && (b_flags & MV_WII_ONLY))
// continue;
// if (!(a_flags & MV_FAKE_VMEM) && (b_flags & MV_FAKE_VMEM))
// continue;
static bool Memory_TryBase(u32 flags) {
// OK, we know where to find free space. Now grab it!
// We just mimic the popular BAT setup.
#if defined(_XBOX)
void *ptr;
#elif !defined(__SYMBIAN32__)
size_t position = 0;
size_t last_position = 0;
#endif
// Zero all the pointers to be sure.
for (int i = 0; i < num_views; i++)
{
if (views[i].out_ptr_low)
*views[i].out_ptr_low = 0;
if (views[i].out_ptr)
*views[i].out_ptr = 0;
}
int i;
for (i = 0; i < num_views; i++)
{
const MemoryView &view = views[i];
if (view.size == 0)
continue;
SKIP(flags, view.flags);
#ifdef __SYMBIAN32__
if (!CanIgnoreView(view)) {
memmap->Commit(view.virtual_address & MEMVIEW32_MASK, view.size);
}
*(view.out_ptr) = (u8*)base + (view.virtual_address & MEMVIEW32_MASK);
#elif defined(_XBOX)
if (!CanIgnoreView(view)) {
*(view.out_ptr_low) = (u8*)(base + view.virtual_address);
ptr = VirtualAlloc(base + (view.virtual_address & MEMVIEW32_MASK), view.size, MEM_COMMIT, PAGE_READWRITE);
}
*(view.out_ptr) = (u8*)base + (view.virtual_address & MEMVIEW32_MASK);
#else
if (view.flags & MV_MIRROR_PREVIOUS) {
position = last_position;
} else {
*(view.out_ptr_low) = (u8*)g_arena.CreateView(position, view.size);
if (!*view.out_ptr_low)
goto bail;
}
#ifdef _M_X64
*view.out_ptr = (u8*)g_arena.CreateView(
position, view.size, base + view.virtual_address);
#else
if (CanIgnoreView(view)) {
// No need to create multiple identical views.
*view.out_ptr = *views[i - 1].out_ptr;
} else {
*view.out_ptr = (u8*)g_arena.CreateView(
position, view.size, base + (view.virtual_address & MEMVIEW32_MASK));
if (!*view.out_ptr)
goto bail;
}
#endif
last_position = position;
position += g_arena.roundup(view.size);
#endif
}
return true;
#if !defined(__SYMBIAN32__)
bail:
// Argh! ERROR! Free what we grabbed so far so we can try again.
for (int j = 0; j <= i; j++)
{
if (views[i].size == 0)
continue;
SKIP(flags, views[i].flags);
if (views[j].out_ptr_low && *views[j].out_ptr_low)
{
g_arena.ReleaseView(*views[j].out_ptr_low, views[j].size);
*views[j].out_ptr_low = NULL;
}
if (*views[j].out_ptr)
{
if (!CanIgnoreView(views[j])) {
g_arena.ReleaseView(*views[j].out_ptr, views[j].size);
}
*views[j].out_ptr = NULL;
}
}
return false;
#endif
}
void MemoryMap_Setup(u32 flags)
{
// Find a base to reserve 256MB
#if defined(_XBOX)
base = (u8*)VirtualAlloc(0, 0x10000000, MEM_RESERVE|MEM_LARGE_PAGES, PAGE_READWRITE);
#elif defined(__SYMBIAN32__)
memmap = new RChunk();
memmap->CreateDisconnectedLocal(0 , 0, 0x10000000);
base = memmap->Base();
#else
size_t total_mem = 0;
for (int i = 0; i < num_views; i++)
{
if (views[i].size == 0)
continue;
SKIP(flags, views[i].flags);
if (!CanIgnoreView(views[i]))
total_mem += g_arena.roundup(views[i].size);
}
// Grab some pagefile backed memory out of the void ...
g_arena.GrabLowMemSpace(total_mem);
// 32-bit Windows retrieves base a different way
#if defined(_M_X64) || !defined(_WIN32)
// This really shouldn't fail - in 64-bit, there will always be enough address space.
// Linux32 is fine with the x64 method, although limited to 32-bit with no automirrors.
base = MemArena::Find4GBBase();
#endif
#endif
// Now, create views in high memory where there's plenty of space.
#if defined(_WIN32) && !defined(_M_X64)
// Try a whole range of possible bases. Return once we got a valid one.
int base_attempts = 0;
u32 max_base_addr = 0x7FFF0000 - 0x10000000;
for (u32 base_addr = 0x01000000; base_addr < max_base_addr; base_addr += 0x400000)
{
base_attempts++;
base = (u8 *)base_addr;
if (Memory_TryBase(flags))
{
INFO_LOG(MEMMAP, "Found valid memory base at %p after %i tries.", base, base_attempts);
base_attempts = 0;
break;
}
}
if (base_attempts)
PanicAlert("No possible memory base pointer found!");
#else
// Try base we retrieved earlier
if (!Memory_TryBase(flags))
{
ERROR_LOG(MEMMAP, "MemoryMap_Setup: Failed finding a memory base.");
PanicAlert("MemoryMap_Setup: Failed finding a memory base.");
}
#endif
return;
}
void MemoryMap_Shutdown(u32 flags)
{
#ifdef __SYMBIAN32__
memmap->Decommit(0, memmap->MaxSize());
memmap->Close();
delete memmap;
#else
for (int i = 0; i < num_views; i++)
{
if (views[i].size == 0)
continue;
SKIP(flags, views[i].flags);
if (views[i].out_ptr_low && *views[i].out_ptr_low)
g_arena.ReleaseView(*views[i].out_ptr_low, views[i].size);
if (*views[i].out_ptr && (!views[i].out_ptr_low || *views[i].out_ptr != *views[i].out_ptr_low))
g_arena.ReleaseView(*views[i].out_ptr, views[i].size);
*views[i].out_ptr = NULL;
if (views[i].out_ptr_low)
*views[i].out_ptr_low = NULL;
}
g_arena.ReleaseSpace();
#endif
}
void Init()
{
int flags = 0;
// On some 32 bit platforms, you can only map < 32 megs at a time.
const static int MAX_MMAP_SIZE = 31 * 1024 * 1024;
_dbg_assert_msg_(MEMMAP, g_MemorySize < MAX_MMAP_SIZE * 3, "ACK - too much memory for three mmap views.");
for (size_t i = 0; i < ARRAY_SIZE(views); i++) {
if (views[i].flags & MV_IS_PRIMARY_RAM)
views[i].size = std::min((int)g_MemorySize, MAX_MMAP_SIZE);
if (views[i].flags & MV_IS_EXTRA1_RAM)
views[i].size = std::min(std::max((int)g_MemorySize - MAX_MMAP_SIZE, 0), MAX_MMAP_SIZE);
if (views[i].flags & MV_IS_EXTRA2_RAM)
views[i].size = std::min(std::max((int)g_MemorySize - MAX_MMAP_SIZE * 2, 0), MAX_MMAP_SIZE);
}
MemoryMap_Setup(flags);
INFO_LOG(MEMMAP, "Memory system initialized. RAM at %p (mirror at 0 @ %p, uncached @ %p)",
m_pRAM, m_pPhysicalRAM, m_pUncachedRAM);
}
void DoState(PointerWrap &p)
{
auto s = p.Section("Memory", 1, 2);
if (!s)
return;
if (s < 2) {
if (!g_RemasterMode)
g_MemorySize = RAM_NORMAL_SIZE;
g_PSPModel = PSP_MODEL_FAT;
} else {
u32 oldMemorySize = g_MemorySize;
p.Do(g_PSPModel);
p.DoMarker("PSPModel");
if (!g_RemasterMode) {
g_MemorySize = g_PSPModel == PSP_MODEL_FAT ? RAM_NORMAL_SIZE : RAM_DOUBLE_SIZE;
if (oldMemorySize < g_MemorySize) {
Shutdown();
Init();
}
}
}
p.DoArray(GetPointer(PSP_GetKernelMemoryBase()), g_MemorySize);
p.DoMarker("RAM");
p.DoArray(m_pVRAM, VRAM_SIZE);
p.DoMarker("VRAM");
p.DoArray(m_pScratchPad, SCRATCHPAD_SIZE);
p.DoMarker("ScratchPad");
}
void Shutdown()
{
lock_guard guard(g_shutdownLock);
u32 flags = 0;
MemoryMap_Shutdown(flags);
base = NULL;
DEBUG_LOG(MEMMAP, "Memory system shut down.");
}
void Clear()
{
if (m_pRAM)
memset(GetPointerUnchecked(PSP_GetKernelMemoryBase()), 0, g_MemorySize);
if (m_pScratchPad)
memset(m_pScratchPad, 0, SCRATCHPAD_SIZE);
if (m_pVRAM)
memset(m_pVRAM, 0, VRAM_SIZE);
}
// Wanting to avoid include pollution, MemMap.h is included a lot.
MemoryInitedLock::MemoryInitedLock()
{
g_shutdownLock.lock();
}
MemoryInitedLock::~MemoryInitedLock()
{
g_shutdownLock.unlock();
}
MemoryInitedLock Lock()
{
return MemoryInitedLock();
}
__forceinline static Opcode Read_Instruction(u32 address, bool resolveReplacements, Opcode inst)
{
if (!MIPS_IS_EMUHACK(inst.encoding)) {
return inst;
}
if (MIPS_IS_RUNBLOCK(inst.encoding) && MIPSComp::jit) {
JitBlockCache *bc = MIPSComp::jit->GetBlockCache();
int block_num = bc->GetBlockNumberFromEmuHackOp(inst, true);
if (block_num >= 0) {
inst = bc->GetOriginalFirstOp(block_num);
if (resolveReplacements && MIPS_IS_REPLACEMENT(inst)) {
u32 op;
if (GetReplacedOpAt(address, &op)) {
if (MIPS_IS_EMUHACK(op)) {
ERROR_LOG(HLE,"WTF 1");
return Opcode(op);
} else {
return Opcode(op);
}
} else {
ERROR_LOG(HLE, "Replacement, but no replacement op? %08x", inst.encoding);
}
}
return inst;
} else {
return inst;
}
} else if (resolveReplacements && MIPS_IS_REPLACEMENT(inst.encoding)) {
u32 op;
if (GetReplacedOpAt(address, &op)) {
if (MIPS_IS_EMUHACK(op)) {
ERROR_LOG(HLE,"WTF 2");
return Opcode(op);
} else {
return Opcode(op);
}
} else {
return inst;
}
} else {
return inst;
}
}
Opcode Read_Instruction(u32 address, bool resolveReplacements)
{
Opcode inst = Opcode(Read_U32(address));
return Read_Instruction(address, resolveReplacements, inst);
}
Opcode ReadUnchecked_Instruction(u32 address, bool resolveReplacements)
{
Opcode inst = Opcode(ReadUnchecked_U32(address));
return Read_Instruction(address, resolveReplacements, inst);
}
Opcode Read_Opcode_JIT(u32 address)
{
Opcode inst = Opcode(Read_U32(address));
if (MIPS_IS_RUNBLOCK(inst.encoding) && MIPSComp::jit) {
JitBlockCache *bc = MIPSComp::jit->GetBlockCache();
int block_num = bc->GetBlockNumberFromEmuHackOp(inst, true);
if (block_num >= 0) {
return bc->GetOriginalFirstOp(block_num);
} else {
return inst;
}
} else {
return inst;
}
}
// WARNING! No checks!
// We assume that _Address is cached
void Write_Opcode_JIT(const u32 _Address, const Opcode _Value)
{
Memory::WriteUnchecked_U32(_Value.encoding, _Address);
}
void Memset(const u32 _Address, const u8 _iValue, const u32 _iLength)
{
u8 *ptr = GetPointer(_Address);
if (ptr != NULL) {
memset(ptr, _iValue, _iLength);
}
else
{
for (size_t i = 0; i < _iLength; i++)
Write_U8(_iValue, (u32)(_Address + i));
}
#ifndef MOBILE_DEVICE
CBreakPoints::ExecMemCheck(_Address, true, _iLength, currentMIPS->pc);
#endif
}
const char *GetAddressName(u32 address)
{
// TODO, follow GetPointer
return "[mem]";
}
} // namespace