ppsspp/Core/HLE/sceUsbMic.cpp
2022-12-30 21:31:33 -08:00

479 lines
14 KiB
C++

// Copyright (c) 2019- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#include <algorithm>
#include <mutex>
#include "Common/Serialize/Serializer.h"
#include "Common/Serialize/SerializeFuncs.h"
#include "Common/System/System.h"
#include "Core/HLE/HLE.h"
#include "Core/HLE/FunctionWrappers.h"
#include "Core/HLE/sceKernelThread.h"
#include "Core/HLE/sceUsbMic.h"
#include "Core/CoreTiming.h"
#include "Core/MemMapHelpers.h"
#if defined(_WIN32) && !PPSSPP_PLATFORM(UWP) && !defined(__LIBRETRO__)
#define HAVE_WIN32_MICROPHONE
#endif
#ifdef HAVE_WIN32_MICROPHONE
#include "Common/CommonWindows.h"
#include "Windows/CaptureDevice.h"
#endif
enum {
SCE_USBMIC_ERROR_INVALID_MAX_SAMPLES = 0x80243806,
SCE_USBMIC_ERROR_INVALID_SAMPLERATE = 0x8024380A,
};
int eventMicBlockingResume = -1;
static QueueBuf *audioBuf = nullptr;
static u32 numNeedSamples;
static std::vector<MicWaitInfo> waitingThreads;
static bool isNeedInput;
static u32 curSampleRate;
static u32 curChannels;
static u32 readMicDataLength;
static u32 curTargetAddr;
static int micState; // 0 means stopped, 1 means started, for save state.
static void __MicBlockingResume(u64 userdata, int cyclesLate) {
SceUID threadID = (SceUID)userdata;
u32 error;
int count = 0;
for (auto waitingThread : waitingThreads) {
if (waitingThread.threadID == threadID) {
SceUID waitID = __KernelGetWaitID(threadID, WAITTYPE_MICINPUT, error);
if (waitID == 0)
continue;
if (Microphone::isHaveDevice()) {
if (Microphone::getReadMicDataLength() >= waitingThread.needSize) {
u32 ret = __KernelGetWaitValue(threadID, error);
DEBUG_LOG(HLE, "sceUsbMic: Waking up thread(%d)", (int)waitingThread.threadID);
__KernelResumeThreadFromWait(threadID, ret);
waitingThreads.erase(waitingThreads.begin() + count);
} else {
u64 waitTimeus = (waitingThread.needSize - Microphone::getReadMicDataLength()) * 1000000 / 2 / waitingThread.sampleRate;
CoreTiming::ScheduleEvent(usToCycles(waitTimeus), eventMicBlockingResume, userdata);
}
} else {
for (u32 i = 0; i < waitingThread.needSize; i++) {
if (Memory::IsValidAddress(waitingThread.addr + i)) {
Memory::Write_U8(i & 0xFF, waitingThread.addr + i);
}
}
u32 ret = __KernelGetWaitValue(threadID, error);
DEBUG_LOG(HLE, "sceUsbMic: Waking up thread(%d)", (int)waitingThread.threadID);
__KernelResumeThreadFromWait(threadID, ret);
waitingThreads.erase(waitingThreads.begin() + count);
readMicDataLength += waitingThread.needSize;
}
}
++count;
}
}
void __UsbMicInit() {
if (audioBuf) {
delete audioBuf;
audioBuf = nullptr;
}
numNeedSamples = 0;
waitingThreads.clear();
isNeedInput = true;
curSampleRate = 44100;
curChannels = 1;
curTargetAddr = 0;
readMicDataLength = 0;
micState = 0;
eventMicBlockingResume = CoreTiming::RegisterEvent("MicBlockingResume", &__MicBlockingResume);
}
void __UsbMicShutdown() {
if (audioBuf) {
delete audioBuf;
audioBuf = nullptr;
}
Microphone::stopMic();
}
void __UsbMicDoState(PointerWrap &p) {
auto s = p.Section("sceUsbMic", 0, 3);
if (!s) {
// Still need to restore the event.
eventMicBlockingResume = -1;
CoreTiming::RestoreRegisterEvent(eventMicBlockingResume, "MicBlockingResume", &__MicBlockingResume);
waitingThreads.clear();
return;
}
bool isMicStartedNow = Microphone::isMicStarted();
Do(p, numNeedSamples);
Do(p, waitingThreads);
Do(p, isNeedInput);
Do(p, curSampleRate);
Do(p, curChannels);
Do(p, micState);
if (s > 1) {
Do(p, eventMicBlockingResume);
} else {
eventMicBlockingResume = -1;
}
CoreTiming::RestoreRegisterEvent(eventMicBlockingResume, "MicBlockingResume", &__MicBlockingResume);
if (s > 2) {
Do(p, curTargetAddr);
Do(p, readMicDataLength);
}
if (!audioBuf && numNeedSamples > 0) {
audioBuf = new QueueBuf(numNeedSamples << 1);
}
if (micState == 0) {
if (isMicStartedNow)
Microphone::stopMic();
} else if (micState == 1) {
if (isMicStartedNow) {
// Ok, started.
} else {
Microphone::startMic(new std::vector<u32>({ curSampleRate, curChannels }));
}
}
}
QueueBuf::QueueBuf(u32 size) : available(0), end(0), capacity(size) {
buf_ = new u8[size];
}
QueueBuf::~QueueBuf() {
delete[] buf_;
}
QueueBuf::QueueBuf(const QueueBuf &buf) {
buf_ = new u8[buf.capacity];
memcpy(buf_, buf.buf_, buf.capacity);
available = buf.available;
end = buf.end;
capacity = buf.capacity;
}
QueueBuf& QueueBuf::operator=(const QueueBuf &buf) {
if (capacity < buf.capacity) {
resize(buf.capacity);
}
std::unique_lock<std::mutex> lock(mutex);
memcpy(buf_, buf.buf_, buf.capacity);
available = buf.available;
end = buf.end;
lock.unlock();
return *this;
}
u32 QueueBuf::push(u8 *buf, u32 size) {
u32 addedSize = 0;
if (size > capacity)
resize(size);
// This will overwrite the old data if the size prepare to add more than remaining size.
std::unique_lock<std::mutex> lock(mutex);
while (end + size > capacity) {
memcpy(buf_ + end, buf + addedSize, capacity - end);
addedSize += capacity - end;
size -= capacity - end;
end = 0;
}
memcpy(buf_ + end, buf + addedSize, size);
addedSize += size;
end = (end + size) % capacity;
available = std::min(capacity, available + addedSize);
lock.unlock();
return addedSize;
}
u32 QueueBuf::pop(u8 *buf, u32 size) {
u32 ret = 0;
if (getAvailableSize() < size)
size = getAvailableSize();
ret = size;
std::unique_lock<std::mutex> lock(mutex);
if (getStartPos() + size <= capacity) {
memcpy(buf, buf_ + getStartPos(), size);
} else {
memcpy(buf, buf_ + getStartPos(), capacity - getStartPos());
memcpy(buf + capacity - getStartPos(), buf_, size - (capacity - getStartPos()));
}
available -= size;
lock.unlock();
return ret;
}
void QueueBuf::resize(u32 newSize) {
if (capacity >= newSize) {
return;
}
u32 availableSize = getAvailableSize();
u8 *oldbuf = buf_;
buf_ = new u8[newSize];
pop(buf_, std::min(availableSize, newSize));
available = availableSize;
end = availableSize;
capacity = newSize;
delete[] oldbuf;
}
void QueueBuf::flush() {
std::unique_lock<std::mutex> lock(mutex);
available = 0;
end = 0;
lock.unlock();
}
u32 QueueBuf::getAvailableSize() {
return available;
}
u32 QueueBuf::getRemainingSize() {
return capacity - getAvailableSize();
}
u32 QueueBuf::getStartPos() {
return end >= available ? end - available : capacity - available + end;
}
static int sceUsbMicPollInputEnd() {
ERROR_LOG(HLE, "UNIMPL sceUsbMicPollInputEnd");
return 0;
}
static int sceUsbMicInputBlocking(u32 maxSamples, u32 sampleRate, u32 bufAddr) {
if (!Memory::IsValidAddress(bufAddr)) {
ERROR_LOG(HLE, "sceUsbMicInputBlocking(%d, %d, %08x): invalid addresses", maxSamples, sampleRate, bufAddr);
return -1;
}
INFO_LOG(HLE, "sceUsbMicInputBlocking: maxSamples: %d, samplerate: %d, bufAddr: %08x", maxSamples, sampleRate, bufAddr);
if (maxSamples <= 0 || (maxSamples & 0x3F) != 0) {
return SCE_USBMIC_ERROR_INVALID_MAX_SAMPLES;
}
if (sampleRate != 44100 && sampleRate != 22050 && sampleRate != 11025) {
return SCE_USBMIC_ERROR_INVALID_SAMPLERATE;
}
return __MicInput(maxSamples, sampleRate, bufAddr, USBMIC);
}
static int sceUsbMicInputInitEx(u32 paramAddr) {
ERROR_LOG(HLE, "UNIMPL sceUsbMicInputInitEx: %08x", paramAddr);
return 0;
}
static int sceUsbMicInput(u32 maxSamples, u32 sampleRate, u32 bufAddr) {
if (!Memory::IsValidAddress(bufAddr)) {
ERROR_LOG(HLE, "sceUsbMicInput(%d, %d, %08x): invalid addresses", maxSamples, sampleRate, bufAddr);
return -1;
}
ERROR_LOG(HLE, "UNTEST sceUsbMicInput: maxSamples: %d, samplerate: %d, bufAddr: %08x", maxSamples, sampleRate, bufAddr);
if (maxSamples <= 0 || (maxSamples & 0x3F) != 0) {
return SCE_USBMIC_ERROR_INVALID_MAX_SAMPLES;
}
if (sampleRate != 44100 && sampleRate != 22050 && sampleRate != 11025) {
return SCE_USBMIC_ERROR_INVALID_SAMPLERATE;
}
return __MicInput(maxSamples, sampleRate, bufAddr, USBMIC, false);
}
static int sceUsbMicGetInputLength() {
int ret = Microphone::getReadMicDataLength() / 2;
ERROR_LOG(HLE, "UNTEST sceUsbMicGetInputLength(ret: %d)", ret);
return ret;
}
static int sceUsbMicInputInit(int unknown1, int inputVolume, int unknown2) {
ERROR_LOG(HLE, "UNIMPL sceUsbMicInputInit(unknown1: %d, inputVolume: %d, unknown2: %d)", unknown1, inputVolume, unknown2);
return 0;
}
static int sceUsbMicWaitInputEnd() {
ERROR_LOG(HLE, "UNIMPL sceUsbMicWaitInputEnd");
return 0;
}
int Microphone::startMic(void *param) {
#ifdef HAVE_WIN32_MICROPHONE
if (winMic)
winMic->sendMessage({ CAPTUREDEVIDE_COMMAND::START, param });
#elif PPSSPP_PLATFORM(ANDROID)
std::vector<u32> *micParam = static_cast<std::vector<u32>*>(param);
int sampleRate = micParam->at(0);
int channels = micParam->at(1);
INFO_LOG(HLE, "microphone_command : sr = %d", sampleRate);
System_SendMessage("microphone_command", ("startRecording:" + std::to_string(sampleRate)).c_str());
#endif
micState = 1;
return 0;
}
int Microphone::stopMic() {
#ifdef HAVE_WIN32_MICROPHONE
if (winMic)
winMic->sendMessage({ CAPTUREDEVIDE_COMMAND::STOP, nullptr });
#elif PPSSPP_PLATFORM(ANDROID)
System_SendMessage("microphone_command", "stopRecording");
#endif
micState = 0;
return 0;
}
bool Microphone::isHaveDevice() {
#ifdef HAVE_WIN32_MICROPHONE
return winMic->getDeviceCounts() >= 1;
#elif PPSSPP_PLATFORM(ANDROID)
return audioRecording_Available();
#endif
return false;
}
bool Microphone::isMicStarted() {
return micState == 1;
}
// Deprecated.
bool Microphone::isNeedInput() {
return ::isNeedInput;
}
u32 Microphone::numNeedSamples() {
return ::numNeedSamples;
}
u32 Microphone::availableAudioBufSize() {
return audioBuf->getAvailableSize();
}
u32 Microphone::getReadMicDataLength() {
return ::readMicDataLength;
}
int Microphone::addAudioData(u8 *buf, u32 size) {
if (!audioBuf)
return 0;
audioBuf->push(buf, size);
u32 addSize = std::min(audioBuf->getAvailableSize(), numNeedSamples() * 2 - getReadMicDataLength());
if (Memory::IsValidRange(curTargetAddr + readMicDataLength, addSize)) {
getAudioData(Memory::GetPointerWriteUnchecked(curTargetAddr + readMicDataLength), addSize);
NotifyMemInfo(MemBlockFlags::WRITE, curTargetAddr + readMicDataLength, addSize, "MicAddAudioData");
}
readMicDataLength += addSize;
return size;
}
u32 Microphone::getAudioData(u8 *buf, u32 size) {
if(audioBuf)
return audioBuf->pop(buf, size);
return 0;
}
void Microphone::flushAudioData() {
audioBuf->flush();
}
std::vector<std::string> Microphone::getDeviceList() {
#ifdef HAVE_WIN32_MICROPHONE
if (winMic) {
return winMic->getDeviceList();
}
#endif
return std::vector<std::string>();
}
void Microphone::onMicDeviceChange() {
if (Microphone::isMicStarted()) {
Microphone::stopMic();
// Just use the last param.
Microphone::startMic(nullptr);
}
}
u32 __MicInput(u32 maxSamples, u32 sampleRate, u32 bufAddr, MICTYPE type, bool block) {
curSampleRate = sampleRate;
curChannels = 1;
curTargetAddr = bufAddr;
u32 size = maxSamples << 1;
if (!audioBuf) {
audioBuf = new QueueBuf(size);
} else {
audioBuf->resize(size);
}
if (!audioBuf)
return 0;
numNeedSamples = maxSamples;
readMicDataLength = 0;
if (!Microphone::isMicStarted()) {
std::vector<u32> *param = new std::vector<u32>({ sampleRate, 1 });
Microphone::startMic(param);
}
if (Microphone::availableAudioBufSize() > 0) {
u32 addSize = std::min(Microphone::availableAudioBufSize(), size);
if (Memory::IsValidRange(curTargetAddr, addSize)) {
Microphone::getAudioData(Memory::GetPointerWriteUnchecked(curTargetAddr), addSize);
NotifyMemInfo(MemBlockFlags::WRITE, curTargetAddr, addSize, "MicInput");
}
readMicDataLength += addSize;
}
if (!block) {
return type == CAMERAMIC ? size : maxSamples;
}
u64 waitTimeus = (size - Microphone::availableAudioBufSize()) * 1000000 / 2 / sampleRate;
CoreTiming::ScheduleEvent(usToCycles(waitTimeus), eventMicBlockingResume, __KernelGetCurThread());
MicWaitInfo waitInfo = { __KernelGetCurThread(), bufAddr, size, sampleRate };
waitingThreads.push_back(waitInfo);
DEBUG_LOG(HLE, "MicInputBlocking: blocking thread(%d)", (int)__KernelGetCurThread());
__KernelWaitCurThread(WAITTYPE_MICINPUT, 1, size, 0, false, "blocking microphone");
return type == CAMERAMIC ? size : maxSamples;
}
const HLEFunction sceUsbMic[] =
{
{0x06128E42, &WrapI_V<sceUsbMicPollInputEnd>, "sceUsbMicPollInputEnd", 'i', "" },
{0x2E6DCDCD, &WrapI_UUU<sceUsbMicInputBlocking>, "sceUsbMicInputBlocking", 'i', "xxx" },
{0x45310F07, &WrapI_U<sceUsbMicInputInitEx>, "sceUsbMicInputInitEx", 'i', "x" },
{0x5F7F368D, &WrapI_UUU<sceUsbMicInput>, "sceUsbMicInput", 'i', "xxx" },
{0x63400E20, &WrapI_V<sceUsbMicGetInputLength>, "sceUsbMicGetInputLength", 'i', "" },
{0xB8E536EB, &WrapI_III<sceUsbMicInputInit>, "sceUsbMicInputInit", 'i', "iii" },
{0xF899001C, &WrapI_V<sceUsbMicWaitInputEnd>, "sceUsbMicWaitInputEnd", 'i', "" },
};
void Register_sceUsbMic()
{
RegisterModule("sceUsbMic", ARRAY_SIZE(sceUsbMic), sceUsbMic);
}