mirror of
https://github.com/hrydgard/ppsspp.git
synced 2024-11-24 05:49:58 +00:00
cba6a63058
Improves #12354. This needs to happen even if the vertex has no normals.
587 lines
20 KiB
C++
587 lines
20 KiB
C++
// Copyright (c) 2013- PPSSPP Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official git repository and contact information can be found at
|
|
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
|
|
|
|
#include <string.h>
|
|
#include <algorithm>
|
|
|
|
#include "profiler/profiler.h"
|
|
|
|
#include "Common/CPUDetect.h"
|
|
|
|
#include "GPU/Common/GPUStateUtils.h"
|
|
#include "GPU/Common/SplineCommon.h"
|
|
#include "GPU/Common/DrawEngineCommon.h"
|
|
#include "GPU/ge_constants.h"
|
|
#include "GPU/GPUState.h" // only needed for UVScale stuff
|
|
|
|
bool CanUseHardwareTessellation(GEPatchPrimType prim) {
|
|
if (g_Config.bHardwareTessellation && !g_Config.bSoftwareRendering) {
|
|
return CanUseHardwareTransform(PatchPrimToPrim(prim));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
class SimpleBufferManager {
|
|
private:
|
|
u8 *buf_;
|
|
size_t totalSize, maxSize_;
|
|
public:
|
|
SimpleBufferManager(u8 *buf, size_t maxSize)
|
|
: buf_(buf), totalSize(0), maxSize_(maxSize) {}
|
|
|
|
u8 *Allocate(size_t size) {
|
|
size = (size + 15) & ~15; // Align for 16 bytes
|
|
|
|
if ((totalSize + size) > maxSize_)
|
|
return nullptr; // No more memory
|
|
|
|
size_t tmp = totalSize;
|
|
totalSize += size;
|
|
return buf_ + tmp;
|
|
}
|
|
};
|
|
|
|
namespace Spline {
|
|
|
|
static void CopyQuadIndex(u16 *&indices, GEPatchPrimType type, const int idx0, const int idx1, const int idx2, const int idx3) {
|
|
if (type == GE_PATCHPRIM_LINES) {
|
|
*(indices++) = idx0;
|
|
*(indices++) = idx2;
|
|
*(indices++) = idx1;
|
|
*(indices++) = idx3;
|
|
*(indices++) = idx1;
|
|
*(indices++) = idx2;
|
|
} else {
|
|
*(indices++) = idx0;
|
|
*(indices++) = idx2;
|
|
*(indices++) = idx1;
|
|
*(indices++) = idx1;
|
|
*(indices++) = idx2;
|
|
*(indices++) = idx3;
|
|
}
|
|
}
|
|
|
|
void BuildIndex(u16 *indices, int &count, int num_u, int num_v, GEPatchPrimType prim_type, int total) {
|
|
for (int v = 0; v < num_v; ++v) {
|
|
for (int u = 0; u < num_u; ++u) {
|
|
int idx0 = v * (num_u + 1) + u + total; // Top left
|
|
int idx2 = (v + 1) * (num_u + 1) + u + total; // Bottom left
|
|
|
|
CopyQuadIndex(indices, prim_type, idx0, idx0 + 1, idx2, idx2 + 1);
|
|
count += 6;
|
|
}
|
|
}
|
|
}
|
|
|
|
class Bezier3DWeight {
|
|
private:
|
|
void CalcWeights(float t, Weight &w) {
|
|
// Bernstein 3D basis polynomial
|
|
w.basis[0] = (1 - t) * (1 - t) * (1 - t);
|
|
w.basis[1] = 3 * t * (1 - t) * (1 - t);
|
|
w.basis[2] = 3 * t * t * (1 - t);
|
|
w.basis[3] = t * t * t;
|
|
|
|
// Derivative
|
|
w.deriv[0] = -3 * (1 - t) * (1 - t);
|
|
w.deriv[1] = 9 * t * t - 12 * t + 3;
|
|
w.deriv[2] = 3 * (2 - 3 * t) * t;
|
|
w.deriv[3] = 3 * t * t;
|
|
}
|
|
public:
|
|
Weight *CalcWeightsAll(u32 key) {
|
|
int tess = (int)key;
|
|
Weight *weights = new Weight[tess + 1];
|
|
const float inv_tess = 1.0f / (float)tess;
|
|
for (int i = 0; i < tess + 1; ++i) {
|
|
const float t = (float)i * inv_tess;
|
|
CalcWeights(t, weights[i]);
|
|
}
|
|
return weights;
|
|
}
|
|
|
|
static u32 ToKey(int tess, int count, int type) {
|
|
return tess;
|
|
}
|
|
|
|
static int CalcSize(int tess, int count) {
|
|
return tess + 1;
|
|
}
|
|
|
|
static WeightCache<Bezier3DWeight> weightsCache;
|
|
};
|
|
|
|
class Spline3DWeight {
|
|
private:
|
|
struct KnotDiv {
|
|
float _3_0 = 1.0f / 3.0f;
|
|
float _4_1 = 1.0f / 3.0f;
|
|
float _5_2 = 1.0f / 3.0f;
|
|
float _3_1 = 1.0f / 2.0f;
|
|
float _4_2 = 1.0f / 2.0f;
|
|
float _3_2 = 1.0f; // Always 1
|
|
};
|
|
|
|
// knot should be an array sized n + 5 (n + 1 + 1 + degree (cubic))
|
|
void CalcKnots(int n, int type, float *knots, KnotDiv *divs) {
|
|
// Basic theory (-2 to +3), optimized with KnotDiv (-2 to +0)
|
|
// for (int i = 0; i < n + 5; ++i) {
|
|
for (int i = 0; i < n + 2; ++i) {
|
|
knots[i] = (float)i - 2;
|
|
}
|
|
|
|
// The first edge is open
|
|
if ((type & 1) != 0) {
|
|
knots[0] = 0;
|
|
knots[1] = 0;
|
|
|
|
divs[0]._3_0 = 1.0f;
|
|
divs[0]._4_1 = 1.0f / 2.0f;
|
|
divs[0]._3_1 = 1.0f;
|
|
if (n > 1)
|
|
divs[1]._3_0 = 1.0f / 2.0f;
|
|
}
|
|
// The last edge is open
|
|
if ((type & 2) != 0) {
|
|
// knots[n + 2] = (float)n; // Got rid of this line optimized with KnotDiv
|
|
// knots[n + 3] = (float)n; // Got rid of this line optimized with KnotDiv
|
|
// knots[n + 4] = (float)n; // Got rid of this line optimized with KnotDiv
|
|
divs[n - 1]._4_1 = 1.0f / 2.0f;
|
|
divs[n - 1]._5_2 = 1.0f;
|
|
divs[n - 1]._4_2 = 1.0f;
|
|
if (n > 1)
|
|
divs[n - 2]._5_2 = 1.0f / 2.0f;
|
|
}
|
|
}
|
|
|
|
void CalcWeights(float t, const float *knots, const KnotDiv &div, Weight &w) {
|
|
#ifdef _M_SSE
|
|
const __m128 knot012 = _mm_loadu_ps(knots);
|
|
const __m128 t012 = _mm_sub_ps(_mm_set_ps1(t), knot012);
|
|
const __m128 f30_41_52 = _mm_mul_ps(t012, _mm_loadu_ps(&div._3_0));
|
|
const __m128 f52_31_42 = _mm_mul_ps(t012, _mm_loadu_ps(&div._5_2));
|
|
|
|
// Following comments are for explains order of the multiply.
|
|
// float a = (1-f30)*(1-f31);
|
|
// float c = (1-f41)*(1-f42);
|
|
// float b = ( f31 * f41);
|
|
// float d = ( f42 * f52);
|
|
const __m128 f30_41_31_42 = _mm_shuffle_ps(f30_41_52, f52_31_42, _MM_SHUFFLE(2, 1, 1, 0));
|
|
const __m128 f31_42_41_52 = _mm_shuffle_ps(f52_31_42, f30_41_52, _MM_SHUFFLE(2, 1, 2, 1));
|
|
const __m128 c1_1_0_0 = { 1, 1, 0, 0 };
|
|
const __m128 acbd = _mm_mul_ps(_mm_sub_ps(c1_1_0_0, f30_41_31_42), _mm_sub_ps(c1_1_0_0, f31_42_41_52));
|
|
|
|
alignas(16) float f_t012[4];
|
|
alignas(16) float f_acbd[4];
|
|
alignas(16) float f_f30_41_31_42[4];
|
|
_mm_store_ps(f_t012, t012);
|
|
_mm_store_ps(f_acbd, acbd);
|
|
_mm_store_ps(f_f30_41_31_42, f30_41_31_42);
|
|
|
|
const float &f32 = f_t012[2];
|
|
|
|
const float &a = f_acbd[0];
|
|
const float &b = f_acbd[2];
|
|
const float &c = f_acbd[1];
|
|
const float &d = f_acbd[3];
|
|
|
|
// For derivative
|
|
const float &f31 = f_f30_41_31_42[2];
|
|
const float &f42 = f_f30_41_31_42[3];
|
|
#else
|
|
// TODO: Maybe compilers could be coaxed into vectorizing this code without the above explicitly...
|
|
float t0 = (t - knots[0]);
|
|
float t1 = (t - knots[1]);
|
|
float t2 = (t - knots[2]);
|
|
|
|
float f30 = t0 * div._3_0;
|
|
float f41 = t1 * div._4_1;
|
|
float f52 = t2 * div._5_2;
|
|
float f31 = t1 * div._3_1;
|
|
float f42 = t2 * div._4_2;
|
|
float f32 = t2 * div._3_2;
|
|
|
|
float a = (1 - f30) * (1 - f31);
|
|
float b = (f31 * f41);
|
|
float c = (1 - f41) * (1 - f42);
|
|
float d = (f42 * f52);
|
|
#endif
|
|
w.basis[0] = a * (1 - f32); // (1-f30)*(1-f31)*(1-f32)
|
|
w.basis[1] = 1 - a - b + ((a + b + c - 1) * f32);
|
|
w.basis[2] = b + ((1 - b - c - d) * f32);
|
|
w.basis[3] = d * f32; // f32*f42*f52
|
|
|
|
// Derivative
|
|
float i1 = (1 - f31) * (1 - f32);
|
|
float i2 = f31 * (1 - f32) + (1 - f42) * f32;
|
|
float i3 = f42 * f32;
|
|
|
|
float f130 = i1 * div._3_0;
|
|
float f241 = i2 * div._4_1;
|
|
float f352 = i3 * div._5_2;
|
|
|
|
w.deriv[0] = 3 * (0 - f130);
|
|
w.deriv[1] = 3 * (f130 - f241);
|
|
w.deriv[2] = 3 * (f241 - f352);
|
|
w.deriv[3] = 3 * (f352 - 0);
|
|
}
|
|
public:
|
|
Weight *CalcWeightsAll(u32 key) {
|
|
int tess, count, type;
|
|
FromKey(key, tess, count, type);
|
|
const int num_patches = count - 3;
|
|
Weight *weights = new Weight[tess * num_patches + 1];
|
|
|
|
// float *knots = new float[num_patches + 5];
|
|
float *knots = new float[num_patches + 2]; // Optimized with KnotDiv, must use +5 in theory
|
|
KnotDiv *divs = new KnotDiv[num_patches];
|
|
CalcKnots(num_patches, type, knots, divs);
|
|
|
|
const float inv_tess = 1.0f / (float)tess;
|
|
for (int i = 0; i < num_patches; ++i) {
|
|
const int start = (i == 0) ? 0 : 1;
|
|
for (int j = start; j <= tess; ++j) {
|
|
const int index = i * tess + j;
|
|
const float t = (float)index * inv_tess;
|
|
CalcWeights(t, knots + i, divs[i], weights[index]);
|
|
}
|
|
}
|
|
|
|
delete[] knots;
|
|
delete[] divs;
|
|
|
|
return weights;
|
|
}
|
|
|
|
static u32 ToKey(int tess, int count, int type) {
|
|
return tess | (count << 8) | (type << 16);
|
|
}
|
|
|
|
static void FromKey(u32 key, int &tess, int &count, int &type) {
|
|
tess = key & 0xFF; count = (key >> 8) & 0xFF; type = (key >> 16) & 0xFF;
|
|
}
|
|
|
|
static int CalcSize(int tess, int count) {
|
|
return (count - 3) * tess + 1;
|
|
}
|
|
|
|
static WeightCache<Spline3DWeight> weightsCache;
|
|
};
|
|
|
|
WeightCache<Bezier3DWeight> Bezier3DWeight::weightsCache;
|
|
WeightCache<Spline3DWeight> Spline3DWeight::weightsCache;
|
|
|
|
// Tessellate single patch (4x4 control points)
|
|
template<typename T>
|
|
class Tessellator {
|
|
private:
|
|
const T *const p[4]; // T p[v][u]; 4x4 control points
|
|
T u[4]; // Pre-tessellated U lines
|
|
public:
|
|
Tessellator(const T *p, const int idx[4]) : p{ p + idx[0], p + idx[1], p + idx[2], p + idx[3] } {}
|
|
|
|
// Linear combination
|
|
T Sample(const T p[4], const float w[4]) {
|
|
return p[0] * w[0] + p[1] * w[1] + p[2] * w[2] + p[3] * w[3];
|
|
}
|
|
|
|
void SampleEdgeU(int idx) {
|
|
u[0] = p[0][idx];
|
|
u[1] = p[1][idx];
|
|
u[2] = p[2][idx];
|
|
u[3] = p[3][idx];
|
|
}
|
|
|
|
void SampleU(const float weights[4]) {
|
|
if (weights[0] == 1.0f) { SampleEdgeU(0); return; } // weights = {1,0,0,0}, first edge is open.
|
|
if (weights[3] == 1.0f) { SampleEdgeU(3); return; } // weights = {0,0,0,1}, last edge is open.
|
|
|
|
u[0] = Sample(p[0], weights);
|
|
u[1] = Sample(p[1], weights);
|
|
u[2] = Sample(p[2], weights);
|
|
u[3] = Sample(p[3], weights);
|
|
}
|
|
|
|
T SampleV(const float weights[4]) {
|
|
if (weights[0] == 1.0f) return u[0]; // weights = {1,0,0,0}, first edge is open.
|
|
if (weights[3] == 1.0f) return u[3]; // weights = {0,0,0,1}, last edge is open.
|
|
|
|
return Sample(u, weights);
|
|
}
|
|
};
|
|
|
|
ControlPoints::ControlPoints(const SimpleVertex *const *points, int size, SimpleBufferManager &managedBuf) {
|
|
pos = (Vec3f *)managedBuf.Allocate(sizeof(Vec3f) * size);
|
|
tex = (Vec2f *)managedBuf.Allocate(sizeof(Vec2f) * size);
|
|
col = (Vec4f *)managedBuf.Allocate(sizeof(Vec4f) * size);
|
|
Convert(points, size);
|
|
}
|
|
|
|
void ControlPoints::Convert(const SimpleVertex *const *points, int size) {
|
|
for (int i = 0; i < size; ++i) {
|
|
pos[i] = Vec3f(points[i]->pos);
|
|
tex[i] = Vec2f(points[i]->uv);
|
|
col[i] = Vec4f::FromRGBA(points[i]->color_32);
|
|
}
|
|
defcolor = points[0]->color_32;
|
|
}
|
|
|
|
template<class Surface>
|
|
class SubdivisionSurface {
|
|
public:
|
|
template <bool sampleNrm, bool sampleCol, bool sampleTex, bool useSSE4, bool patchFacing>
|
|
static void Tessellate(OutputBuffers &output, const Surface &surface, const ControlPoints &points, const Weight2D &weights) {
|
|
const float inv_u = 1.0f / (float)surface.tess_u;
|
|
const float inv_v = 1.0f / (float)surface.tess_v;
|
|
|
|
for (int patch_u = 0; patch_u < surface.num_patches_u; ++patch_u) {
|
|
const int start_u = surface.GetTessStart(patch_u);
|
|
for (int patch_v = 0; patch_v < surface.num_patches_v; ++patch_v) {
|
|
const int start_v = surface.GetTessStart(patch_v);
|
|
|
|
// Prepare 4x4 control points to tessellate
|
|
const int idx = surface.GetPointIndex(patch_u, patch_v);
|
|
const int idx_v[4] = { idx, idx + surface.num_points_u, idx + surface.num_points_u * 2, idx + surface.num_points_u * 3 };
|
|
Tessellator<Vec3f> tess_pos(points.pos, idx_v);
|
|
Tessellator<Vec4f> tess_col(points.col, idx_v);
|
|
Tessellator<Vec2f> tess_tex(points.tex, idx_v);
|
|
Tessellator<Vec3f> tess_nrm(points.pos, idx_v);
|
|
|
|
for (int tile_u = start_u; tile_u <= surface.tess_u; ++tile_u) {
|
|
const int index_u = surface.GetIndexU(patch_u, tile_u);
|
|
const Weight &wu = weights.u[index_u];
|
|
|
|
// Pre-tessellate U lines
|
|
tess_pos.SampleU(wu.basis);
|
|
if (sampleCol)
|
|
tess_col.SampleU(wu.basis);
|
|
if (sampleTex)
|
|
tess_tex.SampleU(wu.basis);
|
|
if (sampleNrm)
|
|
tess_nrm.SampleU(wu.deriv);
|
|
|
|
for (int tile_v = start_v; tile_v <= surface.tess_v; ++tile_v) {
|
|
const int index_v = surface.GetIndexV(patch_v, tile_v);
|
|
const Weight &wv = weights.v[index_v];
|
|
|
|
SimpleVertex &vert = output.vertices[surface.GetIndex(index_u, index_v, patch_u, patch_v)];
|
|
|
|
// Tessellate
|
|
vert.pos = tess_pos.SampleV(wv.basis);
|
|
if (sampleCol) {
|
|
vert.color_32 = tess_col.SampleV(wv.basis).ToRGBA();
|
|
} else {
|
|
vert.color_32 = points.defcolor;
|
|
}
|
|
if (sampleTex) {
|
|
tess_tex.SampleV(wv.basis).Write(vert.uv);
|
|
} else {
|
|
// Generate texcoord
|
|
vert.uv[0] = patch_u + tile_u * inv_u;
|
|
vert.uv[1] = patch_v + tile_v * inv_v;
|
|
}
|
|
if (sampleNrm) {
|
|
const Vec3f derivU = tess_nrm.SampleV(wv.basis);
|
|
const Vec3f derivV = tess_pos.SampleV(wv.deriv);
|
|
|
|
vert.nrm = Cross(derivU, derivV).Normalized(useSSE4);
|
|
if (patchFacing)
|
|
vert.nrm *= -1.0f;
|
|
} else {
|
|
vert.nrm.SetZero();
|
|
vert.nrm.z = 1.0f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
surface.BuildIndex(output.indices, output.count);
|
|
}
|
|
|
|
using TessFunc = void(*)(OutputBuffers &, const Surface &, const ControlPoints &, const Weight2D &);
|
|
TEMPLATE_PARAMETER_DISPATCHER_FUNCTION(Tess, SubdivisionSurface::Tessellate, TessFunc);
|
|
|
|
static void Tessellate(OutputBuffers &output, const Surface &surface, const ControlPoints &points, const Weight2D &weights, u32 origVertType) {
|
|
const bool params[] = {
|
|
(origVertType & GE_VTYPE_NRM_MASK) != 0 || gstate.isLightingEnabled(),
|
|
(origVertType & GE_VTYPE_COL_MASK) != 0,
|
|
(origVertType & GE_VTYPE_TC_MASK) != 0,
|
|
cpu_info.bSSE4_1,
|
|
surface.patchFacing,
|
|
};
|
|
static TemplateParameterDispatcher<TessFunc, ARRAY_SIZE(params), Tess> dispatcher; // Initialize only once
|
|
|
|
TessFunc func = dispatcher.GetFunc(params);
|
|
func(output, surface, points, weights);
|
|
}
|
|
};
|
|
|
|
template<class Surface>
|
|
void SoftwareTessellation(OutputBuffers &output, const Surface &surface, u32 origVertType, const ControlPoints &points) {
|
|
using WeightType = typename Surface::WeightType;
|
|
u32 key_u = WeightType::ToKey(surface.tess_u, surface.num_points_u, surface.type_u);
|
|
u32 key_v = WeightType::ToKey(surface.tess_v, surface.num_points_v, surface.type_v);
|
|
Weight2D weights(WeightType::weightsCache, key_u, key_v);
|
|
|
|
SubdivisionSurface<Surface>::Tessellate(output, surface, points, weights, origVertType);
|
|
}
|
|
|
|
template<class Surface>
|
|
static void HardwareTessellation(OutputBuffers &output, const Surface &surface, u32 origVertType,
|
|
const SimpleVertex *const *points, TessellationDataTransfer *tessDataTransfer) {
|
|
using WeightType = typename Surface::WeightType;
|
|
u32 key_u = WeightType::ToKey(surface.tess_u, surface.num_points_u, surface.type_u);
|
|
u32 key_v = WeightType::ToKey(surface.tess_v, surface.num_points_v, surface.type_v);
|
|
Weight2D weights(WeightType::weightsCache, key_u, key_v);
|
|
weights.size_u = WeightType::CalcSize(surface.tess_u, surface.num_points_u);
|
|
weights.size_v = WeightType::CalcSize(surface.tess_v, surface.num_points_v);
|
|
tessDataTransfer->SendDataToShader(points, surface.num_points_u, surface.num_points_v, origVertType, weights);
|
|
|
|
// Generating simple input vertices for the spline-computing vertex shader.
|
|
float inv_u = 1.0f / (float)surface.tess_u;
|
|
float inv_v = 1.0f / (float)surface.tess_v;
|
|
for (int patch_u = 0; patch_u < surface.num_patches_u; ++patch_u) {
|
|
const int start_u = surface.GetTessStart(patch_u);
|
|
for (int patch_v = 0; patch_v < surface.num_patches_v; ++patch_v) {
|
|
const int start_v = surface.GetTessStart(patch_v);
|
|
for (int tile_u = start_u; tile_u <= surface.tess_u; ++tile_u) {
|
|
const int index_u = surface.GetIndexU(patch_u, tile_u);
|
|
for (int tile_v = start_v; tile_v <= surface.tess_v; ++tile_v) {
|
|
const int index_v = surface.GetIndexV(patch_v, tile_v);
|
|
SimpleVertex &vert = output.vertices[surface.GetIndex(index_u, index_v, patch_u, patch_v)];
|
|
// Index for the weights
|
|
vert.pos.x = index_u;
|
|
vert.pos.y = index_v;
|
|
// For texcoord generation
|
|
vert.nrm.x = patch_u + (float)tile_u * inv_u;
|
|
vert.nrm.y = patch_v + (float)tile_v * inv_v;
|
|
// Patch position
|
|
vert.pos.z = patch_u;
|
|
vert.nrm.z = patch_v;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
surface.BuildIndex(output.indices, output.count);
|
|
}
|
|
|
|
} // namespace Spline
|
|
|
|
using namespace Spline;
|
|
|
|
void DrawEngineCommon::ClearSplineBezierWeights() {
|
|
Bezier3DWeight::weightsCache.Clear();
|
|
Spline3DWeight::weightsCache.Clear();
|
|
}
|
|
|
|
// Specialize to make instance (to avoid link error).
|
|
template void DrawEngineCommon::SubmitCurve<BezierSurface>(const void *control_points, const void *indices, BezierSurface &surface, u32 vertType, int *bytesRead, const char *scope);
|
|
template void DrawEngineCommon::SubmitCurve<SplineSurface>(const void *control_points, const void *indices, SplineSurface &surface, u32 vertType, int *bytesRead, const char *scope);
|
|
|
|
template<class Surface>
|
|
void DrawEngineCommon::SubmitCurve(const void *control_points, const void *indices, Surface &surface, u32 vertType, int *bytesRead, const char *scope) {
|
|
PROFILE_THIS_SCOPE(scope);
|
|
DispatchFlush();
|
|
|
|
// Real hardware seems to draw nothing when given < 4 either U or V.
|
|
// This would result in num_patches_u / num_patches_v being 0.
|
|
if (surface.num_points_u < 4 || surface.num_points_v < 4)
|
|
return;
|
|
|
|
SimpleBufferManager managedBuf(decoded, DECODED_VERTEX_BUFFER_SIZE / 2);
|
|
|
|
int num_points = surface.num_points_u * surface.num_points_v;
|
|
u16 index_lower_bound = 0;
|
|
u16 index_upper_bound = num_points - 1;
|
|
IndexConverter ConvertIndex(vertType, indices);
|
|
if (indices)
|
|
GetIndexBounds(indices, num_points, vertType, &index_lower_bound, &index_upper_bound);
|
|
|
|
VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24));
|
|
*bytesRead = num_points * origVDecoder->VertexSize();
|
|
|
|
// Simplify away bones and morph before proceeding
|
|
// There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great.
|
|
SimpleVertex *simplified_control_points = (SimpleVertex *)managedBuf.Allocate(sizeof(SimpleVertex) * (index_upper_bound + 1));
|
|
if (!simplified_control_points) {
|
|
ERROR_LOG(G3D, "Failed to allocate space for simplified control points, skipping curve draw");
|
|
return;
|
|
}
|
|
|
|
u8 *temp_buffer = managedBuf.Allocate(sizeof(SimpleVertex) * num_points);
|
|
if (!temp_buffer) {
|
|
ERROR_LOG(G3D, "Failed to allocate space for temp buffer, skipping curve draw");
|
|
return;
|
|
}
|
|
|
|
u32 origVertType = vertType;
|
|
vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);
|
|
|
|
VertexDecoder *vdecoder = GetVertexDecoder(vertType);
|
|
|
|
int vertexSize = vdecoder->VertexSize();
|
|
if (vertexSize != sizeof(SimpleVertex)) {
|
|
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
|
|
}
|
|
|
|
// Make an array of pointers to the control points, to get rid of indices.
|
|
const SimpleVertex **points = (const SimpleVertex **)managedBuf.Allocate(sizeof(SimpleVertex *) * num_points);
|
|
if (!points) {
|
|
ERROR_LOG(G3D, "Failed to allocate space for control point pointers, skipping curve draw");
|
|
return;
|
|
}
|
|
for (int idx = 0; idx < num_points; idx++)
|
|
points[idx] = simplified_control_points + (indices ? ConvertIndex(idx) : idx);
|
|
|
|
OutputBuffers output;
|
|
output.vertices = (SimpleVertex *)(decoded + DECODED_VERTEX_BUFFER_SIZE / 2);
|
|
output.indices = decIndex;
|
|
output.count = 0;
|
|
|
|
surface.Init(DECODED_VERTEX_BUFFER_SIZE / 2 / vertexSize);
|
|
|
|
if (CanUseHardwareTessellation(surface.primType)) {
|
|
HardwareTessellation(output, surface, origVertType, points, tessDataTransfer);
|
|
} else {
|
|
ControlPoints cpoints(points, num_points, managedBuf);
|
|
SoftwareTessellation(output, surface, origVertType, cpoints);
|
|
}
|
|
|
|
u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;
|
|
|
|
UVScale prevUVScale;
|
|
if (origVertType & GE_VTYPE_TC_MASK) {
|
|
// We scaled during Normalize already so let's turn it off when drawing.
|
|
prevUVScale = gstate_c.uv;
|
|
gstate_c.uv.uScale = 1.0f;
|
|
gstate_c.uv.vScale = 1.0f;
|
|
gstate_c.uv.uOff = 0;
|
|
gstate_c.uv.vOff = 0;
|
|
}
|
|
|
|
uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode());
|
|
int generatedBytesRead;
|
|
DispatchSubmitPrim(output.vertices, output.indices, PatchPrimToPrim(surface.primType), output.count, vertTypeID, gstate.getCullMode(), &generatedBytesRead);
|
|
|
|
DispatchFlush();
|
|
|
|
if (origVertType & GE_VTYPE_TC_MASK) {
|
|
gstate_c.uv = prevUVScale;
|
|
}
|
|
}
|