ppsspp/GPU/Common/PresentationCommon.cpp
Henrik Rydgård 131a1eedfb Vulkan: Make sure textures/samplers are unbound at the end of PresentationCommon::CopyToOutput.
Validation caught an issue where old stuff lingered in sampler 1 and texture 1.

Bug probably introduced in #12921, but could also be others.
2020-07-13 23:32:37 +02:00

803 lines
28 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cassert>
#include <cmath>
#include <set>
#include <cstdint>
#include "base/display.h"
#include "base/timeutil.h"
#include "base/NativeApp.h"
#include "file/vfs.h"
#include "file/zip_read.h"
#include "thin3d/thin3d.h"
#include "Core/Config.h"
#include "Core/ConfigValues.h"
#include "Core/Host.h"
#include "Core/System.h"
#include "Core/HLE/sceDisplay.h"
#include "GPU/Common/PostShader.h"
#include "GPU/Common/PresentationCommon.h"
#include "GPU/Common/ShaderTranslation.h"
struct Vertex {
float x, y, z;
float u, v;
uint32_t rgba;
};
FRect GetScreenFrame(float pixelWidth, float pixelHeight) {
FRect rc = FRect{
0.0f,
0.0f,
pixelWidth,
pixelHeight,
};
bool applyInset = !g_Config.bIgnoreScreenInsets;
if (applyInset) {
// Remove the DPI scale to get back to pixels.
float left = System_GetPropertyFloat(SYSPROP_DISPLAY_SAFE_INSET_LEFT) / g_dpi_scale_x;
float right = System_GetPropertyFloat(SYSPROP_DISPLAY_SAFE_INSET_RIGHT) / g_dpi_scale_x;
float top = System_GetPropertyFloat(SYSPROP_DISPLAY_SAFE_INSET_TOP) / g_dpi_scale_y;
float bottom = System_GetPropertyFloat(SYSPROP_DISPLAY_SAFE_INSET_BOTTOM) / g_dpi_scale_y;
// Adjust left edge to compensate for cutouts (notches) if any.
rc.x += left;
rc.w -= (left + right);
rc.y += top;
rc.h -= (top + bottom);
}
return rc;
}
void CenterDisplayOutputRect(FRect *rc, float origW, float origH, const FRect &frame, int rotation) {
float outW;
float outH;
bool rotated = rotation == ROTATION_LOCKED_VERTICAL || rotation == ROTATION_LOCKED_VERTICAL180;
if (g_Config.iSmallDisplayZoomType == (int)SmallDisplayZoom::STRETCH) {
outW = frame.w;
outH = frame.h;
} else {
if (g_Config.iSmallDisplayZoomType == (int)SmallDisplayZoom::MANUAL) {
float offsetX = (g_Config.fSmallDisplayOffsetX - 0.5f) * 2.0f * frame.w + frame.x;
float offsetY = (g_Config.fSmallDisplayOffsetY - 0.5f) * 2.0f * frame.h + frame.y;
// Have to invert Y for GL
if (GetGPUBackend() == GPUBackend::OPENGL) {
offsetY = offsetY * -1.0f;
}
float customZoom = g_Config.fSmallDisplayZoomLevel;
float smallDisplayW = origW * customZoom;
float smallDisplayH = origH * customZoom;
if (!rotated) {
rc->x = floorf(((frame.w - smallDisplayW) / 2.0f) + offsetX);
rc->y = floorf(((frame.h - smallDisplayH) / 2.0f) + offsetY);
rc->w = floorf(smallDisplayW);
rc->h = floorf(smallDisplayH);
return;
} else {
rc->x = floorf(((frame.w - smallDisplayH) / 2.0f) + offsetX);
rc->y = floorf(((frame.h - smallDisplayW) / 2.0f) + offsetY);
rc->w = floorf(smallDisplayH);
rc->h = floorf(smallDisplayW);
return;
}
} else if (g_Config.iSmallDisplayZoomType == (int)SmallDisplayZoom::AUTO) {
// Stretch to 1080 for 272*4. But don't distort if not widescreen (i.e. ultrawide of halfwide.)
float pixelCrop = frame.h / 270.0f;
float resCommonWidescreen = pixelCrop - floor(pixelCrop);
if (!rotated && resCommonWidescreen == 0.0f && frame.w >= pixelCrop * 480.0f) {
rc->x = floorf((frame.w - pixelCrop * 480.0f) * 0.5f + frame.x);
rc->y = floorf(-pixelCrop + frame.y);
rc->w = floorf(pixelCrop * 480.0f);
rc->h = floorf(pixelCrop * 272.0f);
return;
}
}
float origRatio = !rotated ? origW / origH : origH / origW;
float frameRatio = frame.w / frame.h;
if (origRatio > frameRatio) {
// Image is wider than frame. Center vertically.
outW = frame.w;
outH = frame.w / origRatio;
// Stretch a little bit
if (!rotated && g_Config.iSmallDisplayZoomType == (int)SmallDisplayZoom::PARTIAL_STRETCH)
outH = (frame.h + outH) / 2.0f; // (408 + 720) / 2 = 564
} else {
// Image is taller than frame. Center horizontally.
outW = frame.h * origRatio;
outH = frame.h;
if (rotated && g_Config.iSmallDisplayZoomType == (int)SmallDisplayZoom::PARTIAL_STRETCH)
outW = (frame.h + outH) / 2.0f; // (408 + 720) / 2 = 564
}
}
rc->x = floorf((frame.w - outW) / 2.0f + frame.x);
rc->y = floorf((frame.h - outH) / 2.0f + frame.y);
rc->w = floorf(outW);
rc->h = floorf(outH);
}
PresentationCommon::PresentationCommon(Draw::DrawContext *draw) : draw_(draw) {
CreateDeviceObjects();
}
PresentationCommon::~PresentationCommon() {
DestroyDeviceObjects();
}
void PresentationCommon::GetCardboardSettings(CardboardSettings *cardboardSettings) {
if (!g_Config.bEnableCardboardVR) {
cardboardSettings->enabled = false;
return;
}
// Calculate Cardboard Settings
float cardboardScreenScale = g_Config.iCardboardScreenSize / 100.0f;
float cardboardScreenWidth = pixelWidth_ / 2.0f * cardboardScreenScale;
float cardboardScreenHeight = pixelHeight_ / 2.0f * cardboardScreenScale;
float cardboardMaxXShift = (pixelWidth_ / 2.0f - cardboardScreenWidth) / 2.0f;
float cardboardUserXShift = g_Config.iCardboardXShift / 100.0f * cardboardMaxXShift;
float cardboardLeftEyeX = cardboardMaxXShift + cardboardUserXShift;
float cardboardRightEyeX = pixelWidth_ / 2.0f + cardboardMaxXShift - cardboardUserXShift;
float cardboardMaxYShift = pixelHeight_ / 2.0f - cardboardScreenHeight / 2.0f;
float cardboardUserYShift = g_Config.iCardboardYShift / 100.0f * cardboardMaxYShift;
float cardboardScreenY = cardboardMaxYShift + cardboardUserYShift;
cardboardSettings->enabled = true;
cardboardSettings->leftEyeXPosition = cardboardLeftEyeX;
cardboardSettings->rightEyeXPosition = cardboardRightEyeX;
cardboardSettings->screenYPosition = cardboardScreenY;
cardboardSettings->screenWidth = cardboardScreenWidth;
cardboardSettings->screenHeight = cardboardScreenHeight;
}
void PresentationCommon::CalculatePostShaderUniforms(int bufferWidth, int bufferHeight, int targetWidth, int targetHeight, const ShaderInfo *shaderInfo, PostShaderUniforms *uniforms) {
float u_delta = 1.0f / bufferWidth;
float v_delta = 1.0f / bufferHeight;
float u_pixel_delta = 1.0f / targetWidth;
float v_pixel_delta = 1.0f / targetHeight;
int flipCount = __DisplayGetFlipCount();
int vCount = __DisplayGetVCount();
float time[4] = { time_now(), (vCount % 60) * 1.0f / 60.0f, (float)vCount, (float)(flipCount % 60) };
uniforms->texelDelta[0] = u_delta;
uniforms->texelDelta[1] = v_delta;
uniforms->pixelDelta[0] = u_pixel_delta;
uniforms->pixelDelta[1] = v_pixel_delta;
memcpy(uniforms->time, time, 4 * sizeof(float));
uniforms->video = hasVideo_ ? 1.0f : 0.0f;
// The shader translator tacks this onto our shaders, if we don't set it they render garbage.
uniforms->gl_HalfPixel[0] = u_pixel_delta * 0.5f;
uniforms->gl_HalfPixel[1] = v_pixel_delta * 0.5f;
uniforms->setting[0] = g_Config.mPostShaderSetting[shaderInfo->section + "SettingValue1"];;
uniforms->setting[1] = g_Config.mPostShaderSetting[shaderInfo->section + "SettingValue2"];
uniforms->setting[2] = g_Config.mPostShaderSetting[shaderInfo->section + "SettingValue3"];
uniforms->setting[3] = g_Config.mPostShaderSetting[shaderInfo->section + "SettingValue4"];
}
static std::string ReadShaderSrc(const std::string &filename) {
size_t sz = 0;
char *data = (char *)VFSReadFile(filename.c_str(), &sz);
if (!data)
return "";
std::string src(data, sz);
free(data);
return src;
}
// Note: called on resize and settings changes.
bool PresentationCommon::UpdatePostShader() {
std::vector<const ShaderInfo *> shaderInfo;
if (g_Config.sPostShaderName != "Off") {
ReloadAllPostShaderInfo();
shaderInfo = GetPostShaderChain(g_Config.sPostShaderName);
}
DestroyPostShader();
if (shaderInfo.empty())
return false;
for (int i = 0; i < shaderInfo.size(); ++i) {
const ShaderInfo *next = i + 1 < shaderInfo.size() ? shaderInfo[i + 1] : nullptr;
if (!BuildPostShader(shaderInfo[i], next)) {
DestroyPostShader();
return false;
}
}
usePostShader_ = true;
return true;
}
bool PresentationCommon::BuildPostShader(const ShaderInfo *shaderInfo, const ShaderInfo *next) {
std::string vsSourceGLSL = ReadShaderSrc(shaderInfo->vertexShaderFile);
std::string fsSourceGLSL = ReadShaderSrc(shaderInfo->fragmentShaderFile);
if (vsSourceGLSL.empty() || fsSourceGLSL.empty()) {
return false;
}
std::string vsError, fsError;
Draw::ShaderModule *vs = CompileShaderModule(Draw::ShaderStage::VERTEX, GLSL_140, vsSourceGLSL, &vsError);
Draw::ShaderModule *fs = CompileShaderModule(Draw::ShaderStage::FRAGMENT, GLSL_140, fsSourceGLSL, &fsError);
// Don't worry, CompileShaderModule makes sure they get freed if one succeeded.
if (!fs || !vs) {
std::string errorString = vsError + "\n" + fsError;
// DO NOT turn this into a report, as it will pollute our logs with all kinds of
// user shader experiments.
ERROR_LOG(FRAMEBUF, "Failed to build post-processing program from %s and %s!\n%s", shaderInfo->vertexShaderFile.c_str(), shaderInfo->fragmentShaderFile.c_str(), errorString.c_str());
ShowPostShaderError(errorString);
return false;
}
Draw::UniformBufferDesc postShaderDesc{ sizeof(PostShaderUniforms), {
{ "gl_HalfPixel", 0, -1, Draw::UniformType::FLOAT4, offsetof(PostShaderUniforms, gl_HalfPixel) },
{ "u_texelDelta", 1, 1, Draw::UniformType::FLOAT2, offsetof(PostShaderUniforms, texelDelta) },
{ "u_pixelDelta", 2, 2, Draw::UniformType::FLOAT2, offsetof(PostShaderUniforms, pixelDelta) },
{ "u_time", 3, 3, Draw::UniformType::FLOAT4, offsetof(PostShaderUniforms, time) },
{ "u_setting", 4, 4, Draw::UniformType::FLOAT4, offsetof(PostShaderUniforms, setting) },
{ "u_video", 5, 5, Draw::UniformType::FLOAT1, offsetof(PostShaderUniforms, video) },
} };
Draw::Pipeline *pipeline = CreatePipeline({ vs, fs }, true, &postShaderDesc);
if (!pipeline)
return false;
if (!shaderInfo->outputResolution || next) {
int nextWidth = renderWidth_;
int nextHeight = renderHeight_;
// When chaining, we use the previous resolution as a base, rather than the render resolution.
if (!postShaderFramebuffers_.empty())
draw_->GetFramebufferDimensions(postShaderFramebuffers_.back(), &nextWidth, &nextHeight);
if (next && next->isUpscalingFilter) {
// Force 1x for this shader, so the next can upscale.
const bool isPortrait = g_Config.IsPortrait();
nextWidth = isPortrait ? 272 : 480;
nextHeight = isPortrait ? 480 : 272;
} else if (next && next->SSAAFilterLevel >= 2) {
// Increase the resolution this shader outputs for the next to SSAA.
nextWidth *= next->SSAAFilterLevel;
nextHeight *= next->SSAAFilterLevel;
} else if (shaderInfo->outputResolution) {
// If the current shader uses output res (not next), we will use output res for it.
FRect rc;
FRect frame = GetScreenFrame((float)pixelWidth_, (float)pixelHeight_);
CenterDisplayOutputRect(&rc, 480.0f, 272.0f, frame, g_Config.iInternalScreenRotation);
nextWidth = (int)rc.w;
nextHeight = (int)rc.h;
}
if (!AllocateFramebuffer(nextWidth, nextHeight)) {
pipeline->Release();
return false;
}
}
postShaderPipelines_.push_back(pipeline);
postShaderInfo_.push_back(*shaderInfo);
return true;
}
bool PresentationCommon::AllocateFramebuffer(int w, int h) {
using namespace Draw;
// First, let's try to find a framebuffer of the right size that is NOT the most recent.
Framebuffer *last = postShaderFramebuffers_.empty() ? nullptr : postShaderFramebuffers_.back();
for (const auto &prev : postShaderFBOUsage_) {
if (prev.w == w && prev.h == h && prev.fbo != last) {
// Great, this one's perfect. Ref it for when we release.
prev.fbo->AddRef();
postShaderFramebuffers_.push_back(prev.fbo);
return true;
}
}
// No depth/stencil for post processing
Draw::Framebuffer *fbo = draw_->CreateFramebuffer({ w, h, 1, 1, false, Draw::FBO_8888 });
if (!fbo) {
return false;
}
postShaderFBOUsage_.push_back({ fbo, w, h });
postShaderFramebuffers_.push_back(fbo);
return true;
}
void PresentationCommon::ShowPostShaderError(const std::string &errorString) {
// let's show the first line of the error string as an OSM.
std::set<std::string> blacklistedLines;
// These aren't useful to show, skip to the first interesting line.
blacklistedLines.insert("Fragment shader failed to compile with the following errors:");
blacklistedLines.insert("Vertex shader failed to compile with the following errors:");
blacklistedLines.insert("Compile failed.");
blacklistedLines.insert("");
std::string firstLine;
size_t start = 0;
for (size_t i = 0; i < errorString.size(); i++) {
if (errorString[i] == '\n' && i == start) {
start = i + 1;
} else if (errorString[i] == '\n') {
firstLine = errorString.substr(start, i - start);
if (blacklistedLines.find(firstLine) == blacklistedLines.end()) {
break;
}
start = i + 1;
firstLine.clear();
}
}
if (!firstLine.empty()) {
host->NotifyUserMessage("Post-shader error: " + firstLine + "...", 10.0f, 0xFF3090FF);
} else {
host->NotifyUserMessage("Post-shader error, see log for details", 10.0f, 0xFF3090FF);
}
}
void PresentationCommon::DeviceLost() {
DestroyDeviceObjects();
}
void PresentationCommon::DeviceRestore(Draw::DrawContext *draw) {
draw_ = draw;
CreateDeviceObjects();
}
Draw::Pipeline *PresentationCommon::CreatePipeline(std::vector<Draw::ShaderModule *> shaders, bool postShader, const Draw::UniformBufferDesc *uniformDesc) {
using namespace Draw;
Semantic pos = SEM_POSITION;
Semantic tc = SEM_TEXCOORD0;
// Shader translation marks these both as "TEXCOORDs" on HLSL...
if (postShader && (lang_ == HLSL_D3D11 || lang_ == HLSL_D3D11_LEVEL9 || lang_ == HLSL_DX9)) {
pos = SEM_TEXCOORD0;
tc = SEM_TEXCOORD1;
}
// TODO: Maybe get rid of color0.
InputLayoutDesc inputDesc = {
{
{ sizeof(Vertex), false },
},
{
{ 0, pos, DataFormat::R32G32B32_FLOAT, 0 },
{ 0, tc, DataFormat::R32G32_FLOAT, 12 },
{ 0, SEM_COLOR0, DataFormat::R8G8B8A8_UNORM, 20 },
},
};
InputLayout *inputLayout = draw_->CreateInputLayout(inputDesc);
DepthStencilState *depth = draw_->CreateDepthStencilState({ false, false, Comparison::LESS });
BlendState *blendstateOff = draw_->CreateBlendState({ false, 0xF });
RasterState *rasterNoCull = draw_->CreateRasterState({});
PipelineDesc pipelineDesc{ Primitive::TRIANGLE_LIST, shaders, inputLayout, depth, blendstateOff, rasterNoCull, uniformDesc };
Pipeline *pipeline = draw_->CreateGraphicsPipeline(pipelineDesc);
inputLayout->Release();
depth->Release();
blendstateOff->Release();
rasterNoCull->Release();
return pipeline;
}
void PresentationCommon::CreateDeviceObjects() {
using namespace Draw;
assert(vdata_ == nullptr);
vdata_ = draw_->CreateBuffer(sizeof(Vertex) * 8, BufferUsageFlag::DYNAMIC | BufferUsageFlag::VERTEXDATA);
// TODO: Use 4 and a strip?
idata_ = draw_->CreateBuffer(sizeof(uint16_t) * 6, BufferUsageFlag::DYNAMIC | BufferUsageFlag::INDEXDATA);
uint16_t indexes[] = { 0, 1, 2, 0, 2, 3 };
draw_->UpdateBuffer(idata_, (const uint8_t *)indexes, 0, sizeof(indexes), Draw::UPDATE_DISCARD);
samplerNearest_ = draw_->CreateSamplerState({ TextureFilter::NEAREST, TextureFilter::NEAREST, TextureFilter::NEAREST, 0.0f, TextureAddressMode::CLAMP_TO_EDGE, TextureAddressMode::CLAMP_TO_EDGE, TextureAddressMode::CLAMP_TO_EDGE });
samplerLinear_ = draw_->CreateSamplerState({ TextureFilter::LINEAR, TextureFilter::LINEAR, TextureFilter::LINEAR, 0.0f, TextureAddressMode::CLAMP_TO_EDGE, TextureAddressMode::CLAMP_TO_EDGE, TextureAddressMode::CLAMP_TO_EDGE });
texColor_ = CreatePipeline({ draw_->GetVshaderPreset(VS_TEXTURE_COLOR_2D), draw_->GetFshaderPreset(FS_TEXTURE_COLOR_2D) }, false, &vsTexColBufDesc);
texColorRBSwizzle_ = CreatePipeline({ draw_->GetVshaderPreset(VS_TEXTURE_COLOR_2D), draw_->GetFshaderPreset(FS_TEXTURE_COLOR_2D_RB_SWIZZLE) }, false, &vsTexColBufDesc);
if (restorePostShader_)
UpdatePostShader();
restorePostShader_ = false;
}
template <typename T>
static void DoRelease(T *&obj) {
if (obj)
obj->Release();
obj = nullptr;
}
template <typename T>
static void DoReleaseVector(std::vector<T *> &list) {
for (auto &obj : list)
obj->Release();
list.clear();
}
void PresentationCommon::DestroyDeviceObjects() {
DoRelease(texColor_);
DoRelease(texColorRBSwizzle_);
DoRelease(samplerNearest_);
DoRelease(samplerLinear_);
DoRelease(vdata_);
DoRelease(idata_);
DoRelease(srcTexture_);
DoRelease(srcFramebuffer_);
restorePostShader_ = usePostShader_;
DestroyPostShader();
}
void PresentationCommon::DestroyPostShader() {
usePostShader_ = false;
DoReleaseVector(postShaderModules_);
DoReleaseVector(postShaderPipelines_);
DoReleaseVector(postShaderFramebuffers_);
postShaderInfo_.clear();
postShaderFBOUsage_.clear();
}
Draw::ShaderModule *PresentationCommon::CompileShaderModule(Draw::ShaderStage stage, ShaderLanguage lang, const std::string &src, std::string *errorString) {
std::string translated = src;
bool translationFailed = false;
if (lang != lang_) {
// Gonna have to upconvert the shader.
if (!TranslateShader(&translated, lang_, nullptr, src, lang, stage, errorString)) {
ERROR_LOG(FRAMEBUF, "Failed to translate post-shader: %s", errorString->c_str());
return nullptr;
}
}
Draw::ShaderLanguage mappedLang;
// These aren't exact, unfortunately, but we just need the type Draw will accept.
switch (lang_) {
case GLSL_140:
mappedLang = Draw::ShaderLanguage::GLSL_ES_200;
break;
case GLSL_300:
mappedLang = Draw::ShaderLanguage::GLSL_410;
break;
case GLSL_VULKAN:
mappedLang = Draw::ShaderLanguage::GLSL_VULKAN;
break;
case HLSL_DX9:
mappedLang = Draw::ShaderLanguage::HLSL_D3D9;
break;
case HLSL_D3D11:
case HLSL_D3D11_LEVEL9:
mappedLang = Draw::ShaderLanguage::HLSL_D3D11;
break;
default:
mappedLang = Draw::ShaderLanguage::GLSL_ES_200;
break;
}
Draw::ShaderModule *shader = draw_->CreateShaderModule(stage, mappedLang, (const uint8_t *)translated.c_str(), translated.size(), "postshader");
if (shader)
postShaderModules_.push_back(shader);
return shader;
}
void PresentationCommon::SourceTexture(Draw::Texture *texture, int bufferWidth, int bufferHeight) {
DoRelease(srcTexture_);
DoRelease(srcFramebuffer_);
texture->AddRef();
srcTexture_ = texture;
srcWidth_ = bufferWidth;
srcHeight_ = bufferHeight;
}
void PresentationCommon::SourceFramebuffer(Draw::Framebuffer *fb, int bufferWidth, int bufferHeight) {
DoRelease(srcTexture_);
DoRelease(srcFramebuffer_);
fb->AddRef();
srcFramebuffer_ = fb;
srcWidth_ = bufferWidth;
srcHeight_ = bufferHeight;
}
void PresentationCommon::BindSource(int binding) {
if (srcTexture_) {
draw_->BindTexture(binding, srcTexture_);
} else if (srcFramebuffer_) {
draw_->BindFramebufferAsTexture(srcFramebuffer_, binding, Draw::FB_COLOR_BIT, 0);
} else {
assert(false);
}
}
void PresentationCommon::UpdateUniforms(bool hasVideo) {
hasVideo_ = hasVideo;
}
void PresentationCommon::CopyToOutput(OutputFlags flags, int uvRotation, float u0, float v0, float u1, float v1) {
// Make sure Direct3D 11 clears state, since we set shaders outside Draw.
draw_->BindPipeline(nullptr);
// TODO: If shader objects have been created by now, we might have received errors.
// GLES can have the shader fail later, shader->failed / shader->error.
// This should auto-disable usePostShader_ and call ShowPostShaderError().
bool useNearest = flags & OutputFlags::NEAREST;
const bool usePostShader = usePostShader_ && !(flags & OutputFlags::RB_SWIZZLE);
const bool isFinalAtOutputResolution = usePostShader && postShaderFramebuffers_.size() < postShaderPipelines_.size();
bool usePostShaderOutput = false;
int lastWidth = srcWidth_;
int lastHeight = srcHeight_;
// These are the output coordinates.
FRect frame = GetScreenFrame((float)pixelWidth_, (float)pixelHeight_);
FRect rc;
CenterDisplayOutputRect(&rc, 480.0f, 272.0f, frame, uvRotation);
if (GetGPUBackend() == GPUBackend::DIRECT3D9) {
rc.x -= 0.5f;
// This is plus because the top is larger y.
rc.y += 0.5f;
}
if ((flags & OutputFlags::BACKBUFFER_FLIPPED) || (flags & OutputFlags::POSITION_FLIPPED)) {
std::swap(v0, v1);
}
// To make buffer updates easier, we use one array of verts.
int postVertsOffset = (int)sizeof(Vertex) * 4;
Vertex verts[8] = {
{ rc.x, rc.y, 0, u0, v0, 0xFFFFFFFF }, // TL
{ rc.x, rc.y + rc.h, 0, u0, v1, 0xFFFFFFFF }, // BL
{ rc.x + rc.w, rc.y + rc.h, 0, u1, v1, 0xFFFFFFFF }, // BR
{ rc.x + rc.w, rc.y, 0, u1, v0, 0xFFFFFFFF }, // TR
};
float invDestW = 1.0f / (pixelWidth_ * 0.5f);
float invDestH = 1.0f / (pixelHeight_ * 0.5f);
for (int i = 0; i < 4; i++) {
verts[i].x = verts[i].x * invDestW - 1.0f;
verts[i].y = verts[i].y * invDestH - 1.0f;
}
if (uvRotation != ROTATION_LOCKED_HORIZONTAL) {
struct {
float u;
float v;
} temp[4];
int rotation = 0;
// Vertical and Vertical180 needed swapping after we changed the coordinate system.
switch (uvRotation) {
case ROTATION_LOCKED_HORIZONTAL180: rotation = 2; break;
case ROTATION_LOCKED_VERTICAL: rotation = 3; break;
case ROTATION_LOCKED_VERTICAL180: rotation = 1; break;
}
// If we flipped, we rotate the other way.
if ((flags & OutputFlags::BACKBUFFER_FLIPPED) || (flags & OutputFlags::POSITION_FLIPPED)) {
if ((rotation & 1) != 0)
rotation ^= 2;
}
for (int i = 0; i < 4; i++) {
temp[i].u = verts[(i + rotation) & 3].u;
temp[i].v = verts[(i + rotation) & 3].v;
}
for (int i = 0; i < 4; i++) {
verts[i].u = temp[i].u;
verts[i].v = temp[i].v;
}
}
if (isFinalAtOutputResolution) {
// In this mode, we ignore the g_display_rot_matrix. Apply manually.
if (g_display_rotation != DisplayRotation::ROTATE_0) {
for (int i = 0; i < 4; i++) {
Lin::Vec3 v(verts[i].x, verts[i].y, verts[i].z);
// Backwards notation, should fix that...
v = v * g_display_rot_matrix;
verts[i].x = v.x;
verts[i].y = v.y;
}
}
}
if (flags & OutputFlags::PILLARBOX) {
for (int i = 0; i < 4; i++) {
// Looks about right.
verts[i].x *= 0.75f;
}
}
if (usePostShader) {
bool flipped = flags & OutputFlags::POSITION_FLIPPED;
float post_v0 = !flipped ? 1.0f : 0.0f;
float post_v1 = !flipped ? 0.0f : 1.0f;
verts[4] = { -1, -1, 0, 0, post_v1, 0xFFFFFFFF }; // TL
verts[5] = { -1, 1, 0, 0, post_v0, 0xFFFFFFFF }; // BL
verts[6] = { 1, 1, 0, 1, post_v0, 0xFFFFFFFF }; // BR
verts[7] = { 1, -1, 0, 1, post_v1, 0xFFFFFFFF }; // TR
draw_->UpdateBuffer(vdata_, (const uint8_t *)verts, 0, sizeof(verts), Draw::UPDATE_DISCARD);
for (size_t i = 0; i < postShaderFramebuffers_.size(); ++i) {
Draw::Pipeline *postShaderPipeline = postShaderPipelines_[i];
const ShaderInfo *shaderInfo = &postShaderInfo_[i];
Draw::Framebuffer *postShaderFramebuffer = postShaderFramebuffers_[i];
draw_->BindFramebufferAsRenderTarget(postShaderFramebuffer, { Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE }, "PostShader");
if (usePostShaderOutput) {
draw_->BindFramebufferAsTexture(postShaderFramebuffers_[i - 1], 0, Draw::FB_COLOR_BIT, 0);
} else {
BindSource(0);
}
BindSource(1);
int nextWidth, nextHeight;
draw_->GetFramebufferDimensions(postShaderFramebuffer, &nextWidth, &nextHeight);
Draw::Viewport viewport{ 0, 0, (float)nextWidth, (float)nextHeight, 0.0f, 1.0f };
draw_->SetViewports(1, &viewport);
draw_->SetScissorRect(0, 0, nextWidth, nextHeight);
PostShaderUniforms uniforms;
CalculatePostShaderUniforms(lastWidth, lastHeight, nextWidth, nextHeight, shaderInfo, &uniforms);
draw_->BindPipeline(postShaderPipeline);
draw_->UpdateDynamicUniformBuffer(&uniforms, sizeof(uniforms));
Draw::SamplerState *sampler = useNearest || shaderInfo->isUpscalingFilter ? samplerNearest_ : samplerLinear_;
draw_->BindSamplerStates(0, 1, &sampler);
draw_->BindSamplerStates(1, 1, &sampler);
draw_->BindVertexBuffers(0, 1, &vdata_, &postVertsOffset);
draw_->BindIndexBuffer(idata_, 0);
draw_->DrawIndexed(6, 0);
draw_->BindIndexBuffer(nullptr, 0);
usePostShaderOutput = true;
lastWidth = nextWidth;
lastHeight = nextHeight;
}
if (isFinalAtOutputResolution && postShaderInfo_.back().isUpscalingFilter)
useNearest = true;
} else {
draw_->UpdateBuffer(vdata_, (const uint8_t *)verts, 0, postVertsOffset, Draw::UPDATE_DISCARD);
}
Draw::Pipeline *pipeline = flags & OutputFlags::RB_SWIZZLE ? texColorRBSwizzle_ : texColor_;
if (isFinalAtOutputResolution) {
pipeline = postShaderPipelines_.back();
}
draw_->BindFramebufferAsRenderTarget(nullptr, { Draw::RPAction::CLEAR, Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE }, "FinalBlit");
draw_->SetScissorRect(0, 0, pixelWidth_, pixelHeight_);
draw_->BindPipeline(pipeline);
if (usePostShaderOutput) {
draw_->BindFramebufferAsTexture(postShaderFramebuffers_.back(), 0, Draw::FB_COLOR_BIT, 0);
} else {
BindSource(0);
}
BindSource(1);
if (isFinalAtOutputResolution) {
PostShaderUniforms uniforms;
CalculatePostShaderUniforms(lastWidth, lastHeight, (int)rc.w, (int)rc.h, &postShaderInfo_.back(), &uniforms);
draw_->UpdateDynamicUniformBuffer(&uniforms, sizeof(uniforms));
} else {
Draw::VsTexColUB ub{};
memcpy(ub.WorldViewProj, g_display_rot_matrix.m, sizeof(float) * 16);
draw_->UpdateDynamicUniformBuffer(&ub, sizeof(ub));
}
draw_->BindVertexBuffers(0, 1, &vdata_, nullptr);
draw_->BindIndexBuffer(idata_, 0);
Draw::SamplerState *sampler = useNearest ? samplerNearest_ : samplerLinear_;
draw_->BindSamplerStates(0, 1, &sampler);
draw_->BindSamplerStates(1, 1, &sampler);
auto setViewport = [&](float x, float y, float w, float h) {
Draw::Viewport viewport{ x, y, w, h, 0.0f, 1.0f };
draw_->SetViewports(1, &viewport);
};
CardboardSettings cardboardSettings;
GetCardboardSettings(&cardboardSettings);
if (cardboardSettings.enabled) {
// This is what the left eye sees.
setViewport(cardboardSettings.leftEyeXPosition, cardboardSettings.screenYPosition, cardboardSettings.screenWidth, cardboardSettings.screenHeight);
draw_->DrawIndexed(6, 0);
// And this is the right eye, unless they're a pirate.
setViewport(cardboardSettings.rightEyeXPosition, cardboardSettings.screenYPosition, cardboardSettings.screenWidth, cardboardSettings.screenHeight);
draw_->DrawIndexed(6, 0);
} else {
setViewport(0.0f, 0.0f, (float)pixelWidth_, (float)pixelHeight_);
draw_->DrawIndexed(6, 0);
}
draw_->BindIndexBuffer(nullptr, 0);
DoRelease(srcFramebuffer_);
DoRelease(srcTexture_);
// Unbinds all textures and samplers too, needed since sometimes a MakePixelTexture is deleted etc.
draw_->BindPipeline(nullptr);
}
void PresentationCommon::CalculateRenderResolution(int *width, int *height, bool *upscaling, bool *ssaa) {
// Check if postprocessing shader is doing upscaling as it requires native resolution
std::vector<const ShaderInfo *> shaderInfo;
if (g_Config.sPostShaderName != "Off") {
ReloadAllPostShaderInfo();
shaderInfo = GetPostShaderChain(g_Config.sPostShaderName);
}
bool firstIsUpscalingFilter = shaderInfo.empty() ? false : shaderInfo.front()->isUpscalingFilter;
int firstSSAAFilterLevel = shaderInfo.empty() ? 0 : shaderInfo.front()->SSAAFilterLevel;
// Actually, auto mode should be more granular...
// Round up to a zoom factor for the render size.
int zoom = g_Config.iInternalResolution;
if (zoom == 0 || firstSSAAFilterLevel >= 2) {
// auto mode, use the longest dimension
if (!g_Config.IsPortrait()) {
zoom = (PSP_CoreParameter().pixelWidth + 479) / 480;
} else {
zoom = (PSP_CoreParameter().pixelHeight + 479) / 480;
}
if (firstSSAAFilterLevel >= 2)
zoom *= firstSSAAFilterLevel;
}
if (zoom <= 1 || firstIsUpscalingFilter)
zoom = 1;
if (upscaling) {
*upscaling = firstIsUpscalingFilter;
for (auto &info : shaderInfo) {
*upscaling = *upscaling || info->isUpscalingFilter;
}
}
if (ssaa) {
*ssaa = firstSSAAFilterLevel >= 2;
for (auto &info : shaderInfo) {
*ssaa = *ssaa || info->SSAAFilterLevel >= 2;
}
}
if (g_Config.IsPortrait()) {
*width = 272 * zoom;
*height = 480 * zoom;
} else {
*width = 480 * zoom;
*height = 272 * zoom;
}
}