ppsspp/Core/HLE/sceKernelHeap.cpp
Unknown W. Brackets 32feb82d16 HLE: Capture better allocation names.
We know which FPL, so don't just say "FPL".
2023-09-02 22:55:45 -07:00

178 lines
7.3 KiB
C++

#include <string>
#include "Common/Serialize/Serializer.h"
#include "Common/Serialize/SerializeFuncs.h"
#include "Common/StringUtils.h"
#include "Core/HLE/HLE.h"
#include "Core/HLE/FunctionWrappers.h"
#include "Core/HLE/sceKernel.h"
#include "Core/HLE/sceKernelHeap.h"
#include "Core/HLE/sceKernelMemory.h"
#include "Core/Reporting.h"
#include "Core/Util/BlockAllocator.h"
static const u32 KERNEL_HEAP_BLOCK_HEADER_SIZE = 8;
static const bool g_fromBottom = false;
// This object and the functions here are available for kernel code only, not game code.
// This differs from code like sceKernelMutex, which is available for games.
// This exists in PPSSPP mainly because certain game patches use these kernel modules.
struct KernelHeap : public KernelObject {
int uid = 0;
int partitionId = 0;
u32 size = 0;
int flags = 0;
u32 address = 0;
std::string name;
BlockAllocator alloc;
static u32 GetMissingErrorCode() { return SCE_KERNEL_ERROR_UNKNOWN_UID; }
static int GetStaticIDType() { return PPSSPP_KERNEL_TMID_Heap; }
int GetIDType() const override { return PPSSPP_KERNEL_TMID_Heap; }
const char *GetTypeName() override { return GetStaticTypeName(); }
static const char *GetStaticTypeName() { return "Heap"; }
void DoState(PointerWrap &p) override {
Do(p, uid);
Do(p, partitionId);
Do(p, size);
Do(p, flags);
Do(p, address);
Do(p, name);
Do(p, alloc);
}
};
static int sceKernelCreateHeap(int partitionId, int size, int flags, const char *Name) {
u32 allocSize = (size + 3) & ~3;
BlockAllocator *allocator = BlockAllocatorFromAddr(partitionId);
// TODO: Validate error code.
if (!allocator)
return hleLogError(SCEKERNEL, SCE_KERNEL_ERROR_ILLEGAL_ARGUMENT, "invalid partition");
// TODO: This should probably actually use flags? Name?
u32 addr = allocator->Alloc(allocSize, g_fromBottom, StringFromFormat("KernelHeap/%s", Name).c_str());
if (addr == (u32)-1) {
// TODO: Validate error code.
return hleLogError(SCEKERNEL, SCE_KERNEL_ERROR_NO_MEMORY, "fFailed to allocate %d bytes of memory", size);
}
KernelHeap *heap = new KernelHeap();
SceUID uid = kernelObjects.Create(heap);
heap->partitionId = partitionId;
heap->flags = flags;
heap->name = Name ? Name : ""; // Not sure if this needs validation.
heap->size = allocSize;
heap->address = addr;
heap->alloc.Init(heap->address + 128, heap->size - 128, true);
heap->uid = uid;
return hleLogSuccessInfoX(SCEKERNEL, uid);
}
static int sceKernelAllocHeapMemory(int heapId, int size) {
u32 error;
KernelHeap *heap = kernelObjects.Get<KernelHeap>(heapId, error);
if (!heap)
return hleLogError(SCEKERNEL, error, "sceKernelAllocHeapMemory(%d): invalid heapId", heapId);
// There's 8 bytes at the end of every block, reserved.
u32 memSize = KERNEL_HEAP_BLOCK_HEADER_SIZE + size;
u32 addr = heap->alloc.Alloc(memSize, true);
return hleLogSuccessInfoX(SCEKERNEL, addr);
}
static int sceKernelDeleteHeap(int heapId) {
u32 error;
KernelHeap *heap = kernelObjects.Get<KernelHeap>(heapId, error);
if (!heap)
return hleLogError(SCEKERNEL, error, "sceKernelDeleteHeap(%d): invalid heapId", heapId);
// Not using heap->partitionId here for backwards compatibility with old save states.
BlockAllocator *allocator = BlockAllocatorFromAddr(heap->address);
if (allocator)
allocator->Free(heap->address);
kernelObjects.Destroy<KernelHeap>(heap->uid);
return hleLogSuccessInfoX(SCEKERNEL, 0);
}
static u32 sceKernelPartitionTotalFreeMemSize(int partitionId) {
BlockAllocator *allocator = BlockAllocatorFromID(partitionId);
// TODO: Validate error code.
if (!allocator)
return hleLogError(SCEKERNEL, SCE_KERNEL_ERROR_ILLEGAL_ARGUMENT, "invalid partition");
return hleLogWarning(SCEKERNEL, allocator->GetTotalFreeBytes());
}
static u32 sceKernelPartitionMaxFreeMemSize(int partitionId) {
BlockAllocator *allocator = BlockAllocatorFromID(partitionId);
// TODO: Validate error code.
if (!allocator)
return hleLogError(SCEKERNEL, SCE_KERNEL_ERROR_ILLEGAL_ARGUMENT, "invalid partition");
return hleLogWarning(SCEKERNEL, allocator->GetLargestFreeBlockSize());
}
static u32 sceKernelGetUidmanCB()
{
ERROR_LOG_REPORT(SCEKERNEL, "UNIMP sceKernelGetUidmanCB");
return 0;
}
static int sceKernelFreeHeapMemory(int heapId, u32 block) {
u32 error;
KernelHeap* heap = kernelObjects.Get<KernelHeap>(heapId, error);
if (!heap)
return hleLogError(SCEKERNEL, error, "sceKernelFreeHeapMemory(%d): invalid heapId", heapId);
if (block == 0) {
return hleLogSuccessInfoI(SCEKERNEL, 0, "sceKernelFreeHeapMemory(%d): heapId,0: block", heapId);
}
if (!heap->alloc.FreeExact(block)) {
return hleLogError(SCEKERNEL, SCE_KERNEL_ERROR_INVALID_POINTER, "invalid pointer %08x", block);
}
return hleLogSuccessInfoI(SCEKERNEL, 0, "sceKernelFreeHeapMemory(%d): heapId, block", heapId, block);
}
static int sceKernelAllocHeapMemoryWithOption(int heapId, u32 memSize, u32 paramsPtr) {
u32 error;
KernelHeap* heap = kernelObjects.Get<KernelHeap>(heapId, error);
if (!heap)
return hleLogError(SCEKERNEL, error, "sceKernelFreeHeapMemory(%d): invalid heapId", heapId);
u32 grain = 4;
// 0 is ignored.
if (paramsPtr != 0) {
u32 size = Memory::Read_U32(paramsPtr);
if (size < 8)
return hleLogError(SCEKERNEL, 0, "invalid param size");
if (size > 8)
WARN_LOG(HLE, "sceKernelAllocHeapMemoryWithOption(): unexpected param size %d", size);
grain = Memory::Read_U32(paramsPtr + 4);
}
INFO_LOG(HLE, "sceKernelAllocHeapMemoryWithOption(%08x, %08x, %08x)", heapId, memSize, paramsPtr);
// There's 8 bytes at the end of every block, reserved.
memSize += 8;
u32 addr = heap->alloc.AllocAligned(memSize, grain, grain, true);
return addr;
}
const HLEFunction SysMemForKernel[] = {
{ 0X636C953B, &WrapI_II<sceKernelAllocHeapMemory>, "sceKernelAllocHeapMemory", 'x', "ii", HLE_KERNEL_SYSCALL },
{ 0XC9805775, &WrapI_I<sceKernelDeleteHeap>, "sceKernelDeleteHeap", 'i', "i" , HLE_KERNEL_SYSCALL },
{ 0X1C1FBFE7, &WrapI_IIIC<sceKernelCreateHeap>, "sceKernelCreateHeap", 'i', "iixs", HLE_KERNEL_SYSCALL },
{ 0X237DBD4F, &WrapI_ICIUU<sceKernelAllocPartitionMemory>, "sceKernelAllocPartitionMemory", 'i', "isixx", HLE_KERNEL_SYSCALL },
{ 0XB6D61D02, &WrapI_I<sceKernelFreePartitionMemory>, "sceKernelFreePartitionMemory", 'i', "i", HLE_KERNEL_SYSCALL },
{ 0X9D9A5BA1, &WrapU_I<sceKernelGetBlockHeadAddr>, "sceKernelGetBlockHeadAddr", 'x', "i", HLE_KERNEL_SYSCALL },
{ 0x9697CD32, &WrapU_I<sceKernelPartitionTotalFreeMemSize>, "sceKernelPartitionTotalFreeMemSize", 'x', "i" , HLE_KERNEL_SYSCALL },
{ 0xE6581468, &WrapU_I<sceKernelPartitionMaxFreeMemSize>, "sceKernelPartitionMaxFreeMemSize", 'x', "i" , HLE_KERNEL_SYSCALL },
{ 0X3FC9AE6A, &WrapU_V<sceKernelDevkitVersion>, "sceKernelDevkitVersion", 'x', "" , HLE_KERNEL_SYSCALL },
{ 0X536AD5E1, &WrapU_V<sceKernelGetUidmanCB>, "sceKernelGetUidmanCB", 'i', "i" , HLE_KERNEL_SYSCALL },
{ 0X7B749390, &WrapI_IU<sceKernelFreeHeapMemory>, "sceKernelFreeHeapMemory", 'i', "ix" , HLE_KERNEL_SYSCALL },
{ 0XEB7A74DB, &WrapI_IUU<sceKernelAllocHeapMemoryWithOption>, "sceKernelAllocHeapMemoryWithOption", 'i', "ixp" , HLE_KERNEL_SYSCALL },
};
void Register_SysMemForKernel() {
RegisterModule("SysMemForKernel", ARRAY_SIZE(SysMemForKernel), SysMemForKernel);
}