mirror of
https://github.com/hrydgard/ppsspp.git
synced 2024-11-27 15:30:35 +00:00
625 lines
23 KiB
C++
625 lines
23 KiB
C++
// See comment in header for the purpose of the code in this file.
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
|
|
#include "Common/Common.h"
|
|
#include "Common/Data/Convert/ColorConv.h"
|
|
#include "Common/Profiler/Profiler.h"
|
|
#include "Common/StringUtils.h"
|
|
|
|
#include "Core/Config.h"
|
|
#include "Core/Debugger/MemBlockInfo.h"
|
|
#include "Core/MemMap.h"
|
|
#include "Core/Reporting.h"
|
|
#include "Core/System.h"
|
|
#include "GPU/GPUState.h"
|
|
|
|
#include "GPU/Common/TextureCacheCommon.h"
|
|
#include "GPU/Software/BinManager.h"
|
|
#include "GPU/Software/DrawPixel.h"
|
|
#include "GPU/Software/Rasterizer.h"
|
|
#include "GPU/Software/Sampler.h"
|
|
#include "GPU/Software/SoftGpu.h"
|
|
|
|
#if defined(_M_SSE)
|
|
#include <emmintrin.h>
|
|
#endif
|
|
|
|
extern DSStretch g_DarkStalkerStretch;
|
|
// For Darkstalkers hack. Ugh.
|
|
extern bool currentDialogActive;
|
|
|
|
namespace Rasterizer {
|
|
|
|
// This essentially AlphaBlendingResult() with fixed src.a / 1 - src.a factors and ADD equation.
|
|
// It allows us to skip round trips between 32-bit and 16-bit color values.
|
|
static uint32_t StandardAlphaBlend(uint32_t source, uint32_t dst) {
|
|
#if defined(_M_SSE)
|
|
const __m128i alpha = _mm_cvtsi32_si128(source >> 24);
|
|
// Keep the alpha lane of the srcfactor zero, so we keep dest alpha.
|
|
const __m128i srcfactor = _mm_shufflelo_epi16(alpha, _MM_SHUFFLE(1, 0, 0, 0));
|
|
const __m128i dstfactor = _mm_sub_epi16(_mm_set1_epi16(255), srcfactor);
|
|
|
|
const __m128i z = _mm_setzero_si128();
|
|
const __m128i sourcevec = _mm_unpacklo_epi8(_mm_cvtsi32_si128(source), z);
|
|
const __m128i dstvec = _mm_unpacklo_epi8(_mm_cvtsi32_si128(dst), z);
|
|
|
|
// We switch to 16 bit to use mulhi, and we use 4 bits of decimal to make the 16 bit shift free.
|
|
const __m128i half = _mm_set1_epi16(1 << 3);
|
|
|
|
const __m128i srgb = _mm_add_epi16(_mm_slli_epi16(sourcevec, 4), half);
|
|
const __m128i sf = _mm_add_epi16(_mm_slli_epi16(srcfactor, 4), half);
|
|
const __m128i s = _mm_mulhi_epi16(srgb, sf);
|
|
|
|
const __m128i drgb = _mm_add_epi16(_mm_slli_epi16(dstvec, 4), half);
|
|
const __m128i df = _mm_add_epi16(_mm_slli_epi16(dstfactor, 4), half);
|
|
const __m128i d = _mm_mulhi_epi16(drgb, df);
|
|
|
|
const __m128i blended16 = _mm_adds_epi16(s, d);
|
|
return _mm_cvtsi128_si32(_mm_packus_epi16(blended16, blended16));
|
|
#else
|
|
Vec3<int> srcfactor = Vec3<int>::AssignToAll(source >> 24);
|
|
Vec3<int> dstfactor = Vec3<int>::AssignToAll(255 - (source >> 24));
|
|
|
|
static constexpr Vec3<int> half = Vec3<int>::AssignToAll(1);
|
|
Vec3<int> lhs = ((Vec3<int>::FromRGB(source) * 2 + half) * (srcfactor * 2 + half)) / 1024;
|
|
Vec3<int> rhs = ((Vec3<int>::FromRGB(dst) * 2 + half) * (dstfactor * 2 + half)) / 1024;
|
|
Vec3<int> blended = lhs + rhs;
|
|
|
|
return clamp_u8(blended.r()) | (clamp_u8(blended.g()) << 8) | (clamp_u8(blended.b()) << 16);
|
|
#endif
|
|
}
|
|
|
|
// Through mode, with the specific Darkstalker settings.
|
|
inline void DrawSinglePixel5551(u16 *pixel, const u32 color_in) {
|
|
u32 new_color;
|
|
// Because of this check, we only support src.a / 1-src.a blending.
|
|
if ((color_in >> 24) == 255) {
|
|
new_color = color_in & 0xFFFFFF;
|
|
} else {
|
|
const u32 old_color = RGBA5551ToRGBA8888(*pixel);
|
|
new_color = StandardAlphaBlend(color_in, old_color);
|
|
}
|
|
new_color |= (*pixel & 0x8000) ? 0xff000000 : 0x00000000;
|
|
*pixel = RGBA8888ToRGBA5551(new_color);
|
|
}
|
|
|
|
// Check if we can safely ignore the alpha test, assuming standard alpha blending.
|
|
static inline bool AlphaTestIsNeedless(const PixelFuncID &pixelID) {
|
|
switch (pixelID.AlphaTestFunc()) {
|
|
case GE_COMP_NEVER:
|
|
case GE_COMP_EQUAL:
|
|
case GE_COMP_LESS:
|
|
case GE_COMP_LEQUAL:
|
|
return false;
|
|
|
|
case GE_COMP_ALWAYS:
|
|
return true;
|
|
|
|
case GE_COMP_NOTEQUAL:
|
|
case GE_COMP_GREATER:
|
|
case GE_COMP_GEQUAL:
|
|
if (pixelID.alphaTestRef != 0 || pixelID.hasAlphaTestMask)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool UseDrawSinglePixel5551(const PixelFuncID &pixelID) {
|
|
if (pixelID.clearMode || pixelID.colorTest || pixelID.stencilTest)
|
|
return false;
|
|
if (!AlphaTestIsNeedless(pixelID) || pixelID.DepthTestFunc() != GE_COMP_ALWAYS)
|
|
return false;
|
|
if (pixelID.FBFormat() != GE_FORMAT_5551 || !pixelID.alphaBlend)
|
|
return false;
|
|
// We skip blending when alpha = FF, so we can't allow other blend modes.
|
|
if (pixelID.AlphaBlendEq() != GE_BLENDMODE_MUL_AND_ADD || pixelID.AlphaBlendSrc() != PixelBlendFactor::SRCALPHA)
|
|
return false;
|
|
if (pixelID.AlphaBlendDst() != PixelBlendFactor::INVSRCALPHA)
|
|
return false;
|
|
if (pixelID.dithering || pixelID.applyLogicOp || pixelID.applyColorWriteMask)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline Vec4IntResult SOFTRAST_CALL ModulateRGBA(Vec4IntArg prim_in, Vec4IntArg texcolor_in, const SamplerID &samplerID) {
|
|
Vec4<int> out;
|
|
Vec4<int> prim_color = prim_in;
|
|
Vec4<int> texcolor = texcolor_in;
|
|
|
|
#if defined(_M_SSE)
|
|
// Modulate weights slightly on the tex color, by adding one to prim and dividing by 256.
|
|
const __m128i p = _mm_slli_epi16(_mm_packs_epi32(prim_color.ivec, prim_color.ivec), 4);
|
|
const __m128i pboost = _mm_add_epi16(p, _mm_set1_epi16(1 << 4));
|
|
__m128i t = _mm_slli_epi16(_mm_packs_epi32(texcolor.ivec, texcolor.ivec), 4);
|
|
if (samplerID.useColorDoubling) {
|
|
const __m128i amask = _mm_set_epi16(-1, 0, 0, 0, -1, 0, 0, 0);
|
|
const __m128i a = _mm_and_si128(t, amask);
|
|
const __m128i rgb = _mm_andnot_si128(amask, t);
|
|
t = _mm_or_si128(_mm_slli_epi16(rgb, 1), a);
|
|
}
|
|
const __m128i b = _mm_mulhi_epi16(pboost, t);
|
|
out.ivec = _mm_unpacklo_epi16(b, _mm_setzero_si128());
|
|
#else
|
|
if (samplerID.useColorDoubling) {
|
|
Vec4<int> tex = texcolor * Vec4<int>(2, 2, 2, 1);
|
|
out = ((prim_color + Vec4<int>::AssignToAll(1)) * tex) / 256;
|
|
} else {
|
|
out = (prim_color + Vec4<int>::AssignToAll(1)) * texcolor / 256;
|
|
}
|
|
#endif
|
|
|
|
return ToVec4IntResult(out);
|
|
}
|
|
|
|
void DrawSprite(const VertexData &v0, const VertexData &v1, const BinCoords &range, const RasterizerState &state) {
|
|
const u8 *texptr = state.texptr[0];
|
|
|
|
GETextureFormat texfmt = state.samplerID.TexFmt();
|
|
uint16_t texbufw = state.texbufw[0];
|
|
|
|
Sampler::FetchFunc fetchFunc = Sampler::GetFetchFunc(state.samplerID);
|
|
auto &pixelID = state.pixelID;
|
|
auto &samplerID = state.samplerID;
|
|
|
|
DrawingCoords pos0 = TransformUnit::ScreenToDrawing(v0.screenpos);
|
|
// Include the ending pixel based on its center, not start.
|
|
DrawingCoords pos1 = TransformUnit::ScreenToDrawing(v1.screenpos + ScreenCoords(7, 7, 0));
|
|
|
|
DrawingCoords scissorTL = TransformUnit::ScreenToDrawing(range.x1, range.y1);
|
|
DrawingCoords scissorBR = TransformUnit::ScreenToDrawing(range.x2, range.y2);
|
|
|
|
const int z = v1.screenpos.z;
|
|
constexpr int fog = 255;
|
|
|
|
// Since it's flat, we can check depth range early. Matters for earlyZChecks.
|
|
if (pixelID.applyDepthRange && (z < pixelID.cached.minz || z > pixelID.cached.maxz))
|
|
return;
|
|
|
|
bool isWhite = v1.color0 == 0xFFFFFFFF;
|
|
|
|
if (state.enableTextures) {
|
|
// 1:1 (but with mirror support) texture mapping!
|
|
int s_start = v0.texturecoords.x;
|
|
int t_start = v0.texturecoords.y;
|
|
int ds = v1.texturecoords.x > v0.texturecoords.x ? 1 : -1;
|
|
int dt = v1.texturecoords.y > v0.texturecoords.y ? 1 : -1;
|
|
|
|
if (ds < 0) {
|
|
s_start += ds;
|
|
}
|
|
if (dt < 0) {
|
|
t_start += dt;
|
|
}
|
|
|
|
// First clip the right and bottom sides, since we don't need to adjust the deltas.
|
|
if (pos1.x > scissorBR.x) pos1.x = scissorBR.x + 1;
|
|
if (pos1.y > scissorBR.y) pos1.y = scissorBR.y + 1;
|
|
// Now clip the other sides.
|
|
if (pos0.x < scissorTL.x) {
|
|
s_start += (scissorTL.x - pos0.x) * ds;
|
|
pos0.x = scissorTL.x;
|
|
}
|
|
if (pos0.y < scissorTL.y) {
|
|
t_start += (scissorTL.y - pos0.y) * dt;
|
|
pos0.y = scissorTL.y;
|
|
}
|
|
|
|
if (UseDrawSinglePixel5551(pixelID) && samplerID.TexFunc() == GE_TEXFUNC_MODULATE && samplerID.useTextureAlpha) {
|
|
if (isWhite) {
|
|
int t = t_start;
|
|
for (int y = pos0.y; y < pos1.y; y++) {
|
|
int s = s_start;
|
|
u16 *pixel = fb.Get16Ptr(pos0.x, y, pixelID.cached.framebufStride);
|
|
for (int x = pos0.x; x < pos1.x; x++) {
|
|
u32 tex_color = Vec4<int>(fetchFunc(s, t, texptr, texbufw, 0, state.samplerID)).ToRGBA();
|
|
if (tex_color & 0xFF000000) {
|
|
DrawSinglePixel5551(pixel, tex_color);
|
|
}
|
|
s += ds;
|
|
pixel++;
|
|
}
|
|
t += dt;
|
|
}
|
|
} else {
|
|
int t = t_start;
|
|
const Vec4<int> c0 = Vec4<int>::FromRGBA(v1.color0);
|
|
for (int y = pos0.y; y < pos1.y; y++) {
|
|
int s = s_start;
|
|
u16 *pixel = fb.Get16Ptr(pos0.x, y, pixelID.cached.framebufStride);
|
|
for (int x = pos0.x; x < pos1.x; x++) {
|
|
Vec4<int> prim_color = c0;
|
|
Vec4<int> tex_color = fetchFunc(s, t, texptr, texbufw, 0, state.samplerID);
|
|
prim_color = Vec4<int>(ModulateRGBA(ToVec4IntArg(prim_color), ToVec4IntArg(tex_color), state.samplerID));
|
|
if (prim_color.a() > 0) {
|
|
DrawSinglePixel5551(pixel, prim_color.ToRGBA());
|
|
}
|
|
s += ds;
|
|
pixel++;
|
|
}
|
|
t += dt;
|
|
}
|
|
}
|
|
} else {
|
|
int xoff = ((v0.screenpos.x & 15) + 1) / 2;
|
|
int yoff = ((v0.screenpos.y & 15) + 1) / 2;
|
|
|
|
float dsf = ds * (1.0f / (float)(1 << state.samplerID.width0Shift));
|
|
float dtf = dt * (1.0f / (float)(1 << state.samplerID.height0Shift));
|
|
float sf_start = s_start * (1.0f / (float)(1 << state.samplerID.width0Shift));
|
|
float tf_start = t_start * (1.0f / (float)(1 << state.samplerID.height0Shift));
|
|
|
|
float t = tf_start;
|
|
const Vec4<int> c0 = Vec4<int>::FromRGBA(v1.color0);
|
|
if (pixelID.earlyZChecks) {
|
|
for (int y = pos0.y; y < pos1.y; y++) {
|
|
float s = sf_start;
|
|
// Not really that fast but faster than triangle.
|
|
for (int x = pos0.x; x < pos1.x; x++) {
|
|
if (CheckDepthTestPassed(pixelID.DepthTestFunc(), x, y, pixelID.cached.depthbufStride, z)) {
|
|
Vec4<int> prim_color = state.nearest(s, t, xoff, yoff, ToVec4IntArg(c0), &texptr, &texbufw, 0, 0, state.samplerID);
|
|
state.drawPixel(x, y, z, fog, ToVec4IntArg(prim_color), pixelID);
|
|
}
|
|
|
|
s += dsf;
|
|
}
|
|
t += dtf;
|
|
}
|
|
} else {
|
|
for (int y = pos0.y; y < pos1.y; y++) {
|
|
float s = sf_start;
|
|
// Not really that fast but faster than triangle.
|
|
for (int x = pos0.x; x < pos1.x; x++) {
|
|
Vec4<int> prim_color = state.nearest(s, t, xoff, yoff, ToVec4IntArg(c0), &texptr, &texbufw, 0, 0, state.samplerID);
|
|
state.drawPixel(x, y, z, fog, ToVec4IntArg(prim_color), pixelID);
|
|
s += dsf;
|
|
}
|
|
t += dtf;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (pos1.x > scissorBR.x) pos1.x = scissorBR.x + 1;
|
|
if (pos1.y > scissorBR.y) pos1.y = scissorBR.y + 1;
|
|
if (pos0.x < scissorTL.x) pos0.x = scissorTL.x;
|
|
if (pos0.y < scissorTL.y) pos0.y = scissorTL.y;
|
|
if (UseDrawSinglePixel5551(pixelID)) {
|
|
if (Vec4<int>::FromRGBA(v1.color0).a() == 0)
|
|
return;
|
|
|
|
for (int y = pos0.y; y < pos1.y; y++) {
|
|
u16 *pixel = fb.Get16Ptr(pos0.x, y, pixelID.cached.framebufStride);
|
|
for (int x = pos0.x; x < pos1.x; x++) {
|
|
DrawSinglePixel5551(pixel, v1.color0);
|
|
pixel++;
|
|
}
|
|
}
|
|
} else if (pixelID.earlyZChecks) {
|
|
const Vec4<int> prim_color = Vec4<int>::FromRGBA(v1.color0);
|
|
for (int y = pos0.y; y < pos1.y; y++) {
|
|
for (int x = pos0.x; x < pos1.x; x++) {
|
|
if (!CheckDepthTestPassed(pixelID.DepthTestFunc(), x, y, pixelID.cached.depthbufStride, z))
|
|
continue;
|
|
|
|
state.drawPixel(x, y, z, fog, ToVec4IntArg(prim_color), pixelID);
|
|
}
|
|
}
|
|
} else {
|
|
const Vec4<int> prim_color = Vec4<int>::FromRGBA(v1.color0);
|
|
for (int y = pos0.y; y < pos1.y; y++) {
|
|
for (int x = pos0.x; x < pos1.x; x++) {
|
|
state.drawPixel(x, y, z, fog, ToVec4IntArg(prim_color), pixelID);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(SOFTGPU_MEMORY_TAGGING_BASIC) || defined(SOFTGPU_MEMORY_TAGGING_DETAILED)
|
|
uint32_t bpp = pixelID.FBFormat() == GE_FORMAT_8888 ? 4 : 2;
|
|
std::string tag = StringFromFormat("DisplayListR_%08x", state.listPC);
|
|
std::string ztag = StringFromFormat("DisplayListRZ_%08x", state.listPC);
|
|
|
|
for (int y = pos0.y; y < pos1.y; y++) {
|
|
uint32_t row = gstate.getFrameBufAddress() + y * pixelID.cached.framebufStride * bpp;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + pos0.x * bpp, (pos1.x - pos0.x) * bpp, tag.c_str(), tag.size());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
bool g_needsClearAfterDialog = false;
|
|
|
|
static inline bool NoClampOrWrap(const RasterizerState &state, const Vec2f &tc) {
|
|
if (tc.x < 0 || tc.y < 0)
|
|
return false;
|
|
if (state.samplerID.cached.sizes[0].w > 512 || state.samplerID.cached.sizes[0].h > 512)
|
|
return false;
|
|
return tc.x <= state.samplerID.cached.sizes[0].w && tc.y <= state.samplerID.cached.sizes[0].h;
|
|
}
|
|
|
|
// Returns true if the normal path should be skipped.
|
|
bool RectangleFastPath(const VertexData &v0, const VertexData &v1, BinManager &binner) {
|
|
const RasterizerState &state = binner.State();
|
|
|
|
g_DarkStalkerStretch = DSStretch::Off;
|
|
// Check for 1:1 texture mapping. In that case we can call DrawSprite.
|
|
int xdiff = v1.screenpos.x - v0.screenpos.x;
|
|
int ydiff = v1.screenpos.y - v0.screenpos.y;
|
|
int udiff = (v1.texturecoords.x - v0.texturecoords.x) * (float)SCREEN_SCALE_FACTOR;
|
|
int vdiff = (v1.texturecoords.y - v0.texturecoords.y) * (float)SCREEN_SCALE_FACTOR;
|
|
bool coord_check =
|
|
(xdiff == udiff || xdiff == -udiff) &&
|
|
(ydiff == vdiff || ydiff == -vdiff);
|
|
// Currently only works for TL/BR, which is the most common but not required.
|
|
bool orient_check = xdiff >= 0 && ydiff >= 0;
|
|
// We already have a fast path for clear in ClearRectangle.
|
|
bool state_check = state.throughMode && !state.pixelID.clearMode && !state.samplerID.hasAnyMips && NoClampOrWrap(state, v0.texturecoords.uv()) && NoClampOrWrap(state, v1.texturecoords.uv());
|
|
// This doesn't work well with offset drawing, see #15876. Through never has a subpixel offset.
|
|
bool subpixel_check = ((v0.screenpos.x | v0.screenpos.y | v1.screenpos.x | v1.screenpos.y) & 0xF) == 0;
|
|
if ((coord_check || !state.enableTextures) && orient_check && state_check && subpixel_check) {
|
|
binner.AddSprite(v0, v1);
|
|
return true;
|
|
}
|
|
|
|
// Eliminate the stretch blit in DarkStalkers.
|
|
// We compensate for that when blitting the framebuffer in SoftGpu.cpp.
|
|
if (PSP_CoreParameter().compat.flags().DarkStalkersPresentHack && v0.texturecoords.x == 64.0f && v0.texturecoords.y == 16.0f && v1.texturecoords.x == 448.0f && v1.texturecoords.y == 240.0f) {
|
|
// check for save/load dialog.
|
|
if (!currentDialogActive) {
|
|
if (v0.screenpos.x + gstate.getOffsetX16() == 0x7100 && v0.screenpos.y + gstate.getOffsetY16() == 0x7780 && v1.screenpos.x + gstate.getOffsetX16() == 0x8f00 && v1.screenpos.y + gstate.getOffsetY16() == 0x8880) {
|
|
g_DarkStalkerStretch = DSStretch::Wide;
|
|
} else if (v0.screenpos.x + gstate.getOffsetX16() == 0x7400 && v0.screenpos.y + gstate.getOffsetY16() == 0x7780 && v1.screenpos.x + gstate.getOffsetX16() == 0x8C00 && v1.screenpos.y + gstate.getOffsetY16() == 0x8880) {
|
|
g_DarkStalkerStretch = DSStretch::Normal;
|
|
} else {
|
|
return false;
|
|
}
|
|
if (g_needsClearAfterDialog) {
|
|
g_needsClearAfterDialog = false;
|
|
// Afterwards, we also need to clear the actual destination. Can do a fast rectfill.
|
|
gstate.textureMapEnable &= ~1;
|
|
VertexData newV1 = v1;
|
|
newV1.color0 = 0xFF000000;
|
|
binner.AddSprite(v0, newV1);
|
|
gstate.textureMapEnable |= 1;
|
|
}
|
|
return true;
|
|
} else {
|
|
g_needsClearAfterDialog = true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool AreCoordsRectangleCompatible(const RasterizerState &state, const ClipVertexData &data0, const ClipVertexData &data1) {
|
|
if (data1.v.color0 != data0.v.color0)
|
|
return false;
|
|
if (data1.v.screenpos.z != data0.v.screenpos.z) {
|
|
// Sometimes, we don't actually care about z.
|
|
if (state.pixelID.depthWrite || state.pixelID.DepthTestFunc() != GE_COMP_ALWAYS)
|
|
return false;
|
|
}
|
|
if (!state.throughMode) {
|
|
if (data1.v.color1 != data0.v.color1)
|
|
return false;
|
|
// This means it should be culled, outside range.
|
|
if (data1.OutsideRange() || data0.OutsideRange())
|
|
return false;
|
|
// Do we have to think about perspective correction or slope mip level?
|
|
if (state.enableTextures && data1.clippos.w != data0.clippos.w) {
|
|
// If the w is off by less than a factor of 1/512, it should be safe to treat as a rectangle.
|
|
static constexpr float halftexel = 0.5f / 512.0f;
|
|
if (data1.clippos.w - halftexel > data0.clippos.w || data1.clippos.w + halftexel < data0.clippos.w)
|
|
return false;
|
|
}
|
|
// If we're projecting textures, only allow an exact match for simplicity.
|
|
if (state.enableTextures && data1.v.texturecoords.q() != data0.v.texturecoords.q())
|
|
return false;
|
|
if (state.pixelID.applyFog && data1.v.fogdepth != data0.v.fogdepth) {
|
|
// Similar to w, this only matters if they're farther apart than 1/255.
|
|
static constexpr float foghalfstep = 0.5f / 255.0f;
|
|
if (data1.v.fogdepth - foghalfstep > data0.v.fogdepth || data1.v.fogdepth + foghalfstep < data0.v.fogdepth)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool DetectRectangleFromStrip(const RasterizerState &state, const ClipVertexData data[4], int *tlIndex, int *brIndex) {
|
|
// Color and Z must be flat. Also find the TL and BR meanwhile.
|
|
int tl = 0, br = 0;
|
|
for (int i = 1; i < 4; ++i) {
|
|
if (!AreCoordsRectangleCompatible(state, data[i], data[0]))
|
|
return false;
|
|
|
|
if (data[i].v.screenpos.x <= data[tl].v.screenpos.x && data[i].v.screenpos.y <= data[tl].v.screenpos.y)
|
|
tl = i;
|
|
if (data[i].v.screenpos.x >= data[br].v.screenpos.x && data[i].v.screenpos.y >= data[br].v.screenpos.y)
|
|
br = i;
|
|
}
|
|
|
|
*tlIndex = tl;
|
|
*brIndex = br;
|
|
|
|
// OK, now let's look at data to detect rectangles. There are a few possibilities
|
|
// but we focus on Darkstalkers for now.
|
|
if (data[0].v.screenpos.x == data[1].v.screenpos.x &&
|
|
data[0].v.screenpos.y == data[2].v.screenpos.y &&
|
|
data[2].v.screenpos.x == data[3].v.screenpos.x &&
|
|
data[1].v.screenpos.y == data[3].v.screenpos.y) {
|
|
// Okay, this is in the shape of a rectangle, but what about texture?
|
|
if (!state.enableTextures)
|
|
return true;
|
|
|
|
if (data[0].v.texturecoords.x == data[1].v.texturecoords.x &&
|
|
data[0].v.texturecoords.y == data[2].v.texturecoords.y &&
|
|
data[2].v.texturecoords.x == data[3].v.texturecoords.x &&
|
|
data[1].v.texturecoords.y == data[3].v.texturecoords.y) {
|
|
// It's a rectangle!
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
// There's the other vertex order too...
|
|
if (data[0].v.screenpos.x == data[2].v.screenpos.x &&
|
|
data[0].v.screenpos.y == data[1].v.screenpos.y &&
|
|
data[1].v.screenpos.x == data[3].v.screenpos.x &&
|
|
data[2].v.screenpos.y == data[3].v.screenpos.y) {
|
|
// Okay, this is in the shape of a rectangle, but what about texture?
|
|
if (!state.enableTextures)
|
|
return true;
|
|
|
|
if (data[0].v.texturecoords.x == data[2].v.texturecoords.x &&
|
|
data[0].v.texturecoords.y == data[1].v.texturecoords.y &&
|
|
data[1].v.texturecoords.x == data[3].v.texturecoords.x &&
|
|
data[2].v.texturecoords.y == data[3].v.texturecoords.y) {
|
|
// It's a rectangle!
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool DetectRectangleFromFan(const RasterizerState &state, const ClipVertexData *data, int *tlIndex, int *brIndex) {
|
|
// Color and Z must be flat.
|
|
int tl = 0, br = 0;
|
|
for (int i = 1; i < 4; ++i) {
|
|
if (!AreCoordsRectangleCompatible(state, data[i], data[0]))
|
|
return false;
|
|
|
|
if (data[i].v.screenpos.x <= data[tl].v.screenpos.x && data[i].v.screenpos.y <= data[tl].v.screenpos.y)
|
|
tl = i;
|
|
if (data[i].v.screenpos.x >= data[br].v.screenpos.x && data[i].v.screenpos.y >= data[br].v.screenpos.y)
|
|
br = i;
|
|
}
|
|
|
|
*tlIndex = tl;
|
|
*brIndex = br;
|
|
|
|
int tr = 1, bl = 1;
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (i == tl || i == br)
|
|
continue;
|
|
|
|
if (data[i].v.screenpos.x <= data[tl].v.screenpos.x && data[i].v.screenpos.y >= data[tl].v.screenpos.y)
|
|
bl = i;
|
|
if (data[i].v.screenpos.x >= data[br].v.screenpos.x && data[i].v.screenpos.y <= data[br].v.screenpos.y)
|
|
tr = i;
|
|
}
|
|
|
|
// Must have found each of the coordinates.
|
|
if (tl + tr + bl + br != 6)
|
|
return false;
|
|
|
|
// Note the common case is a single TL-TR-BR-BL.
|
|
const auto &postl = data[tl].v.screenpos, &postr = data[tr].v.screenpos;
|
|
const auto &posbr = data[br].v.screenpos, &posbl = data[bl].v.screenpos;
|
|
if (postl.x == posbl.x && postr.x == posbr.x && postl.y == postr.y && posbl.y == posbr.y) {
|
|
// Do we need to think about rotation?
|
|
if (!state.enableTextures)
|
|
return true;
|
|
|
|
const auto &textl = data[tl].v.texturecoords, &textr = data[tr].v.texturecoords;
|
|
const auto &texbl = data[bl].v.texturecoords, &texbr = data[br].v.texturecoords;
|
|
|
|
if (textl.x == texbl.x && textr.x == texbr.x && textl.y == textr.y && texbl.y == texbr.y) {
|
|
// Okay, the texture is also good, but let's avoid rotation issues.
|
|
return textl.y < texbr.y && postl.y < posbr.y && textl.x < texbr.x && postl.x < posbr.x;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool DetectRectangleFromPair(const RasterizerState &state, const ClipVertexData data[6], int *tlIndex, int *brIndex) {
|
|
// Color and Z must be flat. Also find the TL and BR meanwhile.
|
|
int tl = 0, br = 0;
|
|
for (int i = 1; i < 6; ++i) {
|
|
if (!AreCoordsRectangleCompatible(state, data[i], data[0]))
|
|
return false;
|
|
|
|
if (data[i].v.screenpos.x <= data[tl].v.screenpos.x && data[i].v.screenpos.y <= data[tl].v.screenpos.y)
|
|
tl = i;
|
|
if (data[i].v.screenpos.x >= data[br].v.screenpos.x && data[i].v.screenpos.y >= data[br].v.screenpos.y)
|
|
br = i;
|
|
}
|
|
|
|
*tlIndex = tl;
|
|
*brIndex = br;
|
|
|
|
auto xat = [&](int i) { return data[i].v.screenpos.x; };
|
|
auto yat = [&](int i) { return data[i].v.screenpos.y; };
|
|
auto uat = [&](int i) { return data[i].v.texturecoords.x; };
|
|
auto vat = [&](int i) { return data[i].v.texturecoords.y; };
|
|
|
|
// A likely order would be: TL, TR, BR, TL, BR, BL. We'd have the last index of each.
|
|
// TODO: Make more generic.
|
|
if (tl == 3 && br == 4) {
|
|
bool x1_match = xat(0) == xat(3) && xat(0) == xat(5);
|
|
bool x2_match = xat(1) == xat(2) && xat(1) == xat(4);
|
|
bool y1_match = yat(0) == yat(1) && yat(0) == yat(3);
|
|
bool y2_match = yat(2) == yat(4) && yat(2) == yat(5);
|
|
if (x1_match && y1_match && x2_match && y2_match) {
|
|
// Do we need to think about rotation or UVs?
|
|
if (!state.enableTextures)
|
|
return true;
|
|
|
|
x1_match = uat(0) == uat(3) && uat(0) == uat(5);
|
|
x2_match = uat(1) == uat(2) && uat(1) == uat(4);
|
|
y1_match = vat(0) == vat(1) && vat(0) == vat(3);
|
|
y2_match = vat(2) == vat(4) && vat(2) == vat(5);
|
|
if (x1_match && y1_match && x2_match && y2_match) {
|
|
// Double check rotation direction.
|
|
return vat(tl) < vat(br) && yat(tl) < yat(br) && uat(tl) < uat(br) && xat(tl) < xat(br);
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool DetectRectangleThroughModeSlices(const RasterizerState &state, const ClipVertexData data[4]) {
|
|
// Color and Z must be flat.
|
|
for (int i = 1; i < 4; ++i) {
|
|
if (!(data[i].v.color0 == data[0].v.color0))
|
|
return false;
|
|
if (!(data[i].v.screenpos.z == data[0].v.screenpos.z)) {
|
|
// Sometimes, we don't actually care about z.
|
|
if (state.pixelID.depthWrite || state.pixelID.DepthTestFunc() != GE_COMP_ALWAYS)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Games very commonly use vertical strips of rectangles. Detect and combine.
|
|
const auto &tl1 = data[0].v.screenpos, &br1 = data[1].v.screenpos;
|
|
const auto &tl2 = data[2].v.screenpos, &br2 = data[3].v.screenpos;
|
|
if (tl1.y == tl2.y && br1.y == br2.y && br1.y > tl1.y) {
|
|
if (br1.x == tl2.x && tl1.x < br1.x && tl2.x < br2.x) {
|
|
if (!state.enableTextures)
|
|
return true;
|
|
|
|
const auto &textl1 = data[0].v.texturecoords, &texbr1 = data[1].v.texturecoords;
|
|
const auto &textl2 = data[2].v.texturecoords, &texbr2 = data[3].v.texturecoords;
|
|
if (textl1.y != textl2.y || texbr1.y != texbr2.y || textl1.y > texbr1.y)
|
|
return false;
|
|
if (texbr1.x != textl2.x || textl1.x > texbr1.x || textl2.x > texbr2.x)
|
|
return false;
|
|
|
|
// We might be able to compare ratios, but let's expect 1:1.
|
|
int texdiff1 = (texbr1.x - textl1.x) * (float)SCREEN_SCALE_FACTOR;
|
|
int texdiff2 = (texbr2.x - textl2.x) * (float)SCREEN_SCALE_FACTOR;
|
|
int posdiff1 = br1.x - tl1.x;
|
|
int posdiff2 = br2.x - tl2.x;
|
|
return texdiff1 == posdiff1 && texdiff2 == posdiff2;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
} // namespace Rasterizer
|
|
|