ppsspp/unittest/UnitTest.cpp
2022-12-01 17:52:02 +01:00

902 lines
27 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
// UnitTests
//
// This is a program to directly test various functions, without going
// through a PSP. Especially useful for things like opcode emitters,
// hashes, and various data conversion utility function.
//
// TODO: Make a test of nice unittest asserts and count successes etc.
// Or just integrate with an existing testing framework.
//
// To use, set command line parameter to one or more of the tests below, or "all".
// Search for "availableTests".
#include "ppsspp_config.h"
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <string>
#include <sstream>
#if PPSSPP_PLATFORM(ANDROID)
#include <jni.h>
#endif
#include "Common/Data/Collections/TinySet.h"
#include "Common/Data/Convert/SmallDataConvert.h"
#include "Common/Data/Text/Parsers.h"
#include "Common/Data/Text/WrapText.h"
#include "Common/Data/Encoding/Utf8.h"
#include "Common/File/Path.h"
#include "Common/Input/InputState.h"
#include "Common/Math/math_util.h"
#include "Common/Render/DrawBuffer.h"
#include "Common/System/NativeApp.h"
#include "Common/System/System.h"
#include "Common/ArmEmitter.h"
#include "Common/BitScan.h"
#include "Common/CPUDetect.h"
#include "Common/Log.h"
#include "Core/Config.h"
#include "Core/FileSystems/ISOFileSystem.h"
#include "Core/MemMap.h"
#include "Core/MIPS/MIPSVFPUUtils.h"
#include "GPU/Common/TextureDecoder.h"
#include "android/jni/AndroidContentURI.h"
#include "unittest/JitHarness.h"
#include "unittest/TestVertexJit.h"
#include "unittest/UnitTest.h"
std::string System_GetProperty(SystemProperty prop) { return ""; }
std::vector<std::string> System_GetPropertyStringVec(SystemProperty prop) { return std::vector<std::string>(); }
int System_GetPropertyInt(SystemProperty prop) {
return -1;
}
float System_GetPropertyFloat(SystemProperty prop) {
return -1;
}
bool System_GetPropertyBool(SystemProperty prop) {
switch (prop) {
case SYSPROP_CAN_JIT:
return true;
default:
return false;
}
}
#if PPSSPP_PLATFORM(ANDROID)
JNIEnv *getEnv() {
return nullptr;
}
jclass findClass(const char *name) {
return nullptr;
}
bool audioRecording_Available() { return false; }
bool audioRecording_State() { return false; }
#endif
#ifndef M_PI_2
#define M_PI_2 1.57079632679489661923
#endif
// asin acos atan: https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
// TODO:
// Fast approximate sincos for NEON
// http://blog.julien.cayzac.name/2009/12/fast-sinecosine-for-armv7neon.html
// Fast sincos
// http://www.dspguru.com/dsp/tricks/parabolic-approximation-of-sin-and-cos
// minimax (surprisingly terrible! something must be wrong)
// double asin_plus_sqrtthing = .9998421793 + (1.012386649 + (-.6575341673 + .8999841642 + (-1.669668977 + (1.571945105 - .5860008052 * x) * x) * x) * x) * x;
// VERY good. 6 MAD, one division.
// double asin_plus_sqrtthing = (1.807607311 + (.191900116 + (-2.511278506 + (1.062519236 + (-.3572142480 + .1087063463 * x) * x) * x) * x) * x) / (1.807601897 - 1.615203794 * x);
// float asin_plus_sqrtthing_correct_ends =
// (1.807607311f + (.191900116f + (-2.511278506f + (1.062519236f + (-.3572142480f + .1087063463f * x) * x) * x) * x) * x) / (1.807607311f - 1.615195094 * x);
// Unfortunately this is very serial.
// At least there are only 8 constants needed - load them into two low quads and go to town.
// For every step, VDUP the constant into a new register (out of two alternating), then VMLA or VFMA into it.
// http://www.ecse.rpi.edu/~wrf/Research/Short_Notes/arcsin/
// minimax polynomial rational approx, pretty good, get four digits consistently.
// unfortunately fastasin(1.0) / M_PI_2 != 1.0f, but it's pretty close.
float fastasin(double x) {
float sign = x >= 0.0f ? 1.0f : -1.0f;
x = fabs(x);
float sqrtthing = sqrt(1.0f - x * x);
// note that the sqrt can run parallel while we do the rest
// if the hardware supports it
float y = -.3572142480f + .1087063463f * x;
y = y * x + 1.062519236f;
y = y * x + -2.511278506f;
y = y * x + .191900116f;
y = y * x + 1.807607311f;
y /= (1.807607311f - 1.615195094 * x);
return sign * (y - sqrtthing);
}
double atan_66s(double x) {
const double c1=1.6867629106;
const double c2=0.4378497304;
const double c3=1.6867633134;
double x2; // The input argument squared
x2 = x * x;
return (x*(c1 + x2*c2)/(c3 + x2));
}
// Terrible.
double fastasin2(double x) {
return atan_66s(x / sqrt(1 - x * x));
}
// Also terrible.
float fastasin3(float x) {
return x + x * x * x * x * x * 0.4971;
}
// Great! This is the one we'll use. Can be easily rescaled to get the right range for free.
// http://mathforum.org/library/drmath/view/54137.html
// http://www.musicdsp.org/showone.php?id=115
float fastasin4(float x) {
float sign = x >= 0.0f ? 1.0f : -1.0f;
x = fabs(x);
x = M_PI/2 - sqrtf(1.0f - x) * (1.5707288 + -0.2121144*x + 0.0742610*x*x + -0.0187293*x*x*x);
return sign * x;
}
// Or this:
float fastasin5(float x)
{
float sign = x >= 0.0f ? 1.0f : -1.0f;
x = fabs(x);
float fRoot = sqrtf(1.0f - x);
float fResult = 0.0742610f + -0.0187293f * x;
fResult = -0.2121144f + fResult * x;
fResult = 1.5707288f + fResult * x;
fResult = M_PI/2 - fRoot*fResult;
return sign * fResult;
}
// This one is unfortunately not very good. But lets us avoid PI entirely
// thanks to the special arguments of the PSP functions.
// http://www.dspguru.com/dsp/tricks/parabolic-approximation-of-sin-and-cos
#define C 0.70710678118654752440f // 1.0f / sqrt(2.0f)
// Some useful constants (PI and <math.h> are not part of algo)
#define BITSPERQUARTER (20)
void fcs(float angle, float &sinout, float &cosout) {
int phasein = angle * (1 << BITSPERQUARTER);
// Modulo phase into quarter, convert to float 0..1
float modphase = (phasein & ((1<<BITSPERQUARTER)-1)) * (1.0f / (1<<BITSPERQUARTER));
// Extract quarter bits
int quarter = phasein >> BITSPERQUARTER;
// Recognize quarter
if (!quarter) {
// First quarter, angle = 0 .. pi/2
float x = modphase - 0.5f; // 1 sub
float temp = (2 - 4*C)*x*x + C; // 2 mul, 1 add
sinout = temp + x; // 1 add
cosout = temp - x; // 1 sub
} else if (quarter == 1) {
// Second quarter, angle = pi/2 .. pi
float x = 0.5f - modphase; // 1 sub
float temp = (2 - 4*C)*x*x + C; // 2 mul, 1 add
sinout = x + temp; // 1 add
cosout = x - temp; // 1 sub
} else if (quarter == 2) {
// Third quarter, angle = pi .. 1.5pi
float x = modphase - 0.5f; // 1 sub
float temp = (4*C - 2)*x*x - C; // 2 mul, 1 sub
sinout = temp - x; // 1 sub
cosout = temp + x; // 1 add
} else if (quarter == 3) {
// Fourth quarter, angle = 1.5pi..2pi
float x = modphase - 0.5f; // 1 sub
float temp = (2 - 4*C)*x*x + C; // 2 mul, 1 add
sinout = x - temp; // 1 sub
cosout = x + temp; // 1 add
}
}
#undef C
const float PI_SQR = 9.86960440108935861883449099987615114f;
//https://code.google.com/p/math-neon/source/browse/trunk/math_floorf.c?r=18
// About 2 correct decimals. Not great.
void fcs2(float theta, float &outsine, float &outcosine) {
float gamma = theta + 1;
gamma += 2;
gamma /= 4;
theta += 2;
theta /= 4;
//theta -= (float)(int)theta;
//gamma -= (float)(int)gamma;
theta -= floorf(theta);
gamma -= floorf(gamma);
theta *= 4;
theta -= 2;
gamma *= 4;
gamma -= 2;
float x = 2 * gamma - gamma * fabs(gamma);
float y = 2 * theta - theta * fabs(theta);
const float P = 0.225f;
outsine = P * (y * fabsf(y) - y) + y; // Q * y + P * y * abs(y)
outcosine = P * (x * fabsf(x) - x) + x; // Q * y + P * y * abs(y)
}
void fastsincos(float x, float &sine, float &cosine) {
fcs2(x, sine, cosine);
}
bool TestSinCos() {
for (int i = -100; i <= 100; i++) {
float f = i / 30.0f;
// The PSP sin/cos take as argument angle * M_PI_2.
// We need to match that.
float slowsin = sinf(f * M_PI_2), slowcos = cosf(f * M_PI_2);
float fastsin, fastcos;
fastsincos(f, fastsin, fastcos);
printf("%f: slow: %0.8f, %0.8f fast: %0.8f, %0.8f\n", f, slowsin, slowcos, fastsin, fastcos);
}
return true;
}
bool TestAsin() {
for (int i = -100; i <= 100; i++) {
float f = i / 100.0f;
float slowval = asinf(f) / M_PI_2;
float fastval = fastasin5(f) / M_PI_2;
printf("slow: %0.16f fast: %0.16f\n", slowval, fastval);
float diff = fabsf(slowval - fastval);
// EXPECT_TRUE(diff < 0.0001f);
}
// EXPECT_TRUE(fastasin(1.0) / M_PI_2 <= 1.0f);
return true;
}
bool TestMathUtil() {
EXPECT_FALSE(my_isinf(1.0));
volatile float zero = 0.0f;
EXPECT_TRUE(my_isinf(1.0f/zero));
EXPECT_FALSE(my_isnan(1.0f/zero));
return true;
}
bool TestParsers() {
const char *macstr = "01:02:03:ff:fe:fd";
uint8_t mac[6];
ParseMacAddress(macstr, mac);
EXPECT_TRUE(mac[0] == 1);
EXPECT_TRUE(mac[1] == 2);
EXPECT_TRUE(mac[2] == 3);
EXPECT_TRUE(mac[3] == 255);
EXPECT_TRUE(mac[4] == 254);
EXPECT_TRUE(mac[5] == 253);
return true;
}
bool TestTinySet() {
TinySet<int, 4> a;
EXPECT_EQ_INT((int)a.size(), 0);
a.push_back(1);
EXPECT_EQ_INT((int)a.size(), 1);
a.push_back(2);
EXPECT_EQ_INT((int)a.size(), 2);
TinySet<int, 4> b;
b.push_back(8);
b.push_back(9);
b.push_back(10);
EXPECT_EQ_INT((int)b.size(), 3);
a.append(b);
EXPECT_EQ_INT((int)a.size(), 5);
EXPECT_EQ_INT((int)b.size(), 3);
b.append(b);
EXPECT_EQ_INT((int)b.size(), 6);
EXPECT_EQ_INT(a[0], 1);
EXPECT_EQ_INT(a[1], 2);
EXPECT_EQ_INT(a[2], 8);
EXPECT_EQ_INT(a[3], 9);
EXPECT_EQ_INT(a[4], 10);
a.append(a);
EXPECT_EQ_INT(a.size(), 10);
EXPECT_EQ_INT(a[9], 10);
b.push_back(11);
EXPECT_EQ_INT((int)b.size(), 7);
b.push_back(12);
EXPECT_EQ_INT((int)b.size(), 8);
b.push_back(13);
EXPECT_EQ_INT(b.size(), 9);
return true;
}
bool TestVFPUSinCos() {
float sine, cosine;
InitVFPUSinCos();
vfpu_sincos(0.0f, sine, cosine);
EXPECT_EQ_FLOAT(sine, 0.0f);
EXPECT_EQ_FLOAT(cosine, 1.0f);
vfpu_sincos(1.0f, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, 1.0f);
EXPECT_APPROX_EQ_FLOAT(cosine, 0.0f);
vfpu_sincos(2.0f, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, 0.0f);
EXPECT_APPROX_EQ_FLOAT(cosine, -1.0f);
vfpu_sincos(3.0f, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, -1.0f);
EXPECT_APPROX_EQ_FLOAT(cosine, 0.0f);
vfpu_sincos(4.0f, sine, cosine);
EXPECT_EQ_FLOAT(sine, 0.0f);
EXPECT_EQ_FLOAT(cosine, 1.0f);
vfpu_sincos(5.0f, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, 1.0f);
EXPECT_APPROX_EQ_FLOAT(cosine, 0.0f);
vfpu_sincos(-1.0f, sine, cosine);
EXPECT_EQ_FLOAT(sine, -1.0f);
EXPECT_EQ_FLOAT(cosine, 0.0f);
vfpu_sincos(-2.0f, sine, cosine);
EXPECT_EQ_FLOAT(sine, 0.0f);
EXPECT_EQ_FLOAT(cosine, -1.0f);
for (float angle = -10.0f; angle < 10.0f; angle += 0.1f) {
vfpu_sincos(angle, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, sinf(angle * M_PI_2));
EXPECT_APPROX_EQ_FLOAT(cosine, cosf(angle * M_PI_2));
printf("sine: %f==%f cosine: %f==%f\n", sine, sinf(angle * M_PI_2), cosine, cosf(angle * M_PI_2));
}
return true;
}
bool TestMatrixTranspose() {
MatrixSize sz = M_4x4;
int matrix = 0; // M000
u8 cols[4];
u8 rows[4];
GetMatrixColumns(matrix, sz, cols);
GetMatrixRows(matrix, sz, rows);
int transposed = Xpose(matrix);
u8 x_cols[4];
u8 x_rows[4];
GetMatrixColumns(transposed, sz, x_cols);
GetMatrixRows(transposed, sz, x_rows);
for (int i = 0; i < GetMatrixSide(sz); i++) {
EXPECT_EQ_INT(cols[i], x_rows[i]);
EXPECT_EQ_INT(x_cols[i], rows[i]);
}
return true;
}
void TestGetMatrix(int matrix, MatrixSize sz) {
INFO_LOG(SYSTEM, "Testing matrix %s", GetMatrixNotation(matrix, sz));
u8 fullMatrix[16];
u8 cols[4];
u8 rows[4];
GetMatrixColumns(matrix, sz, cols);
GetMatrixRows(matrix, sz, rows);
GetMatrixRegs(fullMatrix, sz, matrix);
int n = GetMatrixSide(sz);
VectorSize vsz = GetVectorSize(sz);
for (int i = 0; i < n; i++) {
// int colName = GetColumnName(matrix, sz, i, 0);
// int rowName = GetRowName(matrix, sz, i, 0);
int colName = cols[i];
int rowName = rows[i];
INFO_LOG(SYSTEM, "Column %i: %s", i, GetVectorNotation(colName, vsz));
INFO_LOG(SYSTEM, "Row %i: %s", i, GetVectorNotation(rowName, vsz));
u8 colRegs[4];
u8 rowRegs[4];
GetVectorRegs(colRegs, vsz, colName);
GetVectorRegs(rowRegs, vsz, rowName);
// Check that the individual regs are the expected ones.
std::stringstream a, b, c, d;
for (int j = 0; j < n; j++) {
a.clear();
b.clear();
a << (int)fullMatrix[i * 4 + j] << " ";
b << (int)colRegs[j] << " ";
c.clear();
d.clear();
c << (int)fullMatrix[j * 4 + i] << " ";
d << (int)rowRegs[j] << " ";
}
INFO_LOG(SYSTEM, "Col: %s vs %s", a.str().c_str(), b.str().c_str());
if (a.str() != b.str())
INFO_LOG(SYSTEM, "WRONG!");
INFO_LOG(SYSTEM, "Row: %s vs %s", c.str().c_str(), d.str().c_str());
if (c.str() != d.str())
INFO_LOG(SYSTEM, "WRONG!");
}
}
bool TestParseLBN() {
const char *validStrings[] = {
"/sce_lbn0x5fa0_size0x1428",
"/sce_lbn7050_sizeee850",
"/sce_lbn0x5eeeh_size0x234x", // Check for trailing chars. See #7960.
"/sce_lbneee__size434.", // Check for trailing chars. See #7960.
};
int expectedResults[][2] = {
{0x5fa0, 0x1428},
{0x7050, 0xee850},
{0x5eee, 0x234},
{0xeee, 0x434},
};
const char *invalidStrings[] = {
"/sce_lbn0x5fa0_sze0x1428",
"",
"//",
};
for (int i = 0; i < ARRAY_SIZE(validStrings); i++) {
u32 startSector = 0, readSize = 0;
// printf("testing %s\n", validStrings[i]);
EXPECT_TRUE(parseLBN(validStrings[i], &startSector, &readSize));
EXPECT_EQ_INT(startSector, expectedResults[i][0]);
EXPECT_EQ_INT(readSize, expectedResults[i][1]);
}
for (int i = 0; i < ARRAY_SIZE(invalidStrings); i++) {
u32 startSector, readSize;
EXPECT_FALSE(parseLBN(invalidStrings[i], &startSector, &readSize));
}
return true;
}
// So we can use EXPECT_TRUE, etc.
struct AlignedMem {
AlignedMem(size_t sz, size_t alignment = 16) {
p_ = AllocateAlignedMemory(sz, alignment);
}
~AlignedMem() {
FreeAlignedMemory(p_);
}
operator void *() {
return p_;
}
operator char *() {
return (char *)p_;
}
private:
void *p_;
};
bool TestQuickTexHash() {
static const int BUF_SIZE = 1024;
AlignedMem buf(BUF_SIZE, 16);
memset(buf, 0, BUF_SIZE);
EXPECT_EQ_HEX(StableQuickTexHash(buf, BUF_SIZE), 0xaa756edc);
memset(buf, 1, BUF_SIZE);
EXPECT_EQ_HEX(StableQuickTexHash(buf, BUF_SIZE), 0x66f81b1c);
strncpy(buf, "hello", BUF_SIZE);
EXPECT_EQ_HEX(StableQuickTexHash(buf, BUF_SIZE), 0xf6028131);
strncpy(buf, "goodbye", BUF_SIZE);
EXPECT_EQ_HEX(StableQuickTexHash(buf, BUF_SIZE), 0xef81b54f);
// Simple patterns.
for (int i = 0; i < BUF_SIZE; ++i) {
char *p = buf;
p[i] = i & 0xFF;
}
EXPECT_EQ_HEX(StableQuickTexHash(buf, BUF_SIZE), 0x0d64531c);
int j = 573;
for (int i = 0; i < BUF_SIZE; ++i) {
char *p = buf;
j += ((i * 7) + (i & 3)) * 11;
p[i] = j & 0xFF;
}
EXPECT_EQ_HEX(StableQuickTexHash(buf, BUF_SIZE), 0x58de8dbc);
return true;
}
bool TestCLZ() {
static const uint32_t input[] = {
0xFFFFFFFF,
0x00FFFFF0,
0x00101000,
0x00003000,
0x00000001,
0x00000000,
};
static const uint32_t expected[] = {
0,
8,
11,
18,
31,
32,
};
for (int i = 0; i < ARRAY_SIZE(input); i++) {
EXPECT_EQ_INT(clz32(input[i]), expected[i]);
}
return true;
}
static bool TestMemMap() {
Memory::g_MemorySize = Memory::RAM_DOUBLE_SIZE;
enum class Flags {
NO_KERNEL = 0,
ALLOW_KERNEL = 1,
};
struct Range {
uint32_t base;
uint32_t size;
Flags flags;
};
static const Range ranges[] = {
{ 0x08000000, Memory::RAM_DOUBLE_SIZE, Flags::ALLOW_KERNEL },
{ 0x00010000, Memory::SCRATCHPAD_SIZE, Flags::NO_KERNEL },
{ 0x04000000, 0x00800000, Flags::NO_KERNEL },
};
static const uint32_t extraBits[] = {
0x00000000,
0x40000000,
0x80000000,
};
for (const auto &range : ranges) {
size_t testBits = range.flags == Flags::ALLOW_KERNEL ? 3 : 2;
for (size_t i = 0; i < testBits; ++i) {
uint32_t base = range.base | extraBits[i];
EXPECT_TRUE(Memory::IsValidAddress(base));
EXPECT_TRUE(Memory::IsValidAddress(base + range.size - 1));
EXPECT_FALSE(Memory::IsValidAddress(base + range.size));
EXPECT_FALSE(Memory::IsValidAddress(base - 1));
EXPECT_EQ_HEX(Memory::ValidSize(base, range.size), range.size);
EXPECT_EQ_HEX(Memory::ValidSize(base, range.size + 1), range.size);
EXPECT_EQ_HEX(Memory::ValidSize(base, range.size - 1), range.size - 1);
EXPECT_EQ_HEX(Memory::ValidSize(base, 0), 0);
EXPECT_EQ_HEX(Memory::ValidSize(base, 0x80000001), range.size);
EXPECT_EQ_HEX(Memory::ValidSize(base, 0x40000001), range.size);
EXPECT_EQ_HEX(Memory::ValidSize(base, 0x20000001), range.size);
EXPECT_EQ_HEX(Memory::ValidSize(base, 0x10000001), range.size);
EXPECT_EQ_HEX(Memory::ValidSize(base + range.size - 0x10, 0x20000001), 0x10);
}
}
EXPECT_FALSE(Memory::IsValidAddress(0x00015000));
EXPECT_FALSE(Memory::IsValidAddress(0x04900000));
EXPECT_EQ_HEX(Memory::ValidSize(0x00015000, 4), 0);
EXPECT_EQ_HEX(Memory::ValidSize(0x04900000, 4), 0);
return true;
}
static bool TestPath() {
// Also test the Path class while we're at it.
Path path("/asdf/jkl/");
EXPECT_EQ_STR(path.ToString(), std::string("/asdf/jkl"));
Path path2("/asdf/jkl");
EXPECT_EQ_STR(path2.NavigateUp().ToString(), std::string("/asdf"));
Path path3 = path2 / "foo/bar";
EXPECT_EQ_STR(path3.WithExtraExtension(".txt").ToString(), std::string("/asdf/jkl/foo/bar.txt"));
EXPECT_EQ_STR(Path("foo.bar/hello").GetFileExtension(), std::string());
EXPECT_EQ_STR(Path("foo.bar/hello.txt").WithReplacedExtension(".txt", ".html").ToString(), std::string("foo.bar/hello.html"));
EXPECT_EQ_STR(Path("C:\\Yo").NavigateUp().ToString(), std::string("C:"));
#if PPSSPP_PLATFORM(WINDOWS)
EXPECT_EQ_STR(Path("C:").NavigateUp().ToString(), std::string("/"));
EXPECT_EQ_STR(Path("C:\\Yo").GetDirectory(), std::string("C:"));
EXPECT_EQ_STR(Path("C:\\Yo").GetFilename(), std::string("Yo"));
EXPECT_EQ_STR(Path("C:\\Yo\\Lo").GetDirectory(), std::string("C:/Yo"));
EXPECT_EQ_STR(Path("C:\\Yo\\Lo").GetFilename(), std::string("Lo"));
EXPECT_EQ_STR(Path(R"(\\host\share\filename)").GetRootVolume().ToString(), std::string("//host"));
EXPECT_EQ_STR(Path(R"(\\?\UNC\share\filename)").GetRootVolume().ToString(), std::string("//?/UNC"));
EXPECT_EQ_STR(Path(R"(\\?\C:\share\filename)").GetRootVolume().ToString(), std::string("//?/C:"));
#endif
std::string computedPath;
EXPECT_TRUE(Path("/a/b").ComputePathTo(Path("/a/b/c/d/e"), computedPath));
EXPECT_EQ_STR(computedPath, std::string("c/d/e"));
EXPECT_TRUE(Path("/").ComputePathTo(Path("/home/foo/bar"), computedPath));
EXPECT_EQ_STR(computedPath, std::string("home/foo/bar"));
return true;
}
static bool TestAndroidContentURI() {
static const char *treeURIString = "content://com.android.externalstorage.documents/tree/primary%3APSP%20ISO";
static const char *directoryURIString = "content://com.android.externalstorage.documents/tree/primary%3APSP%20ISO/document/primary%3APSP%20ISO";
static const char *fileTreeURIString = "content://com.android.externalstorage.documents/tree/primary%3APSP%20ISO/document/primary%3APSP%20ISO%2FTekken%206.iso";
static const char *fileNonTreeString = "content://com.android.externalstorage.documents/document/primary%3APSP%2Fcrash_bad_execaddr.prx";
AndroidContentURI treeURI;
EXPECT_TRUE(treeURI.Parse(std::string(treeURIString)));
AndroidContentURI dirURI;
EXPECT_TRUE(dirURI.Parse(std::string(directoryURIString)));
AndroidContentURI fileTreeURI;
EXPECT_TRUE(fileTreeURI.Parse(std::string(fileTreeURIString)));
AndroidContentURI fileTreeURICopy;
EXPECT_TRUE(fileTreeURICopy.Parse(std::string(fileTreeURIString)));
AndroidContentURI fileURI;
EXPECT_TRUE(fileURI.Parse(std::string(fileNonTreeString)));
EXPECT_EQ_STR(fileTreeURI.GetLastPart(), std::string("Tekken 6.iso"));
EXPECT_TRUE(treeURI.TreeContains(fileTreeURI));
EXPECT_TRUE(fileTreeURI.CanNavigateUp());
fileTreeURI.NavigateUp();
EXPECT_FALSE(fileTreeURI.CanNavigateUp());
EXPECT_EQ_STR(fileTreeURI.FilePath(), fileTreeURI.RootPath());
EXPECT_EQ_STR(fileTreeURI.ToString(), std::string(directoryURIString));
std::string diff;
EXPECT_TRUE(dirURI.ComputePathTo(fileTreeURICopy, diff));
EXPECT_EQ_STR(diff, std::string("Tekken 6.iso"));
EXPECT_EQ_STR(fileURI.GetFileExtension(), std::string(".prx"));
EXPECT_FALSE(fileURI.CanNavigateUp());
return true;
}
class UnitTestWordWrapper : public WordWrapper {
public:
UnitTestWordWrapper(const char *str, float maxW, int flags)
: WordWrapper(str, maxW, flags) {
}
protected:
float MeasureWidth(const char *str, size_t bytes) override {
// Simple case for unit testing.
int w = 0;
for (UTF8 utf(str); !utf.end() && (size_t)utf.byteIndex() < bytes; ) {
uint32_t c = utf.next();
switch (c) {
case ' ':
case '.':
w += 1;
break;
case 0x00AD:
// No width for soft hyphens.
break;
default:
w += 2;
break;
}
}
return w;
}
};
#define EXPECT_WORDWRAP_EQ_STR(a, l, f, b) if (UnitTestWordWrapper(a, l, f).Wrapped() != b) { printf("%s: Test Fail (%d, %s)\n%s\nvs\n%s\n", __FUNCTION__, l, #f, UnitTestWordWrapper(a, l, f).Wrapped().c_str(), std::string(b).c_str()); return false; }
static bool TestWrapText() {
// If there's enough space, it shouldn't wrap. This is exactly enough.
EXPECT_WORDWRAP_EQ_STR("Hello", 10, 0, "Hello");
EXPECT_WORDWRAP_EQ_STR("Hello", 10, FLAG_WRAP_TEXT, "Hello");
EXPECT_WORDWRAP_EQ_STR("Hello", 10, FLAG_ELLIPSIZE_TEXT, "Hello");
EXPECT_WORDWRAP_EQ_STR("Hello", 10, FLAG_WRAP_TEXT | FLAG_ELLIPSIZE_TEXT, "Hello");
// Try a single word that doesn't fit in the space.
EXPECT_WORDWRAP_EQ_STR("Hello", 6, 0, "Hello");
EXPECT_WORDWRAP_EQ_STR("Hello", 6, FLAG_WRAP_TEXT, "Hel\nlo");
EXPECT_WORDWRAP_EQ_STR("Hello", 6, FLAG_ELLIPSIZE_TEXT, "H...");
EXPECT_WORDWRAP_EQ_STR("Hello", 6, FLAG_WRAP_TEXT | FLAG_ELLIPSIZE_TEXT, "H...");
// Now, multiple words.
EXPECT_WORDWRAP_EQ_STR("Hello goodbye", 14, 0, "Hello goodbye");
EXPECT_WORDWRAP_EQ_STR("Hello goodbye", 14, FLAG_WRAP_TEXT, "Hello \ngoodbye");
EXPECT_WORDWRAP_EQ_STR("Hello goodbye", 14, FLAG_ELLIPSIZE_TEXT, "Hello...");
EXPECT_WORDWRAP_EQ_STR("Hello goodbye", 14, FLAG_WRAP_TEXT | FLAG_ELLIPSIZE_TEXT, "Hello \ngoodbye");
// Multiple words with something short after...
EXPECT_WORDWRAP_EQ_STR("Hello goodbye yes", 14, 0, "Hello goodbye ");
EXPECT_WORDWRAP_EQ_STR("Hello goodbye yes", 14, FLAG_WRAP_TEXT, "Hello \ngoodbye \nyes");
EXPECT_WORDWRAP_EQ_STR("Hello goodbye yes", 14, FLAG_ELLIPSIZE_TEXT, "Hello...");
EXPECT_WORDWRAP_EQ_STR("Hello goodbye yes", 14, FLAG_WRAP_TEXT | FLAG_ELLIPSIZE_TEXT, "Hello \ngoodbye \nyes");
// Now, multiple words, but only the first fits.
EXPECT_WORDWRAP_EQ_STR("Hello goodbye", 10, 0, "Hello ");
EXPECT_WORDWRAP_EQ_STR("Hello goodbye", 10, FLAG_WRAP_TEXT, "Hello \ngoodb\nye");
EXPECT_WORDWRAP_EQ_STR("Hello goodbye", 10, FLAG_ELLIPSIZE_TEXT, "Hel...");
EXPECT_WORDWRAP_EQ_STR("Hello goodbye", 10, FLAG_WRAP_TEXT | FLAG_ELLIPSIZE_TEXT, "Hello \ngoo...");
// How about the shy character?
const std::string shyTestString = StringFromFormat("Very%c%clong", 0xC2, 0xAD);
EXPECT_WORDWRAP_EQ_STR(shyTestString.c_str(), 10, 0, shyTestString);
EXPECT_WORDWRAP_EQ_STR(shyTestString.c_str(), 10, FLAG_WRAP_TEXT, "Very-\nlong");
EXPECT_WORDWRAP_EQ_STR(shyTestString.c_str(), 10, FLAG_ELLIPSIZE_TEXT, "Very...");
EXPECT_WORDWRAP_EQ_STR(shyTestString.c_str(), 10, FLAG_WRAP_TEXT | FLAG_ELLIPSIZE_TEXT, "Very-\nlong");
// Newlines should not be removed and should influence wrapping.
EXPECT_WORDWRAP_EQ_STR("Hello\ngoodbye yes\nno", 14, 0, "Hello\ngoodbye ");
EXPECT_WORDWRAP_EQ_STR("Hello\ngoodbye yes\nno", 14, FLAG_WRAP_TEXT, "Hello\ngoodbye \nyes\nno");
EXPECT_WORDWRAP_EQ_STR("Hello\ngoodbye yes\nno", 14, FLAG_ELLIPSIZE_TEXT, "Hello\ngoodb...\nno");
EXPECT_WORDWRAP_EQ_STR("Hello\ngoodbye yes\nno", 14, FLAG_WRAP_TEXT | FLAG_ELLIPSIZE_TEXT, "Hello\ngoodbye \nyes\nno");
return true;
}
static bool TestSmallDataConvert() {
float f[4] = { 1.0f / 255.0f, 2.0f / 255.0f, 3.0f / 255.0f, 4.0f / 255.f };
uint32_t result = Float4ToUint8x4_NoClamp(f);
EXPECT_EQ_HEX(result, 0x04030201);
result = Float4ToUint8x4(f);
EXPECT_EQ_HEX(result, 0x04030201);
return true;
}
typedef bool (*TestFunc)();
struct TestItem {
const char *name;
TestFunc func;
};
#define TEST_ITEM(name) { #name, &Test ##name, }
bool TestArmEmitter();
bool TestArm64Emitter();
bool TestX64Emitter();
bool TestRiscVEmitter();
bool TestShaderGenerators();
bool TestSoftwareGPUJit();
bool TestIRPassSimplify();
bool TestThreadManager();
TestItem availableTests[] = {
#if PPSSPP_ARCH(ARM64) || PPSSPP_ARCH(AMD64) || PPSSPP_ARCH(X86)
TEST_ITEM(Arm64Emitter),
#endif
#if PPSSPP_ARCH(ARM) || PPSSPP_ARCH(AMD64) || PPSSPP_ARCH(X86)
TEST_ITEM(ArmEmitter),
#endif
#if PPSSPP_ARCH(AMD64) || PPSSPP_ARCH(X86)
TEST_ITEM(X64Emitter),
#endif
#if PPSSPP_ARCH(AMD64) || PPSSPP_ARCH(X86) || PPSSPP_ARCH(RISCV64)
TEST_ITEM(RiscVEmitter),
#endif
TEST_ITEM(VertexJit),
TEST_ITEM(Asin),
TEST_ITEM(SinCos),
TEST_ITEM(VFPUSinCos),
TEST_ITEM(MathUtil),
TEST_ITEM(Parsers),
TEST_ITEM(IRPassSimplify),
TEST_ITEM(Jit),
TEST_ITEM(MatrixTranspose),
TEST_ITEM(ParseLBN),
TEST_ITEM(QuickTexHash),
TEST_ITEM(CLZ),
TEST_ITEM(MemMap),
TEST_ITEM(ShaderGenerators),
TEST_ITEM(SoftwareGPUJit),
TEST_ITEM(Path),
TEST_ITEM(AndroidContentURI),
TEST_ITEM(ThreadManager),
TEST_ITEM(WrapText),
TEST_ITEM(TinySet),
TEST_ITEM(SmallDataConvert),
};
int main(int argc, const char *argv[]) {
cpu_info.bNEON = true;
cpu_info.bVFP = true;
cpu_info.bVFPv3 = true;
cpu_info.bVFPv4 = true;
g_Config.bEnableLogging = true;
bool allTests = false;
TestFunc testFunc = nullptr;
if (argc >= 2) {
if (!strcasecmp(argv[1], "all")) {
allTests = true;
}
for (auto f : availableTests) {
if (!strcasecmp(argv[1], f.name)) {
testFunc = f.func;
break;
}
}
}
if (allTests) {
int passes = 0;
int fails = 0;
for (auto f : availableTests) {
if (f.func()) {
++passes;
} else {
printf("%s: FAILED\n", f.name);
++fails;
}
}
if (passes > 0) {
printf("%d tests passed.\n", passes);
}
if (fails > 0) {
return 2;
}
} else if (testFunc == nullptr) {
fprintf(stderr, "You may select a test to run by passing an argument.\n");
fprintf(stderr, "\n");
fprintf(stderr, "Available tests:\n");
for (auto f : availableTests) {
fprintf(stderr, " * %s\n", f.name);
}
return 1;
} else {
if (!testFunc()) {
return 2;
}
}
return 0;
}