ppsspp/GPU/GLES/ShaderManagerGLES.cpp
Unknown W. Brackets 72e0a24724 GPU: Reset shader state on shader reset.
Was ending up with lastFSID being -1, but being used.

Seen in gpu/commands/blend test.
2017-09-20 08:37:54 -07:00

1116 lines
36 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#if defined(_WIN32) && defined(SHADERLOG)
#include "Common/CommonWindows.h"
#endif
#include <map>
#include <cstdio>
#include "math/dataconv.h"
#include "base/logging.h"
#include "base/timeutil.h"
#include "gfx/gl_debug_log.h"
#include "i18n/i18n.h"
#include "math/math_util.h"
#include "math/lin/matrix4x4.h"
#include "profiler/profiler.h"
#include "Common/FileUtil.h"
#include "Core/Config.h"
#include "Core/Host.h"
#include "Core/Reporting.h"
#include "GPU/Math3D.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "ext/native/gfx/GLStateCache.h"
#include "GPU/GLES/ShaderManagerGLES.h"
#include "GPU/GLES/DrawEngineGLES.h"
#include "FramebufferManagerGLES.h"
Shader::Shader(const char *code, uint32_t glShaderType, bool useHWTransform)
: failed_(false), useHWTransform_(useHWTransform) {
PROFILE_THIS_SCOPE("shadercomp");
isFragment_ = glShaderType == GL_FRAGMENT_SHADER;
source_ = code;
#ifdef SHADERLOG
#ifdef _WIN32
OutputDebugStringUTF8(code);
#else
printf("%s\n", code);
#endif
#endif
shader = glCreateShader(glShaderType);
glShaderSource(shader, 1, &code, 0);
glCompileShader(shader);
GLint success = 0;
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
if (!success) {
#define MAX_INFO_LOG_SIZE 2048
GLchar infoLog[MAX_INFO_LOG_SIZE];
GLsizei len;
glGetShaderInfoLog(shader, MAX_INFO_LOG_SIZE, &len, infoLog);
infoLog[len] = '\0';
#ifdef __ANDROID__
ELOG("Error in shader compilation! %s\n", infoLog);
ELOG("Shader source:\n%s\n", (const char *)code);
#endif
ERROR_LOG(G3D, "Error in shader compilation!\n");
ERROR_LOG(G3D, "Info log: %s\n", infoLog);
ERROR_LOG(G3D, "Shader source:\n%s\n", (const char *)code);
Reporting::ReportMessage("Error in shader compilation: info: %s / code: %s", infoLog, (const char *)code);
#ifdef SHADERLOG
OutputDebugStringUTF8(infoLog);
#endif
failed_ = true;
shader = 0;
} else {
DEBUG_LOG(G3D, "Compiled shader:\n%s\n", (const char *)code);
}
CHECK_GL_ERROR_IF_DEBUG();
}
Shader::~Shader() {
if (shader)
glDeleteShader(shader);
}
LinkedShader::LinkedShader(ShaderID VSID, Shader *vs, ShaderID FSID, Shader *fs, bool useHWTransform)
: useHWTransform_(useHWTransform), program(0), dirtyUniforms(0) {
PROFILE_THIS_SCOPE("shaderlink");
program = glCreateProgram();
vs_ = vs;
glAttachShader(program, vs->shader);
glAttachShader(program, fs->shader);
// Bind attribute locations to fixed locations so that they're
// the same in all shaders. We use this later to minimize the calls to
// glEnableVertexAttribArray and glDisableVertexAttribArray.
glBindAttribLocation(program, ATTR_POSITION, "position");
glBindAttribLocation(program, ATTR_TEXCOORD, "texcoord");
glBindAttribLocation(program, ATTR_NORMAL, "normal");
glBindAttribLocation(program, ATTR_W1, "w1");
glBindAttribLocation(program, ATTR_W2, "w2");
glBindAttribLocation(program, ATTR_COLOR0, "color0");
glBindAttribLocation(program, ATTR_COLOR1, "color1");
#if !defined(USING_GLES2)
if (gstate_c.featureFlags & GPU_SUPPORTS_DUALSOURCE_BLEND) {
// Dual source alpha
glBindFragDataLocationIndexed(program, 0, 0, "fragColor0");
glBindFragDataLocationIndexed(program, 0, 1, "fragColor1");
} else if (gl_extensions.VersionGEThan(3, 3, 0)) {
glBindFragDataLocation(program, 0, "fragColor0");
}
#elif !defined(IOS)
if (gl_extensions.GLES3) {
if (gstate_c.featureFlags & GPU_SUPPORTS_DUALSOURCE_BLEND) {
glBindFragDataLocationIndexedEXT(program, 0, 0, "fragColor0");
glBindFragDataLocationIndexedEXT(program, 0, 1, "fragColor1");
}
}
#endif
glLinkProgram(program);
GLint linkStatus = GL_FALSE;
glGetProgramiv(program, GL_LINK_STATUS, &linkStatus);
if (linkStatus != GL_TRUE) {
GLint bufLength = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &bufLength);
if (bufLength) {
char* buf = new char[bufLength];
glGetProgramInfoLog(program, bufLength, NULL, buf);
#ifdef __ANDROID__
ELOG("Could not link program:\n %s", buf);
#endif
ERROR_LOG(G3D, "Could not link program:\n %s", buf);
ERROR_LOG(G3D, "VS desc:\n%s\n", vs->GetShaderString(SHADER_STRING_SHORT_DESC, VSID).c_str());
ERROR_LOG(G3D, "FS desc:\n%s\n", fs->GetShaderString(SHADER_STRING_SHORT_DESC, FSID).c_str());
std::string vs_source = vs->GetShaderString(SHADER_STRING_SOURCE_CODE, VSID);
std::string fs_source = fs->GetShaderString(SHADER_STRING_SOURCE_CODE, FSID);
ERROR_LOG(G3D, "VS:\n%s\n", vs_source.c_str());
ERROR_LOG(G3D, "FS:\n%s\n", fs_source.c_str());
Reporting::ReportMessage("Error in shader program link: info: %s / fs: %s / vs: %s", buf, fs_source.c_str(), vs_source.c_str());
#ifdef SHADERLOG
OutputDebugStringUTF8(buf);
OutputDebugStringUTF8(vs_source.c_str());
OutputDebugStringUTF8(fs_source.c_str());
#endif
delete [] buf; // we're dead!
}
// Prevent a buffer overflow.
numBones = 0;
// Avoid weird attribute enables.
attrMask = 0;
availableUniforms = 0;
return;
}
INFO_LOG(G3D, "Linked shader: vs %i fs %i", (int)vs->shader, (int)fs->shader);
u_tex = glGetUniformLocation(program, "tex");
u_proj = glGetUniformLocation(program, "u_proj");
u_proj_through = glGetUniformLocation(program, "u_proj_through");
u_texenv = glGetUniformLocation(program, "u_texenv");
u_fogcolor = glGetUniformLocation(program, "u_fogcolor");
u_fogcoef = glGetUniformLocation(program, "u_fogcoef");
u_alphacolorref = glGetUniformLocation(program, "u_alphacolorref");
u_alphacolormask = glGetUniformLocation(program, "u_alphacolormask");
u_stencilReplaceValue = glGetUniformLocation(program, "u_stencilReplaceValue");
u_testtex = glGetUniformLocation(program, "testtex");
u_fbotex = glGetUniformLocation(program, "fbotex");
u_blendFixA = glGetUniformLocation(program, "u_blendFixA");
u_blendFixB = glGetUniformLocation(program, "u_blendFixB");
u_fbotexSize = glGetUniformLocation(program, "u_fbotexSize");
// Transform
u_view = glGetUniformLocation(program, "u_view");
u_world = glGetUniformLocation(program, "u_world");
u_texmtx = glGetUniformLocation(program, "u_texmtx");
if (VSID.Bit(VS_BIT_ENABLE_BONES))
numBones = TranslateNumBones(VSID.Bits(VS_BIT_BONES, 3) + 1);
else
numBones = 0;
u_depthRange = glGetUniformLocation(program, "u_depthRange");
#ifdef USE_BONE_ARRAY
u_bone = glGetUniformLocation(program, "u_bone");
#else
for (int i = 0; i < 8; i++) {
char name[10];
sprintf(name, "u_bone%i", i);
u_bone[i] = glGetUniformLocation(program, name);
}
#endif
// Lighting, texturing
u_ambient = glGetUniformLocation(program, "u_ambient");
u_matambientalpha = glGetUniformLocation(program, "u_matambientalpha");
u_matdiffuse = glGetUniformLocation(program, "u_matdiffuse");
u_matspecular = glGetUniformLocation(program, "u_matspecular");
u_matemissive = glGetUniformLocation(program, "u_matemissive");
u_uvscaleoffset = glGetUniformLocation(program, "u_uvscaleoffset");
u_texclamp = glGetUniformLocation(program, "u_texclamp");
u_texclampoff = glGetUniformLocation(program, "u_texclampoff");
for (int i = 0; i < 4; i++) {
char temp[64];
sprintf(temp, "u_lightpos%i", i);
u_lightpos[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightdir%i", i);
u_lightdir[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightatt%i", i);
u_lightatt[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightangle%i", i);
u_lightangle[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightspotCoef%i", i);
u_lightspotCoef[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightambient%i", i);
u_lightambient[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightdiffuse%i", i);
u_lightdiffuse[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightspecular%i", i);
u_lightspecular[i] = glGetUniformLocation(program, temp);
}
// We need to fetch these unconditionally, gstate_c.spline or bezier will not be set if we
// create this shader at load time from the shader cache.
u_tess_pos_tex = glGetUniformLocation(program, "u_tess_pos_tex");
u_tess_tex_tex = glGetUniformLocation(program, "u_tess_tex_tex");
u_tess_col_tex = glGetUniformLocation(program, "u_tess_col_tex");
u_spline_count_u = glGetUniformLocation(program, "u_spline_count_u");
u_spline_count_v = glGetUniformLocation(program, "u_spline_count_v");
u_spline_type_u = glGetUniformLocation(program, "u_spline_type_u");
u_spline_type_v = glGetUniformLocation(program, "u_spline_type_v");
attrMask = 0;
if (-1 != glGetAttribLocation(program, "position")) attrMask |= 1 << ATTR_POSITION;
if (-1 != glGetAttribLocation(program, "texcoord")) attrMask |= 1 << ATTR_TEXCOORD;
if (-1 != glGetAttribLocation(program, "normal")) attrMask |= 1 << ATTR_NORMAL;
if (-1 != glGetAttribLocation(program, "w1")) attrMask |= 1 << ATTR_W1;
if (-1 != glGetAttribLocation(program, "w2")) attrMask |= 1 << ATTR_W2;
if (-1 != glGetAttribLocation(program, "color0")) attrMask |= 1 << ATTR_COLOR0;
if (-1 != glGetAttribLocation(program, "color1")) attrMask |= 1 << ATTR_COLOR1;
availableUniforms = 0;
if (u_proj != -1) availableUniforms |= DIRTY_PROJMATRIX;
if (u_proj_through != -1) availableUniforms |= DIRTY_PROJTHROUGHMATRIX;
if (u_texenv != -1) availableUniforms |= DIRTY_TEXENV;
if (u_alphacolorref != -1) availableUniforms |= DIRTY_ALPHACOLORREF;
if (u_alphacolormask != -1) availableUniforms |= DIRTY_ALPHACOLORMASK;
if (u_fogcolor != -1) availableUniforms |= DIRTY_FOGCOLOR;
if (u_fogcoef != -1) availableUniforms |= DIRTY_FOGCOEF;
if (u_texenv != -1) availableUniforms |= DIRTY_TEXENV;
if (u_uvscaleoffset != -1) availableUniforms |= DIRTY_UVSCALEOFFSET;
if (u_texclamp != -1) availableUniforms |= DIRTY_TEXCLAMP;
if (u_world != -1) availableUniforms |= DIRTY_WORLDMATRIX;
if (u_view != -1) availableUniforms |= DIRTY_VIEWMATRIX;
if (u_texmtx != -1) availableUniforms |= DIRTY_TEXMATRIX;
if (u_stencilReplaceValue != -1) availableUniforms |= DIRTY_STENCILREPLACEVALUE;
if (u_blendFixA != -1 || u_blendFixB != -1 || u_fbotexSize != -1) availableUniforms |= DIRTY_SHADERBLEND;
if (u_depthRange != -1)
availableUniforms |= DIRTY_DEPTHRANGE;
// Looping up to numBones lets us avoid checking u_bone[i]
#ifdef USE_BONE_ARRAY
if (u_bone != -1) {
for (int i = 0; i < numBones; i++) {
availableUniforms |= DIRTY_BONEMATRIX0 << i;
}
}
#else
for (int i = 0; i < numBones; i++) {
if (u_bone[i] != -1)
availableUniforms |= DIRTY_BONEMATRIX0 << i;
}
#endif
if (u_ambient != -1) availableUniforms |= DIRTY_AMBIENT;
if (u_matambientalpha != -1) availableUniforms |= DIRTY_MATAMBIENTALPHA;
if (u_matdiffuse != -1) availableUniforms |= DIRTY_MATDIFFUSE;
if (u_matemissive != -1) availableUniforms |= DIRTY_MATEMISSIVE;
if (u_matspecular != -1) availableUniforms |= DIRTY_MATSPECULAR;
for (int i = 0; i < 4; i++) {
if (u_lightdir[i] != -1 ||
u_lightspecular[i] != -1 ||
u_lightpos[i] != -1)
availableUniforms |= DIRTY_LIGHT0 << i;
}
if (u_spline_count_u != -1) availableUniforms |= DIRTY_BEZIERSPLINE;
if (u_spline_count_v != -1) availableUniforms |= DIRTY_BEZIERSPLINE;
if (u_spline_type_u != -1) availableUniforms |= DIRTY_BEZIERSPLINE;
if (u_spline_type_v != -1) availableUniforms |= DIRTY_BEZIERSPLINE;
glUseProgram(program);
// Default uniform values
glUniform1i(u_tex, 0);
glUniform1i(u_fbotex, 1);
glUniform1i(u_testtex, 2);
if (u_tess_pos_tex != -1)
glUniform1i(u_tess_pos_tex, 4); // Texture unit 4
if (u_tess_tex_tex != -1)
glUniform1i(u_tess_tex_tex, 5); // Texture unit 5
if (u_tess_col_tex != -1)
glUniform1i(u_tess_col_tex, 6); // Texture unit 6
// The rest, use the "dirty" mechanism.
dirtyUniforms = DIRTY_ALL_UNIFORMS;
CHECK_GL_ERROR_IF_DEBUG();
}
LinkedShader::~LinkedShader() {
// Shaders are automatically detached by glDeleteProgram.
glDeleteProgram(program);
}
// Utility
static void SetColorUniform3(int uniform, u32 color) {
float f[4];
Uint8x4ToFloat4(f, color);
glUniform3fv(uniform, 1, f);
}
static void SetColorUniform3Alpha(int uniform, u32 color, u8 alpha) {
float f[4];
Uint8x3ToFloat4_AlphaUint8(f, color, alpha);
glUniform4fv(uniform, 1, f);
}
// This passes colors unscaled (e.g. 0 - 255 not 0 - 1.)
static void SetColorUniform3Alpha255(int uniform, u32 color, u8 alpha) {
if (gl_extensions.gpuVendor == GPU_VENDOR_POWERVR) {
const float col[4] = {
(float)((color & 0xFF) >> 0) * (1.0f / 255.0f),
(float)((color & 0xFF00) >> 8) * (1.0f / 255.0f),
(float)((color & 0xFF0000) >> 16) * (1.0f / 255.0f),
(float)alpha * (1.0f / 255.0f)
};
glUniform4fv(uniform, 1, col);
} else {
const float col[4] = {
(float)((color & 0xFF) >> 0),
(float)((color & 0xFF00) >> 8),
(float)((color & 0xFF0000) >> 16),
(float)alpha
};
glUniform4fv(uniform, 1, col);
}
}
static void SetColorUniform3iAlpha(int uniform, u32 color, u8 alpha) {
const int col[4] = {
(int)((color & 0xFF) >> 0),
(int)((color & 0xFF00) >> 8),
(int)((color & 0xFF0000) >> 16),
(int)alpha,
};
glUniform4iv(uniform, 1, col);
}
static void SetColorUniform3ExtraFloat(int uniform, u32 color, float extra) {
const float col[4] = {
((color & 0xFF)) / 255.0f,
((color & 0xFF00) >> 8) / 255.0f,
((color & 0xFF0000) >> 16) / 255.0f,
extra
};
glUniform4fv(uniform, 1, col);
}
static void SetFloat24Uniform3(int uniform, const uint32_t data[3]) {
float f[4];
ExpandFloat24x3ToFloat4(f, data);
glUniform3fv(uniform, 1, f);
}
static void SetFloatUniform4(int uniform, float data[4]) {
glUniform4fv(uniform, 1, data);
}
static void SetMatrix4x3(int uniform, const float *m4x3) {
float m4x4[16];
ConvertMatrix4x3To4x4(m4x4, m4x3);
glUniformMatrix4fv(uniform, 1, GL_FALSE, m4x4);
}
static inline void ScaleProjMatrix(Matrix4x4 &in) {
float yOffset = gstate_c.vpYOffset;
if (g_Config.iRenderingMode == FB_NON_BUFFERED_MODE) {
// GL upside down is a pain as usual.
yOffset = -yOffset;
}
const Vec3 trans(gstate_c.vpXOffset, yOffset, gstate_c.vpZOffset);
const Vec3 scale(gstate_c.vpWidthScale, gstate_c.vpHeightScale, gstate_c.vpDepthScale);
in.translateAndScale(trans, scale);
}
void LinkedShader::use(const ShaderID &VSID, LinkedShader *previous) {
glUseProgram(program);
int enable, disable;
if (previous) {
enable = attrMask & ~previous->attrMask;
disable = (~attrMask) & previous->attrMask;
} else {
enable = attrMask;
disable = ~attrMask;
}
for (int i = 0; i < ATTR_COUNT; i++) {
if (enable & (1 << i))
glEnableVertexAttribArray(i);
else if (disable & (1 << i))
glDisableVertexAttribArray(i);
}
}
void LinkedShader::stop() {
for (int i = 0; i < ATTR_COUNT; i++) {
if (attrMask & (1 << i))
glDisableVertexAttribArray(i);
}
}
void LinkedShader::UpdateUniforms(u32 vertType, const ShaderID &vsid) {
CHECK_GL_ERROR_IF_DEBUG();
u64 dirty = dirtyUniforms & availableUniforms;
dirtyUniforms = 0;
if (!dirty)
return;
// Update any dirty uniforms before we draw
if (dirty & DIRTY_PROJMATRIX) {
Matrix4x4 flippedMatrix;
memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float));
bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE;
const bool invertedY = useBufferedRendering ? (gstate_c.vpHeight < 0) : (gstate_c.vpHeight > 0);
if (invertedY) {
flippedMatrix[1] = -flippedMatrix[1];
flippedMatrix[5] = -flippedMatrix[5];
flippedMatrix[9] = -flippedMatrix[9];
flippedMatrix[13] = -flippedMatrix[13];
}
const bool invertedX = gstate_c.vpWidth < 0;
if (invertedX) {
flippedMatrix[0] = -flippedMatrix[0];
flippedMatrix[4] = -flippedMatrix[4];
flippedMatrix[8] = -flippedMatrix[8];
flippedMatrix[12] = -flippedMatrix[12];
}
// In Phantasy Star Portable 2, depth range sometimes goes negative and is clamped by glDepthRange to 0,
// causing graphics clipping glitch (issue #1788). This hack modifies the projection matrix to work around it.
if (gstate_c.Supports(GPU_USE_DEPTH_RANGE_HACK)) {
float zScale = gstate.getViewportZScale() / 65535.0f;
float zCenter = gstate.getViewportZCenter() / 65535.0f;
// if far depth range < 0
if (zCenter + zScale < 0.0f) {
// if perspective projection
if (flippedMatrix[11] < 0.0f) {
float depthMax = gstate.getDepthRangeMax() / 65535.0f;
float depthMin = gstate.getDepthRangeMin() / 65535.0f;
float a = flippedMatrix[10];
float b = flippedMatrix[14];
float n = b / (a - 1.0f);
float f = b / (a + 1.0f);
f = (n * f) / (n + ((zCenter + zScale) * (n - f) / (depthMax - depthMin)));
a = (n + f) / (n - f);
b = (2.0f * n * f) / (n - f);
if (!my_isnan(a) && !my_isnan(b)) {
flippedMatrix[10] = a;
flippedMatrix[14] = b;
}
}
}
}
ScaleProjMatrix(flippedMatrix);
glUniformMatrix4fv(u_proj, 1, GL_FALSE, flippedMatrix.m);
}
if (dirty & DIRTY_PROJTHROUGHMATRIX)
{
Matrix4x4 proj_through;
bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE;
if (useBufferedRendering) {
proj_through.setOrtho(0.0f, gstate_c.curRTWidth, 0.0f, gstate_c.curRTHeight, 0.0f, 1.0f);
} else {
proj_through.setOrtho(0.0f, gstate_c.curRTWidth, gstate_c.curRTHeight, 0.0f, 0.0f, 1.0f);
}
glUniformMatrix4fv(u_proj_through, 1, GL_FALSE, proj_through.getReadPtr());
}
if (dirty & DIRTY_TEXENV) {
SetColorUniform3(u_texenv, gstate.texenvcolor);
}
if (dirty & DIRTY_ALPHACOLORREF) {
SetColorUniform3Alpha255(u_alphacolorref, gstate.getColorTestRef(), gstate.getAlphaTestRef() & gstate.getAlphaTestMask());
}
if (dirty & DIRTY_ALPHACOLORMASK) {
SetColorUniform3iAlpha(u_alphacolormask, gstate.colortestmask, gstate.getAlphaTestMask());
}
if (dirty & DIRTY_FOGCOLOR) {
SetColorUniform3(u_fogcolor, gstate.fogcolor);
}
if (dirty & DIRTY_FOGCOEF) {
float fogcoef[2] = {
getFloat24(gstate.fog1),
getFloat24(gstate.fog2),
};
if (my_isinf(fogcoef[1])) {
// not really sure what a sensible value might be.
fogcoef[1] = fogcoef[1] < 0.0f ? -10000.0f : 10000.0f;
} else if (my_isnan(fogcoef[1])) {
// Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988
// Just put the fog far away at a large finite distance.
// Infinities and NaNs are rather unpredictable in shaders on many GPUs
// so it's best to just make it a sane calculation.
fogcoef[0] = 100000.0f;
fogcoef[1] = 1.0f;
}
#ifndef MOBILE_DEVICE
else if (my_isnanorinf(fogcoef[1]) || my_isnanorinf(fogcoef[0])) {
ERROR_LOG_REPORT_ONCE(fognan, G3D, "Unhandled fog NaN/INF combo: %f %f", fogcoef[0], fogcoef[1]);
}
#endif
glUniform2fv(u_fogcoef, 1, fogcoef);
}
if (dirty & DIRTY_UVSCALEOFFSET) {
const float invW = 1.0f / (float)gstate_c.curTextureWidth;
const float invH = 1.0f / (float)gstate_c.curTextureHeight;
const int w = gstate.getTextureWidth(0);
const int h = gstate.getTextureHeight(0);
const float widthFactor = (float)w * invW;
const float heightFactor = (float)h * invH;
float uvscaleoff[4];
if (gstate_c.bezier || gstate_c.spline) {
// When we are generating UV coordinates through the bezier/spline, we need to apply the scaling.
// However, this is missing a check that we're not getting our UV:s supplied for us in the vertices.
uvscaleoff[0] = gstate_c.uv.uScale * widthFactor;
uvscaleoff[1] = gstate_c.uv.vScale * heightFactor;
uvscaleoff[2] = gstate_c.uv.uOff * widthFactor;
uvscaleoff[3] = gstate_c.uv.vOff * heightFactor;
} else {
uvscaleoff[0] = widthFactor;
uvscaleoff[1] = heightFactor;
uvscaleoff[2] = 0.0f;
uvscaleoff[3] = 0.0f;
}
glUniform4fv(u_uvscaleoffset, 1, uvscaleoff);
}
if ((dirty & DIRTY_TEXCLAMP) && u_texclamp != -1) {
const float invW = 1.0f / (float)gstate_c.curTextureWidth;
const float invH = 1.0f / (float)gstate_c.curTextureHeight;
const int w = gstate.getTextureWidth(0);
const int h = gstate.getTextureHeight(0);
const float widthFactor = (float)w * invW;
const float heightFactor = (float)h * invH;
// First wrap xy, then half texel xy (for clamp.)
const float texclamp[4] = {
widthFactor,
heightFactor,
invW * 0.5f,
invH * 0.5f,
};
const float texclampoff[2] = {
gstate_c.curTextureXOffset * invW,
gstate_c.curTextureYOffset * invH,
};
glUniform4fv(u_texclamp, 1, texclamp);
if (u_texclampoff != -1) {
glUniform2fv(u_texclampoff, 1, texclampoff);
}
}
// Transform
if (dirty & DIRTY_WORLDMATRIX) {
SetMatrix4x3(u_world, gstate.worldMatrix);
}
if (dirty & DIRTY_VIEWMATRIX) {
SetMatrix4x3(u_view, gstate.viewMatrix);
}
if (dirty & DIRTY_TEXMATRIX) {
SetMatrix4x3(u_texmtx, gstate.tgenMatrix);
}
if ((dirty & DIRTY_DEPTHRANGE) && u_depthRange != -1) {
// Since depth is [-1, 1] mapping to [minz, maxz], this is easyish.
float vpZScale = gstate.getViewportZScale();
float vpZCenter = gstate.getViewportZCenter();
// These are just the reverse of the formulas in GPUStateUtils.
float halfActualZRange = vpZScale / gstate_c.vpDepthScale;
float minz = -((gstate_c.vpZOffset * halfActualZRange) - vpZCenter) - halfActualZRange;
float viewZScale = halfActualZRange;
float viewZCenter = minz + halfActualZRange;
if (!gstate_c.Supports(GPU_SUPPORTS_ACCURATE_DEPTH)) {
viewZScale = vpZScale;
viewZCenter = vpZCenter;
}
float viewZInvScale;
if (viewZScale != 0.0) {
viewZInvScale = 1.0f / viewZScale;
} else {
viewZInvScale = 0.0;
}
float data[4] = { viewZScale, viewZCenter, viewZCenter, viewZInvScale };
SetFloatUniform4(u_depthRange, data);
}
if (dirty & DIRTY_STENCILREPLACEVALUE) {
glUniform1f(u_stencilReplaceValue, (float)gstate.getStencilTestRef() * (1.0f / 255.0f));
}
// TODO: Could even set all bones in one go if they're all dirty.
#ifdef USE_BONE_ARRAY
if (u_bone != -1) {
float allBones[8 * 16];
bool allDirty = true;
for (int i = 0; i < numBones; i++) {
if (dirty & (DIRTY_BONEMATRIX0 << i)) {
ConvertMatrix4x3To4x4(allBones + 16 * i, gstate.boneMatrix + 12 * i);
} else {
allDirty = false;
}
}
if (allDirty) {
// Set them all with one call
glUniformMatrix4fv(u_bone, numBones, GL_FALSE, allBones);
} else {
// Set them one by one. Could try to coalesce two in a row etc but too lazy.
for (int i = 0; i < numBones; i++) {
if (dirty & (DIRTY_BONEMATRIX0 << i)) {
glUniformMatrix4fv(u_bone + i, 1, GL_FALSE, allBones + 16 * i);
}
}
}
}
#else
float bonetemp[16];
for (int i = 0; i < numBones; i++) {
if (dirty & (DIRTY_BONEMATRIX0 << i)) {
ConvertMatrix4x3To4x4(bonetemp, gstate.boneMatrix + 12 * i);
glUniformMatrix4fv(u_bone[i], 1, GL_FALSE, bonetemp);
}
}
#endif
if (dirty & DIRTY_SHADERBLEND) {
if (u_blendFixA != -1) {
SetColorUniform3(u_blendFixA, gstate.getFixA());
}
if (u_blendFixB != -1) {
SetColorUniform3(u_blendFixB, gstate.getFixB());
}
const float fbotexSize[2] = {
1.0f / (float)gstate_c.curRTRenderWidth,
1.0f / (float)gstate_c.curRTRenderHeight,
};
if (u_fbotexSize != -1) {
glUniform2fv(u_fbotexSize, 1, fbotexSize);
}
}
// Lighting
if (dirty & DIRTY_AMBIENT) {
SetColorUniform3Alpha(u_ambient, gstate.ambientcolor, gstate.getAmbientA());
}
if (dirty & DIRTY_MATAMBIENTALPHA) {
SetColorUniform3Alpha(u_matambientalpha, gstate.materialambient, gstate.getMaterialAmbientA());
}
if (dirty & DIRTY_MATDIFFUSE) {
SetColorUniform3(u_matdiffuse, gstate.materialdiffuse);
}
if (dirty & DIRTY_MATEMISSIVE) {
SetColorUniform3(u_matemissive, gstate.materialemissive);
}
if (dirty & DIRTY_MATSPECULAR) {
SetColorUniform3ExtraFloat(u_matspecular, gstate.materialspecular, getFloat24(gstate.materialspecularcoef));
}
for (int i = 0; i < 4; i++) {
if (dirty & (DIRTY_LIGHT0 << i)) {
if (gstate.isDirectionalLight(i)) {
// Prenormalize
float x = getFloat24(gstate.lpos[i * 3 + 0]);
float y = getFloat24(gstate.lpos[i * 3 + 1]);
float z = getFloat24(gstate.lpos[i * 3 + 2]);
float len = sqrtf(x*x + y*y + z*z);
if (len == 0.0f)
len = 1.0f;
else
len = 1.0f / len;
float vec[3] = { x * len, y * len, z * len };
glUniform3fv(u_lightpos[i], 1, vec);
} else {
SetFloat24Uniform3(u_lightpos[i], &gstate.lpos[i * 3]);
}
if (u_lightdir[i] != -1) SetFloat24Uniform3(u_lightdir[i], &gstate.ldir[i * 3]);
if (u_lightatt[i] != -1) SetFloat24Uniform3(u_lightatt[i], &gstate.latt[i * 3]);
if (u_lightangle[i] != -1) glUniform1f(u_lightangle[i], getFloat24(gstate.lcutoff[i]));
if (u_lightspotCoef[i] != -1) glUniform1f(u_lightspotCoef[i], getFloat24(gstate.lconv[i]));
if (u_lightambient[i] != -1) SetColorUniform3(u_lightambient[i], gstate.lcolor[i * 3]);
if (u_lightdiffuse[i] != -1) SetColorUniform3(u_lightdiffuse[i], gstate.lcolor[i * 3 + 1]);
if (u_lightspecular[i] != -1) SetColorUniform3(u_lightspecular[i], gstate.lcolor[i * 3 + 2]);
}
}
if (dirty & DIRTY_BEZIERSPLINE) {
glUniform1i(u_spline_count_u, gstate_c.spline_count_u);
if (u_spline_count_v != -1)
glUniform1i(u_spline_count_v, gstate_c.spline_count_v);
if (u_spline_type_u != -1)
glUniform1i(u_spline_type_u, gstate_c.spline_type_u);
if (u_spline_type_v != -1)
glUniform1i(u_spline_type_v, gstate_c.spline_type_v);
}
CHECK_GL_ERROR_IF_DEBUG();
}
ShaderManagerGLES::ShaderManagerGLES()
: lastShader_(nullptr), shaderSwitchDirtyUniforms_(0), diskCacheDirty_(false), fsCache_(16), vsCache_(16) {
codeBuffer_ = new char[16384];
lastFSID_.set_invalid();
lastVSID_.set_invalid();
}
ShaderManagerGLES::~ShaderManagerGLES() {
delete [] codeBuffer_;
}
void ShaderManagerGLES::Clear() {
DirtyLastShader();
for (auto iter = linkedShaderCache_.begin(); iter != linkedShaderCache_.end(); ++iter) {
delete iter->ls;
}
fsCache_.Iterate([&](const ShaderID &key, Shader *shader) {
delete shader;
});
vsCache_.Iterate([&](const ShaderID &key, Shader *shader) {
delete shader;
});
linkedShaderCache_.clear();
fsCache_.Clear();
vsCache_.Clear();
DirtyShader();
}
void ShaderManagerGLES::ClearCache(bool deleteThem) {
// TODO: Recreate all from the diskcache when we come back.
Clear();
}
void ShaderManagerGLES::DirtyShader() {
// Forget the last shader ID
lastFSID_.set_invalid();
lastVSID_.set_invalid();
DirtyLastShader();
gstate_c.Dirty(DIRTY_ALL_UNIFORMS | DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE);
shaderSwitchDirtyUniforms_ = 0;
}
void ShaderManagerGLES::DirtyLastShader() { // disables vertex arrays
if (lastShader_)
lastShader_->stop();
lastShader_ = nullptr;
lastVShaderSame_ = false;
}
Shader *ShaderManagerGLES::CompileFragmentShader(ShaderID FSID) {
if (!GenerateFragmentShader(FSID, codeBuffer_)) {
return nullptr;
}
return new Shader(codeBuffer_, GL_FRAGMENT_SHADER, false);
}
Shader *ShaderManagerGLES::CompileVertexShader(ShaderID VSID) {
bool useHWTransform = VSID.Bit(VS_BIT_USE_HW_TRANSFORM);
GenerateVertexShader(VSID, codeBuffer_);
return new Shader(codeBuffer_, GL_VERTEX_SHADER, useHWTransform);
}
Shader *ShaderManagerGLES::ApplyVertexShader(int prim, u32 vertType, ShaderID *VSID) {
uint64_t dirty = gstate_c.GetDirtyUniforms();
if (dirty) {
if (lastShader_)
lastShader_->dirtyUniforms |= dirty;
shaderSwitchDirtyUniforms_ |= dirty;
gstate_c.CleanUniforms();
}
bool useHWTransform = CanUseHardwareTransform(prim);
if (gstate_c.IsDirty(DIRTY_VERTEXSHADER_STATE)) {
gstate_c.Clean(DIRTY_VERTEXSHADER_STATE);
ComputeVertexShaderID(VSID, vertType, useHWTransform);
} else {
*VSID = lastVSID_;
}
if (lastShader_ != 0 && *VSID == lastVSID_) {
lastVShaderSame_ = true;
return lastShader_->vs_; // Already all set.
} else {
lastVShaderSame_ = false;
}
lastVSID_ = *VSID;
Shader *vs = vsCache_.Get(*VSID);
if (!vs) {
// Vertex shader not in cache. Let's compile it.
vs = CompileVertexShader(*VSID);
if (vs->Failed()) {
I18NCategory *gr = GetI18NCategory("Graphics");
ERROR_LOG(G3D, "Shader compilation failed, falling back to software transform");
if (!g_Config.bHideSlowWarnings) {
host->NotifyUserMessage(gr->T("hardware transform error - falling back to software"), 2.5f, 0xFF3030FF);
}
delete vs;
// TODO: Look for existing shader with the appropriate ID, use that instead of generating a new one - however, need to make sure
// that that shader ID is not used when computing the linked shader ID below, because then IDs won't match
// next time and we'll do this over and over...
// Can still work with software transform.
ShaderID vsidTemp;
ComputeVertexShaderID(&vsidTemp, vertType, false);
GenerateVertexShader(vsidTemp, codeBuffer_);
vs = new Shader(codeBuffer_, GL_VERTEX_SHADER, false);
}
vsCache_.Insert(*VSID, vs);
diskCacheDirty_ = true;
}
return vs;
}
LinkedShader *ShaderManagerGLES::ApplyFragmentShader(ShaderID VSID, Shader *vs, u32 vertType, int prim) {
ShaderID FSID;
if (gstate_c.IsDirty(DIRTY_FRAGMENTSHADER_STATE)) {
gstate_c.Clean(DIRTY_FRAGMENTSHADER_STATE);
ComputeFragmentShaderID(&FSID);
} else {
FSID = lastFSID_;
}
if (lastVShaderSame_ && FSID == lastFSID_) {
lastShader_->UpdateUniforms(vertType, VSID);
return lastShader_;
}
lastFSID_ = FSID;
Shader *fs = fsCache_.Get(FSID);
if (!fs) {
// Fragment shader not in cache. Let's compile it.
fs = CompileFragmentShader(FSID);
fsCache_.Insert(FSID, fs);
diskCacheDirty_ = true;
}
// Okay, we have both shaders. Let's see if there's a linked one.
LinkedShader *ls = nullptr;
u64 switchDirty = shaderSwitchDirtyUniforms_;
for (auto iter = linkedShaderCache_.begin(); iter != linkedShaderCache_.end(); ++iter) {
// Deferred dirtying! Let's see if we can make this even more clever later.
iter->ls->dirtyUniforms |= switchDirty;
if (iter->vs == vs && iter->fs == fs) {
ls = iter->ls;
}
}
shaderSwitchDirtyUniforms_ = 0;
if (ls == nullptr) {
// Check if we can link these.
ls = new LinkedShader(VSID, vs, FSID, fs, vs->UseHWTransform());
ls->use(VSID, lastShader_);
const LinkedShaderCacheEntry entry(vs, fs, ls);
linkedShaderCache_.push_back(entry);
} else {
ls->use(VSID, lastShader_);
}
ls->UpdateUniforms(vertType, VSID);
lastShader_ = ls;
return ls;
}
std::string Shader::GetShaderString(DebugShaderStringType type, ShaderID id) const {
switch (type) {
case SHADER_STRING_SOURCE_CODE:
return source_;
case SHADER_STRING_SHORT_DESC:
return isFragment_ ? FragmentShaderDesc(id) : VertexShaderDesc(id);
default:
return "N/A";
}
}
std::vector<std::string> ShaderManagerGLES::DebugGetShaderIDs(DebugShaderType type) {
std::string id;
std::vector<std::string> ids;
switch (type) {
case SHADER_TYPE_VERTEX:
{
vsCache_.Iterate([&](const ShaderID &id, Shader *shader) {
std::string idstr;
id.ToString(&idstr);
ids.push_back(idstr);
});
}
break;
case SHADER_TYPE_FRAGMENT:
{
fsCache_.Iterate([&](const ShaderID &id, Shader *shader) {
std::string idstr;
id.ToString(&idstr);
ids.push_back(idstr);
});
}
break;
default:
break;
}
return ids;
}
std::string ShaderManagerGLES::DebugGetShaderString(std::string id, DebugShaderType type, DebugShaderStringType stringType) {
ShaderID shaderId;
shaderId.FromString(id);
switch (type) {
case SHADER_TYPE_VERTEX:
{
Shader *vs = vsCache_.Get(shaderId);
return vs ? vs->GetShaderString(stringType, shaderId) : "";
}
case SHADER_TYPE_FRAGMENT:
{
Shader *fs = fsCache_.Get(shaderId);
return fs->GetShaderString(stringType, shaderId);
}
default:
return "N/A";
}
}
// Shader pseudo-cache.
//
// We simply store the IDs of the shaders used during gameplay. On next startup of
// the same game, we simply compile all the shaders from the start, so we don't have to
// compile them on the fly later. Ideally we would store the actual compiled shaders
// rather than just their IDs, but OpenGL does not support this, except for a few obscure
// vendor-specific extensions.
//
// If things like GPU supported features have changed since the last time, we discard the cache
// as sometimes these features might have an effect on the ID bits.
#define CACHE_HEADER_MAGIC 0x83277592
#define CACHE_VERSION 4
struct CacheHeader {
uint32_t magic;
uint32_t version;
uint32_t featureFlags;
uint32_t reserved;
int numVertexShaders;
int numFragmentShaders;
int numLinkedPrograms;
};
void ShaderManagerGLES::LoadAndPrecompile(const std::string &filename) {
File::IOFile f(filename, "rb");
if (!f.IsOpen()) {
return;
}
CacheHeader header;
if (!f.ReadArray(&header, 1)) {
return;
}
if (header.magic != CACHE_HEADER_MAGIC || header.version != CACHE_VERSION || header.featureFlags != gstate_c.featureFlags) {
return;
}
time_update();
double start = time_now_d();
// Sanity check the file contents
if (header.numFragmentShaders > 1000 || header.numVertexShaders > 1000 || header.numLinkedPrograms > 1000)
return;
for (int i = 0; i < header.numVertexShaders; i++) {
ShaderID id;
if (!f.ReadArray(&id, 1)) {
ERROR_LOG(G3D, "Truncated shader cache file, aborting.");
return;
}
if (!vsCache_.Get(id)) {
Shader *vs = CompileVertexShader(id);
if (vs->Failed()) {
// Give up on using the cache, just bail. We can't safely create the fallback shaders here
// without trying to deduce the vertType from the VSID.
ERROR_LOG(G3D, "Failed to compile a vertex shader loading from cache. Skipping rest of shader cache.");
delete vs;
return;
}
vsCache_.Insert(id, vs);
} else {
WARN_LOG(G3D, "Duplicate vertex shader found in GL shader cache, ignoring");
}
}
for (int i = 0; i < header.numFragmentShaders; i++) {
ShaderID id;
if (!f.ReadArray(&id, 1)) {
ERROR_LOG(G3D, "Truncated shader cache file, aborting.");
return;
}
if (!fsCache_.Get(id)) {
fsCache_.Insert(id, CompileFragmentShader(id));
} else {
WARN_LOG(G3D, "Duplicate fragment shader found in GL shader cache, ignoring");
}
}
for (int i = 0; i < header.numLinkedPrograms; i++) {
ShaderID vsid, fsid;
if (!f.ReadArray(&vsid, 1)) {
ERROR_LOG(G3D, "Truncated shader cache file, aborting.");
return;
}
if (!f.ReadArray(&fsid, 1)) {
ERROR_LOG(G3D, "Truncated shader cache file, aborting.");
return;
}
Shader *vs = vsCache_.Get(vsid);
Shader *fs = fsCache_.Get(fsid);
if (vs && fs) {
LinkedShader *ls = new LinkedShader(vsid, vs, fsid, fs, vs->UseHWTransform());
LinkedShaderCacheEntry entry(vs, fs, ls);
linkedShaderCache_.push_back(entry);
}
}
time_update();
double end = time_now_d();
NOTICE_LOG(G3D, "Compiled and linked %d programs (%d vertex, %d fragment) in %0.1f milliseconds", header.numLinkedPrograms, header.numVertexShaders, header.numFragmentShaders, 1000 * (end - start));
NOTICE_LOG(G3D, "Loaded the shader cache from '%s'", filename.c_str());
diskCacheDirty_ = false;
}
void ShaderManagerGLES::Save(const std::string &filename) {
if (!diskCacheDirty_) {
return;
}
if (linkedShaderCache_.empty()) {
return;
}
INFO_LOG(G3D, "Saving the shader cache to '%s'", filename.c_str());
FILE *f = File::OpenCFile(filename, "wb");
if (!f) {
// Can't save, give up for now.
diskCacheDirty_ = false;
return;
}
CacheHeader header;
header.magic = CACHE_HEADER_MAGIC;
header.version = CACHE_VERSION;
header.reserved = 0;
header.featureFlags = gstate_c.featureFlags;
header.numVertexShaders = GetNumVertexShaders();
header.numFragmentShaders = GetNumFragmentShaders();
header.numLinkedPrograms = GetNumPrograms();
fwrite(&header, 1, sizeof(header), f);
vsCache_.Iterate([&](const ShaderID &id, Shader *shader) {
fwrite(&id, 1, sizeof(id), f);
});
fsCache_.Iterate([&](const ShaderID &id, Shader *shader) {
fwrite(&id, 1, sizeof(id), f);
});
for (auto iter : linkedShaderCache_) {
ShaderID vsid, fsid;
vsCache_.Iterate([&](const ShaderID &id, Shader *shader) {
if (iter.vs == shader)
vsid = id;
});
fsCache_.Iterate([&](const ShaderID &id, Shader *shader) {
if (iter.fs == shader)
fsid = id;
});
fwrite(&vsid, 1, sizeof(vsid), f);
fwrite(&fsid, 1, sizeof(fsid), f);
}
fclose(f);
diskCacheDirty_ = false;
}