ppsspp/GPU/Vulkan/DrawEngineVulkan.cpp

1131 lines
41 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cassert>
#include "base/logging.h"
#include "base/timeutil.h"
#include "math/dataconv.h"
#include "profiler/profiler.h"
#include "thin3d/VulkanRenderManager.h"
#include "Common/MemoryUtil.h"
#include "Core/MemMap.h"
#include "Core/Host.h"
#include "Core/System.h"
#include "Core/Reporting.h"
#include "Core/Config.h"
#include "Core/CoreTiming.h"
#include "GPU/Math3D.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "Common/Vulkan/VulkanContext.h"
#include "Common/Vulkan/VulkanMemory.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Common/SplineCommon.h"
#include "GPU/Common/TransformCommon.h"
#include "GPU/Common/VertexDecoderCommon.h"
#include "GPU/Common/SoftwareTransformCommon.h"
#include "GPU/Common/DrawEngineCommon.h"
#include "GPU/Vulkan/DrawEngineVulkan.h"
#include "GPU/Vulkan/TextureCacheVulkan.h"
#include "GPU/Vulkan/ShaderManagerVulkan.h"
#include "GPU/Vulkan/PipelineManagerVulkan.h"
#include "GPU/Vulkan/FramebufferVulkan.h"
#include "GPU/Vulkan/GPU_Vulkan.h"
enum {
VERTEX_CACHE_SIZE = 8192 * 1024
};
#define VERTEXCACHE_DECIMATION_INTERVAL 17
#define DESCRIPTORSET_DECIMATION_INTERVAL 1 // Temporarily cut to 1. Handle reuse breaks this when textures get deleted.
enum { VAI_KILL_AGE = 120, VAI_UNRELIABLE_KILL_AGE = 240, VAI_UNRELIABLE_KILL_MAX = 4 };
enum {
DRAW_BINDING_TEXTURE = 0,
DRAW_BINDING_2ND_TEXTURE = 1,
DRAW_BINDING_DYNUBO_BASE = 2,
DRAW_BINDING_DYNUBO_LIGHT = 3,
DRAW_BINDING_DYNUBO_BONE = 4,
DRAW_BINDING_TESS_POS_TEXTURE = 5,
DRAW_BINDING_TESS_TEX_TEXTURE = 6,
DRAW_BINDING_TESS_COL_TEXTURE = 7,
};
enum {
TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex)
};
DrawEngineVulkan::DrawEngineVulkan(VulkanContext *vulkan, Draw::DrawContext *draw)
: vulkan_(vulkan),
draw_(draw),
stats_{},
vai_(1024) {
decOptions_.expandAllWeightsToFloat = false;
decOptions_.expand8BitNormalsToFloat = false;
// Allocate nicely aligned memory. Maybe graphics drivers will appreciate it.
// All this is a LOT of memory, need to see if we can cut down somehow.
decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
splineBuffer = (u8 *)AllocateMemoryPages(SPLINE_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
indexGen.Setup(decIndex);
InitDeviceObjects();
tessDataTransfer = new TessellationDataTransferVulkan(vulkan, draw);
}
void DrawEngineVulkan::InitDeviceObjects() {
// All resources we need for PSP drawing. Usually only bindings 0 and 2-4 are populated.
VkDescriptorSetLayoutBinding bindings[8];
bindings[0].descriptorCount = 1;
bindings[0].pImmutableSamplers = nullptr;
bindings[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[0].binding = DRAW_BINDING_TEXTURE;
bindings[1].descriptorCount = 1;
bindings[1].pImmutableSamplers = nullptr;
bindings[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[1].binding = DRAW_BINDING_2ND_TEXTURE;
bindings[2].descriptorCount = 1;
bindings[2].pImmutableSamplers = nullptr;
bindings[2].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
bindings[2].stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[2].binding = DRAW_BINDING_DYNUBO_BASE;
bindings[3].descriptorCount = 1;
bindings[3].pImmutableSamplers = nullptr;
bindings[3].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
bindings[3].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[3].binding = DRAW_BINDING_DYNUBO_LIGHT;
bindings[4].descriptorCount = 1;
bindings[4].pImmutableSamplers = nullptr;
bindings[4].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
bindings[4].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[4].binding = DRAW_BINDING_DYNUBO_BONE;
// Hardware tessellation. TODO: Don't allocate these unless actually drawing splines.
// Will require additional
bindings[5].descriptorCount = 1;
bindings[5].pImmutableSamplers = nullptr;
bindings[5].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[5].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[5].binding = DRAW_BINDING_TESS_POS_TEXTURE;
bindings[6].descriptorCount = 1;
bindings[6].pImmutableSamplers = nullptr;
bindings[6].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[6].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[6].binding = DRAW_BINDING_TESS_TEX_TEXTURE;
bindings[7].descriptorCount = 1;
bindings[7].pImmutableSamplers = nullptr;
bindings[7].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[7].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[7].binding = DRAW_BINDING_TESS_COL_TEXTURE;
VkDevice device = vulkan_->GetDevice();
VkDescriptorSetLayoutCreateInfo dsl = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO };
dsl.bindingCount = 8;
dsl.pBindings = bindings;
VkResult res = vkCreateDescriptorSetLayout(device, &dsl, nullptr, &descriptorSetLayout_);
assert(VK_SUCCESS == res);
VkDescriptorPoolSize dpTypes[2];
dpTypes[0].descriptorCount = 8192;
dpTypes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
dpTypes[1].descriptorCount = 8192 + 4096; // Due to the tess stuff, we need a LOT of these. Most will be empty...
dpTypes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
VkDescriptorPoolCreateInfo dp = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO };
dp.pNext = nullptr;
dp.flags = 0; // Don't want to mess around with individually freeing these.
// We zap the whole pool every few frames.
dp.maxSets = 2048;
dp.pPoolSizes = dpTypes;
dp.poolSizeCount = ARRAY_SIZE(dpTypes);
// We are going to use one-shot descriptors in the initial implementation. Might look into caching them
// if creating and updating them turns out to be expensive.
for (int i = 0; i < VulkanContext::MAX_INFLIGHT_FRAMES; i++) {
// If we run out of memory, try with less descriptors.
for (int tries = 0; tries < 3; ++tries) {
VkResult res = vkCreateDescriptorPool(vulkan_->GetDevice(), &dp, nullptr, &frame_[i].descPool);
if (res == VK_SUCCESS) {
break;
}
// Let's try to reduce the counts.
assert(res == VK_ERROR_OUT_OF_HOST_MEMORY || res == VK_ERROR_OUT_OF_DEVICE_MEMORY);
dpTypes[0].descriptorCount /= 2;
dpTypes[1].descriptorCount /= 2;
}
frame_[i].pushUBO = new VulkanPushBuffer(vulkan_, 8 * 1024 * 1024);
frame_[i].pushVertex = new VulkanPushBuffer(vulkan_, 2 * 1024 * 1024);
frame_[i].pushIndex = new VulkanPushBuffer(vulkan_, 1 * 1024 * 1024);
}
VkPipelineLayoutCreateInfo pl = { VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO };
pl.pPushConstantRanges = nullptr;
pl.pushConstantRangeCount = 0;
pl.setLayoutCount = 1;
pl.pSetLayouts = &descriptorSetLayout_;
pl.flags = 0;
res = vkCreatePipelineLayout(device, &pl, nullptr, &pipelineLayout_);
assert(VK_SUCCESS == res);
VkSamplerCreateInfo samp = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO };
samp.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
samp.flags = 0;
samp.magFilter = VK_FILTER_NEAREST;
samp.minFilter = VK_FILTER_NEAREST;
res = vkCreateSampler(device, &samp, nullptr, &samplerSecondary_);
res = vkCreateSampler(device, &samp, nullptr, &nullSampler_);
assert(VK_SUCCESS == res);
vertexCache_ = new VulkanPushBuffer(vulkan_, VERTEX_CACHE_SIZE);
}
DrawEngineVulkan::~DrawEngineVulkan() {
FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE);
FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE);
FreeMemoryPages(splineBuffer, SPLINE_BUFFER_SIZE);
DestroyDeviceObjects();
delete tessDataTransfer;
}
void DrawEngineVulkan::FrameData::Destroy(VulkanContext *vulkan) {
if (descPool != VK_NULL_HANDLE) {
vulkan->Delete().QueueDeleteDescriptorPool(descPool);
}
if (pushUBO) {
pushUBO->Destroy(vulkan);
delete pushUBO;
pushUBO = nullptr;
}
if (pushVertex) {
pushVertex->Destroy(vulkan);
delete pushVertex;
pushVertex = nullptr;
}
if (pushIndex) {
pushIndex->Destroy(vulkan);
delete pushIndex;
pushIndex = nullptr;
}
}
void DrawEngineVulkan::DestroyDeviceObjects() {
for (int i = 0; i < VulkanContext::MAX_INFLIGHT_FRAMES; i++) {
frame_[i].Destroy(vulkan_);
}
if (samplerSecondary_ != VK_NULL_HANDLE)
vulkan_->Delete().QueueDeleteSampler(samplerSecondary_);
if (nullSampler_ != VK_NULL_HANDLE)
vulkan_->Delete().QueueDeleteSampler(nullSampler_);
if (pipelineLayout_ != VK_NULL_HANDLE)
vkDestroyPipelineLayout(vulkan_->GetDevice(), pipelineLayout_, nullptr);
pipelineLayout_ = VK_NULL_HANDLE;
if (descriptorSetLayout_ != VK_NULL_HANDLE)
vkDestroyDescriptorSetLayout(vulkan_->GetDevice(), descriptorSetLayout_, nullptr);
descriptorSetLayout_ = VK_NULL_HANDLE;
if (nullTexture_) {
nullTexture_->Destroy();
delete nullTexture_;
nullTexture_ = nullptr;
}
vertexCache_->Destroy(vulkan_);
delete vertexCache_;
vertexCache_ = nullptr;
}
void DrawEngineVulkan::DeviceLost() {
DestroyDeviceObjects();
DirtyAllUBOs();
}
void DrawEngineVulkan::DeviceRestore(VulkanContext *vulkan) {
vulkan_ = vulkan;
InitDeviceObjects();
}
void DrawEngineVulkan::BeginFrame() {
lastPipeline_ = nullptr;
int curFrame = vulkan_->GetCurFrame();
FrameData *frame = &frame_[curFrame];
// First reset all buffers, then begin. This is so that Reset can free memory and Begin can allocate it,
// if growing the buffer is needed. Doing it this way will reduce fragmentation if more than one buffer
// needs to grow in the same frame. The state where many buffers are reset can also be used to
// defragment memory.
frame->pushUBO->Reset();
frame->pushVertex->Reset();
frame->pushIndex->Reset();
frame->pushUBO->Begin(vulkan_);
frame->pushVertex->Begin(vulkan_);
frame->pushIndex->Begin(vulkan_);
// TODO : Find a better place to do this.
if (!nullTexture_) {
ILOG("INIT : Creating null texture");
VkCommandBuffer cmdInit = (VkCommandBuffer)draw_->GetNativeObject(Draw::NativeObject::INIT_COMMANDBUFFER);
nullTexture_ = new VulkanTexture(vulkan_);
int w = 8;
int h = 8;
nullTexture_->CreateDirect(cmdInit, w, h, 1, VK_FORMAT_A8B8G8R8_UNORM_PACK32, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT);
uint32_t bindOffset;
VkBuffer bindBuf;
uint32_t *data = (uint32_t *)frame->pushUBO->Push(w * h * 4, &bindOffset, &bindBuf);
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
// data[y*w + x] = ((x ^ y) & 1) ? 0xFF808080 : 0xFF000000; // gray/black checkerboard
data[y*w + x] = 0; // black
}
}
nullTexture_->UploadMip(cmdInit, 0, w, h, bindBuf, bindOffset, w);
nullTexture_->EndCreate(cmdInit);
}
DirtyAllUBOs();
// Wipe the vertex cache if it's grown too large.
if (vertexCache_->GetTotalSize() > VERTEX_CACHE_SIZE) {
vertexCache_->Destroy(vulkan_);
delete vertexCache_; // orphans the buffers, they'll get deleted once no longer used by an in-flight frame.
vertexCache_ = new VulkanPushBuffer(vulkan_, VERTEX_CACHE_SIZE);
vai_.Clear();
}
vertexCache_->BeginNoReset();
// TODO: Need a better way to keep the number of descriptors under control.
if (--descDecimationCounter_ <= 0 || frame->descSets.size() > 1024) {
vkResetDescriptorPool(vulkan_->GetDevice(), frame->descPool, 0);
frame->descSets.Clear();
descDecimationCounter_ = DESCRIPTORSET_DECIMATION_INTERVAL;
}
if (--decimationCounter_ <= 0) {
decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL;
const int threshold = gpuStats.numFlips - VAI_KILL_AGE;
const int unreliableThreshold = gpuStats.numFlips - VAI_UNRELIABLE_KILL_AGE;
int unreliableLeft = VAI_UNRELIABLE_KILL_MAX;
vai_.Iterate([&](uint32_t hash, VertexArrayInfoVulkan *vai) {
bool kill;
if (vai->status == VertexArrayInfoVulkan::VAI_UNRELIABLE) {
// We limit killing unreliable so we don't rehash too often.
kill = vai->lastFrame < unreliableThreshold && --unreliableLeft >= 0;
} else {
kill = vai->lastFrame < threshold;
}
if (kill) {
// This is actually quite safe.
vai_.Remove(hash);
delete vai;
}
});
}
}
void DrawEngineVulkan::EndFrame() {
FrameData *frame = &frame_[vulkan_->GetCurFrame()];
stats_.pushUBOSpaceUsed = (int)frame->pushUBO->GetOffset();
stats_.pushVertexSpaceUsed = (int)frame->pushVertex->GetOffset();
stats_.pushIndexSpaceUsed = (int)frame->pushIndex->GetOffset();
frame->pushUBO->End();
frame->pushVertex->End();
frame->pushIndex->End();
vertexCache_->End();
}
void DrawEngineVulkan::SetupVertexDecoder(u32 vertType) {
SetupVertexDecoderInternal(vertType);
}
inline void DrawEngineVulkan::SetupVertexDecoderInternal(u32 vertType) {
// As the decoder depends on the UVGenMode when we use UV prescale, we simply mash it
// into the top of the verttype where there are unused bits.
const u32 vertTypeID = (vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24);
// If vtype has changed, setup the vertex decoder.
if (vertTypeID != lastVType_) {
dec_ = GetVertexDecoder(vertTypeID);
lastVType_ = vertTypeID;
}
if (!dec_)
Crash();
}
void DrawEngineVulkan::SubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertType, int *bytesRead) {
if (!indexGen.PrimCompatible(prevPrim_, prim) || numDrawCalls >= MAX_DEFERRED_DRAW_CALLS || vertexCountInDrawCalls_ + vertexCount > VERTEX_BUFFER_MAX)
Flush();
// TODO: Is this the right thing to do?
if (prim == GE_PRIM_KEEP_PREVIOUS) {
prim = prevPrim_ != GE_PRIM_INVALID ? prevPrim_ : GE_PRIM_POINTS;
} else {
prevPrim_ = prim;
}
SetupVertexDecoderInternal(vertType);
*bytesRead = vertexCount * dec_->VertexSize();
if ((vertexCount < 2 && prim > 0) || (vertexCount < 3 && prim > 2 && prim != GE_PRIM_RECTANGLES))
return;
DeferredDrawCall &dc = drawCalls[numDrawCalls];
dc.verts = verts;
dc.inds = inds;
dc.vertType = vertType;
dc.indexType = (vertType & GE_VTYPE_IDX_MASK) >> GE_VTYPE_IDX_SHIFT;
dc.prim = prim;
dc.vertexCount = vertexCount;
if (g_Config.bVertexCache) {
u32 dhash = dcid_;
dhash ^= (u32)(uintptr_t)verts;
dhash = __rotl(dhash, 13);
dhash ^= (u32)(uintptr_t)inds;
dhash = __rotl(dhash, 13);
dhash ^= (u32)vertType;
dhash = __rotl(dhash, 13);
dhash ^= (u32)vertexCount;
dhash = __rotl(dhash, 13);
dhash ^= (u32)prim;
dcid_ = dhash;
}
if (inds) {
GetIndexBounds(inds, vertexCount, vertType, &dc.indexLowerBound, &dc.indexUpperBound);
} else {
dc.indexLowerBound = 0;
dc.indexUpperBound = vertexCount - 1;
}
uvScale[numDrawCalls] = gstate_c.uv;
numDrawCalls++;
vertexCountInDrawCalls_ += vertexCount;
if (g_Config.bSoftwareSkinning && (vertType & GE_VTYPE_WEIGHT_MASK)) {
DecodeVertsStep(decoded, decodeCounter_, decodedVerts_);
decodeCounter_++;
}
if (prim == GE_PRIM_RECTANGLES && (gstate.getTextureAddress(0) & 0x3FFFFFFF) == (gstate.getFrameBufAddress() & 0x3FFFFFFF)) {
// Rendertarget == texture?
if (!g_Config.bDisableSlowFramebufEffects) {
gstate_c.Dirty(DIRTY_TEXTURE_PARAMS);
Flush();
}
}
}
int DrawEngineVulkan::ComputeNumVertsToDecode() const {
int vertsToDecode = 0;
if (drawCalls[0].indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) {
for (int i = 0; i < numDrawCalls; i++) {
const DeferredDrawCall &dc = drawCalls[i];
vertsToDecode += dc.vertexCount;
}
} else {
// TODO: Share this computation with DecodeVertsStep?
for (int i = 0; i < numDrawCalls; i++) {
const DeferredDrawCall &dc = drawCalls[i];
int lastMatch = i;
const int total = numDrawCalls;
int indexLowerBound = dc.indexLowerBound;
int indexUpperBound = dc.indexUpperBound;
for (int j = i + 1; j < total; ++j) {
if (drawCalls[j].verts != dc.verts)
break;
indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound);
indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound);
lastMatch = j;
}
vertsToDecode += indexUpperBound - indexLowerBound + 1;
i = lastMatch;
}
}
return vertsToDecode;
}
void DrawEngineVulkan::DecodeVerts(VulkanPushBuffer *push, uint32_t *bindOffset, VkBuffer *vkbuf) {
u8 *dest = decoded;
// Figure out how much pushbuffer space we need to allocate.
if (push) {
int vertsToDecode = ComputeNumVertsToDecode();
dest = (u8 *)push->Push(vertsToDecode * dec_->GetDecVtxFmt().stride, bindOffset, vkbuf);
}
const UVScale origUV = gstate_c.uv;
for (; decodeCounter_ < numDrawCalls; decodeCounter_++) {
gstate_c.uv = uvScale[decodeCounter_];
DecodeVertsStep(dest, decodeCounter_, decodedVerts_); // NOTE! DecodeVertsStep can modify decodeCounter_!
}
gstate_c.uv = origUV;
// Sanity check
if (indexGen.Prim() < 0) {
ERROR_LOG_REPORT(G3D, "DecodeVerts: Failed to deduce prim: %i", indexGen.Prim());
// Force to points (0)
indexGen.AddPrim(GE_PRIM_POINTS, 0);
}
}
VkDescriptorSet DrawEngineVulkan::GetOrCreateDescriptorSet(VkImageView imageView, VkSampler sampler, VkBuffer base, VkBuffer light, VkBuffer bone) {
DescriptorSetKey key;
key.imageView_ = imageView;
key.sampler_ = sampler;
key.secondaryImageView_ = boundSecondary_;
key.base_ = base;
key.light_ = light;
key.bone_ = bone;
assert(base != VK_NULL_HANDLE);
assert(light != VK_NULL_HANDLE);
assert(bone != VK_NULL_HANDLE);
FrameData *frame = &frame_[vulkan_->GetCurFrame()];
if (!gstate_c.bezier && !gstate_c.spline) { // Has no cache when HW tessellation.
VkDescriptorSet d = frame->descSets.Get(key);
if (d != VK_NULL_HANDLE)
return d;
}
// Didn't find one in the frame descriptor set cache, let's make a new one.
// We wipe the cache on every frame.
VkDescriptorSet desc;
VkDescriptorSetAllocateInfo descAlloc = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO };
descAlloc.pNext = nullptr;
descAlloc.pSetLayouts = &descriptorSetLayout_;
descAlloc.descriptorPool = frame->descPool;
descAlloc.descriptorSetCount = 1;
VkResult result = vkAllocateDescriptorSets(vulkan_->GetDevice(), &descAlloc, &desc);
// Even in release mode, this is bad.
_assert_msg_(G3D, result == VK_SUCCESS, "Ran out of descriptors in pool. sz=%d", (int)frame->descSets.size());
// We just don't write to the slots we don't care about.
VkWriteDescriptorSet writes[7];
memset(writes, 0, sizeof(writes));
// Main texture
int n = 0;
VkDescriptorImageInfo tex{};
if (imageView) {
// TODO: Also support LAYOUT_GENERAL to be able to texture from framebuffers without transitioning them?
tex.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
tex.imageView = imageView;
tex.sampler = sampler;
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_TEXTURE;
writes[n].pImageInfo = &tex;
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[n].dstSet = desc;
n++;
}
if (boundSecondary_) {
// TODO: Also support LAYOUT_GENERAL to be able to texture from framebuffers without transitioning them?
tex.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
tex.imageView = boundSecondary_;
tex.sampler = samplerSecondary_;
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_2ND_TEXTURE;
writes[n].pImageInfo = &tex;
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[n].dstSet = desc;
n++;
}
// Skipping 2nd texture for now.
// Tessellation data textures
if (gstate_c.bezier || gstate_c.spline) {
VkDescriptorImageInfo tess_tex[3]{};
VkSampler sampler = ((TessellationDataTransferVulkan *)tessDataTransfer)->GetSampler();
for (int i = 0; i < 3; i++) {
VulkanTexture *texture = ((TessellationDataTransferVulkan *)tessDataTransfer)->GetTexture(i);
VkImageView imageView = texture->GetImageView();
if (i == 0 || imageView) {
tess_tex[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
tess_tex[i].imageView = imageView;
tess_tex[i].sampler = sampler;
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_TESS_POS_TEXTURE + i;
writes[n].pImageInfo = &tess_tex[i];
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[n].dstSet = desc;
n++;
}
}
}
// Uniform buffer objects
VkDescriptorBufferInfo buf[3]{};
int count = 0;
buf[count].buffer = base;
buf[count].offset = 0;
buf[count].range = sizeof(UB_VS_FS_Base);
count++;
buf[count].buffer = light;
buf[count].offset = 0;
buf[count].range = sizeof(UB_VS_Lights);
count++;
buf[count].buffer = bone;
buf[count].offset = 0;
buf[count].range = sizeof(UB_VS_Bones);
count++;
for (int i = 0; i < count; i++) {
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_DYNUBO_BASE + i;
writes[n].dstArrayElement = 0;
writes[n].pBufferInfo = &buf[i];
writes[n].dstSet = desc;
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
n++;
}
vkUpdateDescriptorSets(vulkan_->GetDevice(), n, writes, 0, nullptr);
if (!(gstate_c.bezier || gstate_c.spline)) // Avoid caching when HW tessellation.
frame->descSets.Insert(key, desc);
return desc;
}
void DrawEngineVulkan::DirtyAllUBOs() {
baseUBOOffset = 0;
lightUBOOffset = 0;
boneUBOOffset = 0;
baseBuf = VK_NULL_HANDLE;
lightBuf = VK_NULL_HANDLE;
boneBuf = VK_NULL_HANDLE;
dirtyUniforms_ = DIRTY_BASE_UNIFORMS | DIRTY_LIGHT_UNIFORMS | DIRTY_BONE_UNIFORMS;
imageView = VK_NULL_HANDLE;
sampler = VK_NULL_HANDLE;
gstate_c.Dirty(DIRTY_TEXTURE_IMAGE);
}
void MarkUnreliable(VertexArrayInfoVulkan *vai) {
vai->status = VertexArrayInfoVulkan::VAI_UNRELIABLE;
// TODO: If we change to a real allocator, free the data here.
// For now we just leave it in the pushbuffer.
}
// The inline wrapper in the header checks for numDrawCalls == 0
void DrawEngineVulkan::DoFlush() {
PROFILE_THIS_SCOPE("Flush");
gpuStats.numFlushes++;
// TODO: Should be enough to update this once per frame?
gpuStats.numTrackedVertexArrays = (int)vai_.size();
VulkanRenderManager *renderManager = (VulkanRenderManager *)draw_->GetNativeObject(Draw::NativeObject::RENDER_MANAGER);
// HACK: These two lines should only execute if we started on a new render pass. Can't tell from in here though...
lastPipeline_ = nullptr;
// Since we have a new cmdbuf, dirty our dynamic state so it gets re-set.
// gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE|DIRTY_DEPTHSTENCIL_STATE|DIRTY_BLEND_STATE);
FrameData *frame = &frame_[vulkan_->GetCurFrame()];
bool textureNeedsApply = false;
if (gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS) && !gstate.isModeClear() && gstate.isTextureMapEnabled()) {
textureCache_->SetTexture();
gstate_c.Clean(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS);
textureNeedsApply = true;
if (gstate_c.needShaderTexClamp) {
// We will rarely need to set this, so let's do it every time on use rather than in runloop.
// Most of the time non-framebuffer textures will be used which can be clamped themselves.
gstate_c.Dirty(DIRTY_TEXCLAMP);
}
}
GEPrimitiveType prim = prevPrim_;
bool useHWTransform = CanUseHardwareTransform(prim);
VulkanVertexShader *vshader = nullptr;
VulkanFragmentShader *fshader = nullptr;
uint32_t ibOffset;
uint32_t vbOffset;
if (useHWTransform) {
// We don't detect clears in this path, so here we can switch framebuffers if necessary.
int vertexCount = 0;
int maxIndex;
bool useElements = true;
// Cannot cache vertex data with morph enabled.
bool useCache = g_Config.bVertexCache && !(lastVType_ & GE_VTYPE_MORPHCOUNT_MASK);
// Also avoid caching when software skinning.
VkBuffer vbuf = VK_NULL_HANDLE;
VkBuffer ibuf = VK_NULL_HANDLE;
if (g_Config.bSoftwareSkinning && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) {
useCache = false;
}
if (useCache) {
PROFILE_THIS_SCOPE("vcache");
u32 id = dcid_ ^ gstate.getUVGenMode(); // This can have an effect on which UV decoder we need to use! And hence what the decoded data will look like. See #9263
VertexArrayInfoVulkan *vai = vai_.Get(id);
if (!vai) {
vai = new VertexArrayInfoVulkan();
vai_.Insert(id, vai);
}
switch (vai->status) {
case VertexArrayInfoVulkan::VAI_NEW:
{
// Haven't seen this one before. We don't actually upload the vertex data yet.
ReliableHashType dataHash = ComputeHash();
vai->hash = dataHash;
vai->minihash = ComputeMiniHash();
vai->status = VertexArrayInfoVulkan::VAI_HASHING;
vai->drawsUntilNextFullHash = 0;
DecodeVerts(frame->pushVertex, &vbOffset, &vbuf); // writes to indexGen
vai->numVerts = indexGen.VertexCount();
vai->prim = indexGen.Prim();
vai->maxIndex = indexGen.MaxIndex();
vai->flags = gstate_c.vertexFullAlpha ? VAIVULKAN_FLAG_VERTEXFULLALPHA : 0;
goto rotateVBO;
}
// Hashing - still gaining confidence about the buffer.
// But if we get this far it's likely to be worth uploading the data.
case VertexArrayInfoVulkan::VAI_HASHING:
{
PROFILE_THIS_SCOPE("vcachehash");
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFlips) {
vai->numFrames++;
}
if (vai->drawsUntilNextFullHash == 0) {
// Let's try to skip a full hash if mini would fail.
const u32 newMiniHash = ComputeMiniHash();
ReliableHashType newHash = vai->hash;
if (newMiniHash == vai->minihash) {
newHash = ComputeHash();
}
if (newMiniHash != vai->minihash || newHash != vai->hash) {
MarkUnreliable(vai);
DecodeVerts(frame->pushVertex, &vbOffset, &vbuf);
goto rotateVBO;
}
if (vai->numVerts > 64) {
// exponential backoff up to 16 draws, then every 24
vai->drawsUntilNextFullHash = std::min(24, vai->numFrames);
} else {
// Lower numbers seem much more likely to change.
vai->drawsUntilNextFullHash = 0;
}
// TODO: tweak
//if (vai->numFrames > 1000) {
// vai->status = VertexArrayInfo::VAI_RELIABLE;
//}
} else {
vai->drawsUntilNextFullHash--;
u32 newMiniHash = ComputeMiniHash();
if (newMiniHash != vai->minihash) {
MarkUnreliable(vai);
DecodeVerts(frame->pushVertex, &vbOffset, &vbuf);
goto rotateVBO;
}
}
if (!vai->vb) {
// Directly push to the vertex cache.
DecodeVerts(vertexCache_, &vai->vbOffset, &vai->vb);
_dbg_assert_msg_(G3D, gstate_c.vertBounds.minV >= gstate_c.vertBounds.maxV, "Should not have checked UVs when caching.");
vai->numVerts = indexGen.VertexCount();
vai->prim = indexGen.Prim();
vai->maxIndex = indexGen.MaxIndex();
vai->flags = gstate_c.vertexFullAlpha ? VAIVULKAN_FLAG_VERTEXFULLALPHA : 0;
useElements = !indexGen.SeenOnlyPurePrims();
if (!useElements && indexGen.PureCount()) {
vai->numVerts = indexGen.PureCount();
}
if (useElements) {
u32 size = sizeof(uint16_t) * indexGen.VertexCount();
void *dest = vertexCache_->Push(size, &vai->ibOffset, &vai->ib);
memcpy(dest, decIndex, size);
} else {
vai->ib = VK_NULL_HANDLE;
vai->ibOffset = 0;
}
} else {
gpuStats.numCachedDrawCalls++;
useElements = vai->ib ? true : false;
gpuStats.numCachedVertsDrawn += vai->numVerts;
gstate_c.vertexFullAlpha = vai->flags & VAIVULKAN_FLAG_VERTEXFULLALPHA;
}
vbuf = vai->vb;
ibuf = vai->ib;
vbOffset = vai->vbOffset;
ibOffset = vai->ibOffset;
vertexCount = vai->numVerts;
maxIndex = vai->maxIndex;
prim = static_cast<GEPrimitiveType>(vai->prim);
break;
}
// Reliable - we don't even bother hashing anymore. Right now we don't go here until after a very long time.
case VertexArrayInfoVulkan::VAI_RELIABLE:
{
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFlips) {
vai->numFrames++;
}
gpuStats.numCachedDrawCalls++;
gpuStats.numCachedVertsDrawn += vai->numVerts;
vbuf = vai->vb;
ibuf = vai->ib;
vbOffset = vai->vbOffset;
ibOffset = vai->ibOffset;
vertexCount = vai->numVerts;
maxIndex = vai->maxIndex;
prim = static_cast<GEPrimitiveType>(vai->prim);
gstate_c.vertexFullAlpha = vai->flags & VAIVULKAN_FLAG_VERTEXFULLALPHA;
break;
}
case VertexArrayInfoVulkan::VAI_UNRELIABLE:
{
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFlips) {
vai->numFrames++;
}
DecodeVerts(frame->pushVertex, &vbOffset, &vbuf);
goto rotateVBO;
}
default:
break;
}
} else {
if (g_Config.bSoftwareSkinning && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) {
// If software skinning, we've already predecoded into "decoded". So push that content.
VkDeviceSize size = decodedVerts_ * dec_->GetDecVtxFmt().stride;
u8 *dest = (u8 *)frame->pushVertex->Push(size, &vbOffset, &vbuf);
memcpy(dest, decoded, size);
} else {
// Decode directly into the pushbuffer
DecodeVerts(frame->pushVertex, &vbOffset, &vbuf);
}
rotateVBO:
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
useElements = !indexGen.SeenOnlyPurePrims();
vertexCount = indexGen.VertexCount();
if (!useElements && indexGen.PureCount()) {
vertexCount = indexGen.PureCount();
}
prim = indexGen.Prim();
}
bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE;
if (gstate.isModeThrough()) {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255);
} else {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255);
}
PROFILE_THIS_SCOPE("updatestate");
if (textureNeedsApply) {
textureCache_->ApplyTexture();
textureCache_->GetVulkanHandles(imageView, sampler);
if (imageView == VK_NULL_HANDLE)
imageView = nullTexture_->GetImageView();
if (sampler == VK_NULL_HANDLE)
sampler = nullSampler_;
}
if (!lastPipeline_ || !gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE) || prim != lastPrim_) {
shaderManager_->GetShaders(prim, lastVType_, &vshader, &fshader, useHWTransform);
if (prim != lastPrim_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE)) {
ConvertStateToVulkanKey(*framebufferManager_, shaderManager_, prim, pipelineKey_, dynState_);
}
Draw::NativeObject object = g_Config.iRenderingMode != 0 ? Draw::NativeObject::FRAMEBUFFER_RENDERPASS : Draw::NativeObject::BACKBUFFER_RENDERPASS;
VkRenderPass renderPass = (VkRenderPass)draw_->GetNativeObject(object);
VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, renderPass, pipelineKey_, dec_, vshader, fshader, true);
if (!pipeline) {
// Already logged, let's bail out.
return;
}
renderManager->BindPipeline(pipeline->pipeline);
if (pipeline != lastPipeline_) {
if (lastPipeline_ && !lastPipeline_->useBlendConstant && pipeline->useBlendConstant) {
gstate_c.Dirty(DIRTY_BLEND_STATE);
}
lastPipeline_ = pipeline;
}
ApplyDrawStateLate(renderManager, false, 0, pipeline->useBlendConstant);
gstate_c.Clean(DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE);
lastPipeline_ = pipeline;
}
lastPrim_ = prim;
dirtyUniforms_ |= shaderManager_->UpdateUniforms();
UpdateUBOs(frame);
VkDescriptorSet ds = GetOrCreateDescriptorSet(imageView, sampler, baseBuf, lightBuf, boneBuf);
{
PROFILE_THIS_SCOPE("renderman_q");
const uint32_t dynamicUBOOffsets[3] = {
baseUBOOffset, lightUBOOffset, boneUBOOffset,
};
int stride = dec_->GetDecVtxFmt().stride;
if (useElements) {
if (!ibuf)
ibOffset = (uint32_t)frame->pushIndex->Push(decIndex, sizeof(uint16_t) * indexGen.VertexCount(), &ibuf);
int numInstances = (gstate_c.bezier || gstate_c.spline) ? numPatches : 1;
renderManager->DrawIndexed(pipelineLayout_, ds, 3, dynamicUBOOffsets, vbuf, vbOffset, ibuf, ibOffset, vertexCount, numInstances, VK_INDEX_TYPE_UINT16);
} else {
renderManager->Draw(pipelineLayout_, ds, 3, dynamicUBOOffsets, vbuf, vbOffset, vertexCount);
}
}
} else {
PROFILE_THIS_SCOPE("soft");
// Decode to "decoded"
DecodeVerts(nullptr, nullptr, nullptr);
bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE;
if (gstate.isModeThrough()) {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255);
} else {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255);
}
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
prim = indexGen.Prim();
// Undo the strip optimization, not supported by the SW code yet.
if (prim == GE_PRIM_TRIANGLE_STRIP)
prim = GE_PRIM_TRIANGLES;
VERBOSE_LOG(G3D, "Flush prim %i SW! %i verts in one go", prim, indexGen.VertexCount());
int numTrans = 0;
bool drawIndexed = false;
u16 *inds = decIndex;
TransformedVertex *drawBuffer = NULL;
SoftwareTransformResult result;
memset(&result, 0, sizeof(result));
SoftwareTransformParams params;
memset(&params, 0, sizeof(params));
params.decoded = decoded;
params.transformed = transformed;
params.transformedExpanded = transformedExpanded;
params.fbman = framebufferManager_;
params.texCache = textureCache_;
params.allowSeparateAlphaClear = false;
int maxIndex = indexGen.MaxIndex();
SoftwareTransform(
prim, indexGen.VertexCount(),
dec_->VertexType(), inds, GE_VTYPE_IDX_16BIT, dec_->GetDecVtxFmt(),
maxIndex, drawBuffer, numTrans, drawIndexed, &params, &result);
// Only here, where we know whether to clear or to draw primitives, should we actually set the current framebuffer! Because that gives use the opportunity
// to use a "pre-clear" render pass, for high efficiency on tilers.
if (result.action == SW_DRAW_PRIMITIVES) {
if (textureNeedsApply) {
textureCache_->ApplyTexture();
textureCache_->GetVulkanHandles(imageView, sampler);
if (imageView == VK_NULL_HANDLE)
imageView = nullTexture_->GetImageView();
if (sampler == VK_NULL_HANDLE)
sampler = nullSampler_;
}
if (!lastPipeline_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE) || prim != lastPrim_) {
shaderManager_->GetShaders(prim, lastVType_, &vshader, &fshader, useHWTransform);
if (prim != lastPrim_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE)) {
ConvertStateToVulkanKey(*framebufferManager_, shaderManager_, prim, pipelineKey_, dynState_);
}
Draw::NativeObject object = g_Config.iRenderingMode != 0 ? Draw::NativeObject::FRAMEBUFFER_RENDERPASS : Draw::NativeObject::BACKBUFFER_RENDERPASS;
VkRenderPass renderPass = (VkRenderPass)draw_->GetNativeObject(object);
VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, renderPass, pipelineKey_, dec_, vshader, fshader, false);
if (!pipeline) {
// Already logged, let's bail out.
return;
}
renderManager->BindPipeline(pipeline->pipeline);
if (pipeline != lastPipeline_) {
if (lastPipeline_ && !lastPipeline_->useBlendConstant && pipeline->useBlendConstant) {
gstate_c.Dirty(DIRTY_BLEND_STATE);
}
lastPipeline_ = pipeline;
}
ApplyDrawStateLate(renderManager, false, 0, pipeline->useBlendConstant);
gstate_c.Clean(DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE);
lastPipeline_ = pipeline;
}
lastPrim_ = prim;
dirtyUniforms_ |= shaderManager_->UpdateUniforms();
// Even if the first draw is through-mode, make sure we at least have one copy of these uniforms buffered
UpdateUBOs(frame);
VkDescriptorSet ds = GetOrCreateDescriptorSet(imageView, sampler, baseBuf, lightBuf, boneBuf);
const uint32_t dynamicUBOOffsets[3] = {
baseUBOOffset, lightUBOOffset, boneUBOOffset,
};
PROFILE_THIS_SCOPE("renderman_q");
if (drawIndexed) {
VkBuffer vbuf, ibuf;
vbOffset = (uint32_t)frame->pushVertex->Push(drawBuffer, maxIndex * sizeof(TransformedVertex), &vbuf);
ibOffset = (uint32_t)frame->pushIndex->Push(inds, sizeof(short) * numTrans, &ibuf);
VkDeviceSize offsets[1] = { vbOffset };
renderManager->DrawIndexed(pipelineLayout_, ds, 3, dynamicUBOOffsets, vbuf, vbOffset, ibuf, ibOffset, numTrans, 1, VK_INDEX_TYPE_UINT16);
} else {
VkBuffer vbuf;
vbOffset = (uint32_t)frame->pushVertex->Push(drawBuffer, numTrans * sizeof(TransformedVertex), &vbuf);
VkDeviceSize offsets[1] = { vbOffset };
renderManager->Draw(pipelineLayout_, ds, 3, dynamicUBOOffsets, vbuf, vbOffset, numTrans);
}
} else if (result.action == SW_CLEAR) {
// Note: we won't get here if the clear is alpha but not color, or color but not alpha.
// We let the framebuffer manager handle the clear. It can use renderpasses to optimize on tilers.
// If non-buffered though, it'll just do a plain clear.
framebufferManager_->NotifyClear(gstate.isClearModeColorMask(), gstate.isClearModeAlphaMask(), gstate.isClearModeDepthMask(), result.color, result.depth);
int scissorX1 = gstate.getScissorX1();
int scissorY1 = gstate.getScissorY1();
int scissorX2 = gstate.getScissorX2() + 1;
int scissorY2 = gstate.getScissorY2() + 1;
framebufferManager_->SetSafeSize(scissorX2, scissorY2);
if (g_Config.bBlockTransferGPU && (gstate_c.featureFlags & GPU_USE_CLEAR_RAM_HACK) && gstate.isClearModeColorMask() && (gstate.isClearModeAlphaMask() || gstate.FrameBufFormat() == GE_FORMAT_565)) {
framebufferManager_->ApplyClearToMemory(scissorX1, scissorY1, scissorX2, scissorY2, result.color);
}
}
}
gpuStats.numDrawCalls += numDrawCalls;
gpuStats.numVertsSubmitted += vertexCountInDrawCalls_;
indexGen.Reset();
decodedVerts_ = 0;
numDrawCalls = 0;
vertexCountInDrawCalls_ = 0;
decodeCounter_ = 0;
dcid_ = 0;
prevPrim_ = GE_PRIM_INVALID;
gstate_c.vertexFullAlpha = true;
framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason);
// Now seems as good a time as any to reset the min/max coords, which we may examine later.
gstate_c.vertBounds.minU = 512;
gstate_c.vertBounds.minV = 512;
gstate_c.vertBounds.maxU = 0;
gstate_c.vertBounds.maxV = 0;
host->GPUNotifyDraw();
}
void DrawEngineVulkan::UpdateUBOs(FrameData *frame) {
if ((dirtyUniforms_ & DIRTY_BASE_UNIFORMS) || baseBuf == VK_NULL_HANDLE) {
baseUBOOffset = shaderManager_->PushBaseBuffer(frame->pushUBO, &baseBuf);
dirtyUniforms_ &= ~DIRTY_BASE_UNIFORMS;
}
if ((dirtyUniforms_ & DIRTY_LIGHT_UNIFORMS) || lightBuf == VK_NULL_HANDLE) {
lightUBOOffset = shaderManager_->PushLightBuffer(frame->pushUBO, &lightBuf);
dirtyUniforms_ &= ~DIRTY_LIGHT_UNIFORMS;
}
if ((dirtyUniforms_ & DIRTY_BONE_UNIFORMS) || boneBuf == VK_NULL_HANDLE) {
boneUBOOffset = shaderManager_->PushBoneBuffer(frame->pushUBO, &boneBuf);
dirtyUniforms_ &= ~DIRTY_BONE_UNIFORMS;
}
}
void DrawEngineVulkan::TessellationDataTransferVulkan::PrepareBuffers(float *&pos, float *&tex, float *&col, int size, bool hasColor, bool hasTexCoords) {
int rowPitch;
ILOG("INIT : Prep tess");
VkCommandBuffer cmd = (VkCommandBuffer)draw_->GetNativeObject(Draw::NativeObject::INIT_COMMANDBUFFER);
// Position
if (prevSize < size) {
prevSize = size;
data_tex[0]->CreateDirect(cmd, size, 1, 1, VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
}
pos = (float *)data_tex[0]->Lock(0, &rowPitch);
// Texcoords
if (hasTexCoords) {
if (prevSizeTex < size) {
prevSizeTex = size;
data_tex[1]->CreateDirect(cmd, size, 1, 1, VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
}
tex = (float *)data_tex[1]->Lock(0, &rowPitch);
}
// Color
int sizeColor = hasColor ? size : 1;
if (prevSizeCol < sizeColor) {
prevSizeCol = sizeColor;
data_tex[2]->CreateDirect(cmd, sizeColor, 1, 1, VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
}
col = (float *)data_tex[2]->Lock(0, &rowPitch);
}
void DrawEngineVulkan::TessellationDataTransferVulkan::SendDataToShader(const float *pos, const float *tex, const float *col, int size, bool hasColor, bool hasTexCoords) {
VkCommandBuffer cmd = (VkCommandBuffer)draw_->GetNativeObject(Draw::NativeObject::INIT_COMMANDBUFFER);
// Position
data_tex[0]->Unlock(cmd);
// Texcoords
if (hasTexCoords)
data_tex[1]->Unlock(cmd);
// Color
data_tex[2]->Unlock(cmd);
}