ppsspp/GPU/Common/ShaderUniforms.cpp

356 lines
13 KiB
C++

#include <algorithm>
#include <cmath>
#include "ShaderUniforms.h"
#include "Common/System/Display.h"
#include "Common/Data/Convert/SmallDataConvert.h"
#include "Common/Math/lin/matrix4x4.h"
#include "Common/Math/math_util.h"
#include "Common/Math/lin/vec3.h"
#include "GPU/GPUState.h"
#include "GPU/Common/FramebufferManagerCommon.h"
#include "GPU/Common/GPUStateUtils.h"
#include "GPU/Math3D.h"
using namespace Lin;
static void ConvertProjMatrixToVulkan(Matrix4x4 &in) {
const Vec3 trans(gstate_c.vpXOffset, gstate_c.vpYOffset, gstate_c.vpZOffset * 0.5f + 0.5f);
const Vec3 scale(gstate_c.vpWidthScale, gstate_c.vpHeightScale, gstate_c.vpDepthScale * 0.5f);
in.translateAndScale(trans, scale);
}
static void ConvertProjMatrixToD3D11(Matrix4x4 &in) {
const Vec3 trans(gstate_c.vpXOffset, -gstate_c.vpYOffset, gstate_c.vpZOffset * 0.5f + 0.5f);
const Vec3 scale(gstate_c.vpWidthScale, -gstate_c.vpHeightScale, gstate_c.vpDepthScale * 0.5f);
in.translateAndScale(trans, scale);
}
void CalcCullRange(float minValues[4], float maxValues[4], bool flipViewport, bool hasNegZ) {
// Account for the projection viewport adjustment when viewport is too large.
auto reverseViewportX = [](float x) {
float pspViewport = (x - gstate.getViewportXCenter()) * (1.0f / gstate.getViewportXScale());
return (pspViewport * gstate_c.vpWidthScale) - gstate_c.vpXOffset;
};
auto reverseViewportY = [flipViewport](float y) {
float heightScale = gstate_c.vpHeightScale;
float yOffset = gstate_c.vpYOffset;
if (flipViewport) {
// For D3D11 and GLES non-buffered.
heightScale = -heightScale;
yOffset = -yOffset;
}
float pspViewport = (y - gstate.getViewportYCenter()) * (1.0f / gstate.getViewportYScale());
return (pspViewport * heightScale) - yOffset;
};
auto transformZ = [hasNegZ](float z) {
// Z culling ignores the viewport, so we just redo the projection matrix adjustments.
if (hasNegZ) {
return (z * gstate_c.vpDepthScale) + gstate_c.vpZOffset;
}
return (z * gstate_c.vpDepthScale * 0.5f) + gstate_c.vpZOffset * 0.5f + 0.5f;
};
auto sortPair = [](float a, float b) {
return a > b ? std::make_pair(b, a) : std::make_pair(a, b);
};
// The PSP seems to use 0.12.4 for X and Y, and 0.16.0 for Z.
// Any vertex outside this range (unless depth clamp enabled) is discarded.
auto x = sortPair(reverseViewportX(0.0f), reverseViewportX(4096.0f));
auto y = sortPair(reverseViewportY(0.0f), reverseViewportY(4096.0f));
auto z = sortPair(transformZ(-1.000030517578125f), transformZ(1.000030517578125f));
// Since we have space in w, use it to pass the depth clamp flag. We also pass NAN for w "discard".
float clampEnable = gstate.isDepthClampEnabled() ? 1.0f : 0.0f;
minValues[0] = x.first;
minValues[1] = y.first;
minValues[2] = z.first;
minValues[3] = clampEnable;
maxValues[0] = x.second;
maxValues[1] = y.second;
maxValues[2] = z.second;
maxValues[3] = NAN;
}
void BaseUpdateUniforms(UB_VS_FS_Base *ub, uint64_t dirtyUniforms, bool flipViewport, bool useBufferedRendering) {
if (dirtyUniforms & DIRTY_TEXENV) {
Uint8x3ToFloat3(ub->texEnvColor, gstate.texenvcolor);
}
if (dirtyUniforms & DIRTY_ALPHACOLORREF) {
ub->alphaColorRef = gstate.getColorTestRef() | ((gstate.getAlphaTestRef() & gstate.getAlphaTestMask()) << 24);
}
if (dirtyUniforms & DIRTY_ALPHACOLORMASK) {
ub->colorTestMask = gstate.getColorTestMask() | (gstate.getAlphaTestMask() << 24);
}
if (dirtyUniforms & DIRTY_FOGCOLOR) {
Uint8x3ToFloat3(ub->fogColor, gstate.fogcolor);
}
if (dirtyUniforms & DIRTY_SHADERBLEND) {
Uint8x3ToFloat3(ub->blendFixA, gstate.getFixA());
Uint8x3ToFloat3(ub->blendFixB, gstate.getFixB());
}
if (dirtyUniforms & DIRTY_TEXCLAMP) {
const float invW = 1.0f / (float)gstate_c.curTextureWidth;
const float invH = 1.0f / (float)gstate_c.curTextureHeight;
const int w = gstate.getTextureWidth(0);
const int h = gstate.getTextureHeight(0);
const float widthFactor = (float)w * invW;
const float heightFactor = (float)h * invH;
// First wrap xy, then half texel xy (for clamp.)
ub->texClamp[0] = widthFactor;
ub->texClamp[1] = heightFactor;
ub->texClamp[2] = invW * 0.5f;
ub->texClamp[3] = invH * 0.5f;
ub->texClampOffset[0] = gstate_c.curTextureXOffset * invW;
ub->texClampOffset[1] = gstate_c.curTextureYOffset * invH;
}
if (dirtyUniforms & DIRTY_MIPBIAS) {
float mipBias = (float)gstate.getTexLevelOffset16() * (1.0 / 16.0f);
ub->mipBias = (mipBias + 0.5f) / (float)(gstate.getTextureMaxLevel() + 1);
}
if (dirtyUniforms & DIRTY_PROJMATRIX) {
Matrix4x4 flippedMatrix;
memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float));
const bool invertedY = gstate_c.vpHeight < 0;
if (invertedY) {
flippedMatrix[1] = -flippedMatrix[1];
flippedMatrix[5] = -flippedMatrix[5];
flippedMatrix[9] = -flippedMatrix[9];
flippedMatrix[13] = -flippedMatrix[13];
}
const bool invertedX = gstate_c.vpWidth < 0;
if (invertedX) {
flippedMatrix[0] = -flippedMatrix[0];
flippedMatrix[4] = -flippedMatrix[4];
flippedMatrix[8] = -flippedMatrix[8];
flippedMatrix[12] = -flippedMatrix[12];
}
if (flipViewport) {
ConvertProjMatrixToD3D11(flippedMatrix);
} else {
ConvertProjMatrixToVulkan(flippedMatrix);
}
if (!useBufferedRendering && g_display.rotation != DisplayRotation::ROTATE_0) {
flippedMatrix = flippedMatrix * g_display.rot_matrix;
}
CopyMatrix4x4(ub->proj, flippedMatrix.getReadPtr());
ub->rotation = useBufferedRendering ? 0 : (float)g_display.rotation;
}
if (dirtyUniforms & DIRTY_PROJTHROUGHMATRIX) {
Matrix4x4 proj_through;
if (flipViewport) {
proj_through.setOrthoD3D(0.0f, gstate_c.curRTWidth, gstate_c.curRTHeight, 0, 0, 1);
} else {
proj_through.setOrthoVulkan(0.0f, gstate_c.curRTWidth, 0, gstate_c.curRTHeight, 0, 1);
}
if (!useBufferedRendering && g_display.rotation != DisplayRotation::ROTATE_0) {
proj_through = proj_through * g_display.rot_matrix;
}
// Negative RT offsets come from split framebuffers (Killzone)
if (gstate_c.curRTOffsetX < 0 || gstate_c.curRTOffsetY < 0) {
proj_through.wx += 2.0f * (float)gstate_c.curRTOffsetX / (float)gstate_c.curRTWidth;
proj_through.wy += 2.0f * (float)gstate_c.curRTOffsetY / (float)gstate_c.curRTHeight;
}
CopyMatrix4x4(ub->proj_through, proj_through.getReadPtr());
}
// Transform
if (dirtyUniforms & DIRTY_WORLDMATRIX) {
ConvertMatrix4x3To3x4Transposed(ub->world, gstate.worldMatrix);
}
if (dirtyUniforms & DIRTY_VIEWMATRIX) {
ConvertMatrix4x3To3x4Transposed(ub->view, gstate.viewMatrix);
}
if (dirtyUniforms & DIRTY_TEXMATRIX) {
ConvertMatrix4x3To3x4Transposed(ub->tex, gstate.tgenMatrix);
}
if (dirtyUniforms & DIRTY_FOGCOEF) {
float fogcoef[2] = {
getFloat24(gstate.fog1),
getFloat24(gstate.fog2),
};
// The PSP just ignores infnan here (ignoring IEEE), so take it down to a valid float.
// Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988
if (my_isnanorinf(fogcoef[0])) {
// Not really sure what a sensible value might be, but let's try 64k.
fogcoef[0] = std::signbit(fogcoef[0]) ? -65535.0f : 65535.0f;
}
if (my_isnanorinf(fogcoef[1])) {
fogcoef[1] = std::signbit(fogcoef[1]) ? -65535.0f : 65535.0f;
}
CopyFloat2(ub->fogCoef, fogcoef);
}
if (dirtyUniforms & DIRTY_TEX_ALPHA_MUL) {
bool doTextureAlpha = gstate.isTextureAlphaUsed();
if (gstate_c.textureFullAlpha && gstate.getTextureFunction() != GE_TEXFUNC_REPLACE) {
doTextureAlpha = false;
}
ub->texNoAlpha = doTextureAlpha ? 0.0f : 1.0f;
ub->texMul = gstate.isColorDoublingEnabled() ? 2.0f : 1.0f;
}
if (dirtyUniforms & DIRTY_STENCILREPLACEVALUE) {
ub->stencilReplaceValue = (float)gstate.getStencilTestRef() * (1.0 / 255.0);
}
// Note - this one is not in lighting but in transformCommon as it has uses beyond lighting
if (dirtyUniforms & DIRTY_MATAMBIENTALPHA) {
Uint8x3ToFloat4_AlphaUint8(ub->matAmbient, gstate.materialambient, gstate.getMaterialAmbientA());
}
if (dirtyUniforms & DIRTY_COLORWRITEMASK) {
ub->colorWriteMask = ~((gstate.pmska << 24) | (gstate.pmskc & 0xFFFFFF));
}
// Texturing
if (dirtyUniforms & DIRTY_UVSCALEOFFSET) {
float widthFactor = 1.0f;
float heightFactor = 1.0f;
if (gstate_c.textureIsFramebuffer) {
const float invW = 1.0f / (float)gstate_c.curTextureWidth;
const float invH = 1.0f / (float)gstate_c.curTextureHeight;
const int w = gstate.getTextureWidth(0);
const int h = gstate.getTextureHeight(0);
widthFactor = (float)w * invW;
heightFactor = (float)h * invH;
}
if (gstate_c.submitType == SubmitType::HW_BEZIER || gstate_c.submitType == SubmitType::HW_SPLINE) {
// When we are generating UV coordinates through the bezier/spline, we need to apply the scaling.
// However, this is missing a check that we're not getting our UV:s supplied for us in the vertices.
ub->uvScaleOffset[0] = gstate_c.uv.uScale * widthFactor;
ub->uvScaleOffset[1] = gstate_c.uv.vScale * heightFactor;
ub->uvScaleOffset[2] = gstate_c.uv.uOff * widthFactor;
ub->uvScaleOffset[3] = gstate_c.uv.vOff * heightFactor;
} else {
ub->uvScaleOffset[0] = widthFactor;
ub->uvScaleOffset[1] = heightFactor;
ub->uvScaleOffset[2] = 0.0f;
ub->uvScaleOffset[3] = 0.0f;
}
}
if (dirtyUniforms & DIRTY_DEPTHRANGE) {
// Same formulas as D3D9 now. Should work for both Vulkan and D3D11.
// Depth is [0, 1] mapping to [minz, maxz], not too hard.
float vpZScale = gstate.getViewportZScale();
float vpZCenter = gstate.getViewportZCenter();
// These are just the reverse of the formulas in GPUStateUtils.
float halfActualZRange = InfToZero(gstate_c.vpDepthScale != 0.0f ? vpZScale / gstate_c.vpDepthScale : 0.0f);
float inverseDepthScale = InfToZero(gstate_c.vpDepthScale != 0.0f ? 1.0f / gstate_c.vpDepthScale : 0.0f);
float minz = -((gstate_c.vpZOffset * halfActualZRange) - vpZCenter) - halfActualZRange;
float viewZScale = halfActualZRange * 2.0f;
float viewZCenter = minz;
ub->depthRange[0] = viewZScale;
ub->depthRange[1] = viewZCenter;
ub->depthRange[2] = gstate_c.vpZOffset * 0.5f + 0.5f;
ub->depthRange[3] = 2.0f * inverseDepthScale;
}
if (dirtyUniforms & DIRTY_CULLRANGE) {
CalcCullRange(ub->cullRangeMin, ub->cullRangeMax, flipViewport, false);
}
if (dirtyUniforms & DIRTY_BEZIERSPLINE) {
ub->spline_counts = gstate_c.spline_num_points_u;
}
if (dirtyUniforms & DIRTY_DEPAL) {
int indexMask = gstate.getClutIndexMask();
int indexShift = gstate.getClutIndexShift();
int indexOffset = gstate.getClutIndexStartPos() >> 4;
int format = gstate_c.depalFramebufferFormat;
uint32_t val = BytesToUint32(indexMask, indexShift, indexOffset, format);
// Poke in a bilinear filter flag in the top bit.
if (gstate.isMagnifyFilteringEnabled())
val |= 0x80000000;
ub->depal_mask_shift_off_fmt = val;
}
}
// For "light ubershader" bits.
// TODO: We pack these bits even when not using ubershader lighting. Maybe not bother.
uint32_t PackLightControlBits() {
// Bit organization
// Bottom 4 bits are enable bits for each light.
// Then, for each light, comes 2 bits for "comp" and 2 bits for "type".
// At the end, at bit 20, we put the three material update bits.
uint32_t lightControl = 0;
for (int i = 0; i < 4; i++) {
if (gstate.isLightChanEnabled(i)) {
lightControl |= 1 << i;
}
u32 computation = (u32)gstate.getLightComputation(i); // 2 bits
u32 type = (u32)gstate.getLightType(i); // 2 bits
if (type == 3) { type = 0; } // Don't want to handle this degenerate case in the shader.
lightControl |= computation << (4 + i * 4);
lightControl |= type << (4 + i * 4 + 2);
}
// Material update is 3 bits.
lightControl |= gstate.getMaterialUpdate() << 20;
return lightControl;
}
void LightUpdateUniforms(UB_VS_Lights *ub, uint64_t dirtyUniforms) {
// Lighting
if (dirtyUniforms & DIRTY_AMBIENT) {
Uint8x3ToFloat4_AlphaUint8(ub->ambientColor, gstate.ambientcolor, gstate.getAmbientA());
}
if (dirtyUniforms & DIRTY_MATDIFFUSE) {
Uint8x3ToFloat4(ub->materialDiffuse, gstate.materialdiffuse);
}
if (dirtyUniforms & DIRTY_MATSPECULAR) {
Uint8x3ToFloat4_Alpha(ub->materialSpecular, gstate.materialspecular, std::max(0.0f, getFloat24(gstate.materialspecularcoef)));
}
if (dirtyUniforms & DIRTY_MATEMISSIVE) {
// We're not touching the fourth f32 here, because we store an u32 of control bits in it.
Uint8x3ToFloat3(ub->materialEmissive, gstate.materialemissive);
}
if (dirtyUniforms & DIRTY_LIGHT_CONTROL) {
ub->lightControl = PackLightControlBits();
}
for (int i = 0; i < 4; i++) {
if (dirtyUniforms & (DIRTY_LIGHT0 << i)) {
if (gstate.isDirectionalLight(i)) {
// Prenormalize
ExpandFloat24x3ToFloat4AndNormalize(ub->lpos[i], &gstate.lpos[i * 3]);
} else {
ExpandFloat24x3ToFloat4(ub->lpos[i], &gstate.lpos[i * 3]);
}
// ldir is only used for spotlights. Prenormalize it.
ExpandFloat24x3ToFloat4AndNormalize(ub->ldir[i], &gstate.ldir[i * 3]);
ExpandFloat24x3ToFloat4(ub->latt[i], &gstate.latt[i * 3]);
float lightAngle_spotCoef[2] = { getFloat24(gstate.lcutoff[i]), getFloat24(gstate.lconv[i]) };
CopyFloat2To4(ub->lightAngle_SpotCoef[i], lightAngle_spotCoef);
Uint8x3ToFloat4(ub->lightAmbient[i], gstate.lcolor[i * 3]);
Uint8x3ToFloat4(ub->lightDiffuse[i], gstate.lcolor[i * 3 + 1]);
Uint8x3ToFloat4(ub->lightSpecular[i], gstate.lcolor[i * 3 + 2]);
}
}
}
void BoneUpdateUniforms(UB_VS_Bones *ub, uint64_t dirtyUniforms) {
for (int i = 0; i < 8; i++) {
if (dirtyUniforms & (DIRTY_BONEMATRIX0 << i)) {
ConvertMatrix4x3To3x4Transposed(ub->bones[i], gstate.boneMatrix + 12 * i);
}
}
}