ppsspp/Core/TiltEventProcessor.cpp

253 lines
7.1 KiB
C++

#define _USE_MATH_DEFINES
#include <algorithm>
#include <cmath>
#include "Common/Math/math_util.h"
#include "Common/Math/lin/vec3.h"
#include "Common/Math/lin/matrix4x4.h"
#include "Common/Log.h"
#include "Core/Config.h"
#include "Core/ConfigValues.h"
#include "Core/HLE/sceCtrl.h"
#include "Core/TiltEventProcessor.h"
namespace TiltEventProcessor {
static u32 tiltButtonsDown = 0;
float rawTiltAnalogX;
float rawTiltAnalogY;
float g_currentYAngle = 0.0f;
float GetCurrentYAngle() {
return g_currentYAngle;
}
// These functions generate tilt events given the current Tilt amount,
// and the deadzone radius.
void GenerateAnalogStickEvent(float analogX, float analogY);
void GenerateDPadEvent(int digitalX, int digitalY);
void GenerateActionButtonEvent(int digitalX, int digitalY);
void GenerateTriggerButtonEvent(int digitalX, int digitalY);
// deadzone is normalized - 0 to 1
// sensitivity controls how fast the deadzone reaches max value
inline float ApplyDeadzone(float x, float deadzone) {
const float factor = 1.0f / (1.0f - deadzone);
if (x > deadzone) {
return (x - deadzone) * factor + deadzone;
} else if (x < -deadzone) {
return (x + deadzone) * factor - deadzone;
} else {
return 0.0f;
}
}
// Also clamps to -1.0..1.0.
// This applies a (circular if desired) inverse deadzone.
inline void ApplyInverseDeadzone(float x, float y, float *outX, float *outY, float inverseDeadzone, bool circular) {
if (inverseDeadzone == 0.0f) {
*outX = Clamp(x, -1.0f, 1.0f);
*outY = Clamp(y, -1.0f, 1.0f);
}
if (circular) {
float magnitude = sqrtf(x * x + y * y);
magnitude = (magnitude + inverseDeadzone) / magnitude;
*outX = Clamp(x * magnitude, -1.0f, 1.0f);
*outY = Clamp(y * magnitude, -1.0f, 1.0f);
} else {
*outX = Clamp(x + copysignf(inverseDeadzone, x), -1.0f, 1.0f);
*outY = Clamp(y + copysignf(inverseDeadzone, y), -1.0f, 1.0f);
}
}
void ProcessTilt(bool landscape, float calibrationAngle, float x, float y, float z, bool invertX, bool invertY, float xSensitivity, float ySensitivity) {
if (g_Config.iTiltInputType == TILT_NULL) {
// Turned off - nothing to do.
return;
}
if (landscape) {
std::swap(x, y);
} else {
x *= -1.0f;
}
Lin::Vec3 down = Lin::Vec3(x, y, z).normalized();
float angleAroundX = atan2(down.z, down.y);
g_currentYAngle = angleAroundX; // TODO: Should smooth this out over time a bit.
float yAngle = angleAroundX - calibrationAngle;
float xAngle = asinf(down.x);
float tiltX = xAngle;
float tiltY = yAngle;
// invert x and y axes if requested. Can probably remove this.
if (invertX) {
tiltX = -tiltX;
}
if (invertY) {
tiltY = -tiltY;
}
// It's not obvious what the factor for converting from tilt angle to value should be,
// but there's nothing that says that 1 would make sense. The important thing is that
// the sensitivity sliders get a range of values that makes sense.
const float tiltFactor = 3.0f;
tiltX *= xSensitivity * tiltFactor;
tiltY *= ySensitivity * tiltFactor;
if (g_Config.iTiltInputType == TILT_ANALOG) {
// Only analog mappings use the deadzone.
float adjustedTiltX = ApplyDeadzone(tiltX, g_Config.fTiltAnalogDeadzoneRadius);
float adjustedTiltY = ApplyDeadzone(tiltY, g_Config.fTiltAnalogDeadzoneRadius);
// Unlike regular deadzone, where per-axis is okay, inverse deadzone (to compensate for game deadzones) really needs to be
// applied on the two axes together.
// TODO: Share this code with the joystick code. For now though, we keep it separate.
ApplyInverseDeadzone(adjustedTiltX, adjustedTiltY, &adjustedTiltX, &adjustedTiltY, g_Config.fTiltInverseDeadzone, g_Config.bTiltCircularInverseDeadzone);
rawTiltAnalogX = adjustedTiltX;
rawTiltAnalogY = adjustedTiltY;
GenerateAnalogStickEvent(adjustedTiltX, adjustedTiltY);
return;
}
// Remaining are digital now so do the digital check here.
// We use a fixed 0.3 threshold instead of a deadzone since you can simply use sensitivity to set it -
// these parameters were never independent. It should feel similar to analog that way.
int digitalX = 0;
int digitalY = 0;
const float threshold = 0.5f;
if (tiltX < -threshold) {
digitalX = -1;
} else if (tiltX > threshold) {
digitalX = 1;
}
if (tiltY < -threshold) {
digitalY = -1;
} else if (tiltY > threshold) {
digitalY = 1;
}
switch (g_Config.iTiltInputType) {
case TILT_DPAD:
GenerateDPadEvent(digitalX, digitalY);
break;
case TILT_ACTION_BUTTON:
GenerateActionButtonEvent(digitalX, digitalY);
break;
case TILT_TRIGGER_BUTTONS:
GenerateTriggerButtonEvent(digitalX, digitalY);
break;
default:
break;
}
}
inline float clamp(float f) {
if (f > 1.0f) return 1.0f;
if (f < -1.0f) return -1.0f;
return f;
}
// TODO: Instead of __Ctrl, route data into the ControlMapper.
void GenerateAnalogStickEvent(float tiltX, float tiltY) {
__CtrlSetAnalogXY(CTRL_STICK_LEFT, clamp(tiltX), clamp(tiltY));
}
void GenerateDPadEvent(int digitalX, int digitalY) {
static const int dir[4] = { CTRL_RIGHT, CTRL_DOWN, CTRL_LEFT, CTRL_UP };
if (digitalX == 0) {
__CtrlUpdateButtons(0, tiltButtonsDown & (CTRL_RIGHT | CTRL_LEFT));
tiltButtonsDown &= ~(CTRL_LEFT | CTRL_RIGHT);
}
if (digitalY == 0) {
__CtrlUpdateButtons(0, tiltButtonsDown & (CTRL_UP | CTRL_DOWN));
tiltButtonsDown &= ~(CTRL_UP | CTRL_DOWN);
}
if (digitalX == 0 && digitalY == 0) {
return;
}
int ctrlMask = 0;
if (digitalX == -1) ctrlMask |= CTRL_LEFT;
if (digitalX == 1) ctrlMask |= CTRL_RIGHT;
if (digitalY == -1) ctrlMask |= CTRL_DOWN;
if (digitalY == 1) ctrlMask |= CTRL_UP;
ctrlMask &= ~__CtrlPeekButtons();
__CtrlUpdateButtons(ctrlMask, 0);
tiltButtonsDown |= ctrlMask;
}
void GenerateActionButtonEvent(int digitalX, int digitalY) {
static const int buttons[4] = { CTRL_CIRCLE, CTRL_CROSS, CTRL_SQUARE, CTRL_TRIANGLE };
if (digitalX == 0) {
__CtrlUpdateButtons(0, tiltButtonsDown & (CTRL_SQUARE | CTRL_CIRCLE));
tiltButtonsDown &= ~(CTRL_SQUARE | CTRL_CIRCLE);
}
if (digitalY == 0) {
__CtrlUpdateButtons(0, tiltButtonsDown & (CTRL_TRIANGLE | CTRL_CROSS));
tiltButtonsDown &= ~(CTRL_TRIANGLE | CTRL_CROSS);
}
if (digitalX == 0 && digitalY == 0) {
return;
}
int ctrlMask = 0;
if (digitalX == -1) ctrlMask |= CTRL_SQUARE;
if (digitalX == 1) ctrlMask |= CTRL_CIRCLE;
if (digitalY == -1) ctrlMask |= CTRL_CROSS;
if (digitalY == 1) ctrlMask |= CTRL_TRIANGLE;
ctrlMask &= ~__CtrlPeekButtons();
__CtrlUpdateButtons(ctrlMask, 0);
tiltButtonsDown |= ctrlMask;
}
void GenerateTriggerButtonEvent(int digitalX, int digitalY) {
u32 upButtons = 0;
u32 downButtons = 0;
// Y axis up for both
if (digitalY == 1) {
downButtons = CTRL_LTRIGGER | CTRL_RTRIGGER;
} else if (digitalX == 0) {
upButtons = CTRL_LTRIGGER | CTRL_RTRIGGER;
} else if (digitalX == -1) {
downButtons = CTRL_LTRIGGER;
upButtons = CTRL_RTRIGGER;
} else if (digitalX == 1) {
downButtons = CTRL_RTRIGGER;
upButtons = CTRL_LTRIGGER;
}
downButtons &= ~__CtrlPeekButtons();
__CtrlUpdateButtons(downButtons, tiltButtonsDown & upButtons);
tiltButtonsDown = (tiltButtonsDown & ~upButtons) | downButtons;
}
void ResetTiltEvents() {
// Reset the buttons we have marked pressed.
__CtrlUpdateButtons(0, tiltButtonsDown);
tiltButtonsDown = 0;
__CtrlSetAnalogXY(CTRL_STICK_LEFT, 0.0f, 0.0f);
}
} // namespace TiltEventProcessor