ppsspp/Core/MIPS/ARM64/Arm64CompVFPU.cpp
Unknown W. Brackets 5177db0f91 arm64jit: Remove unnecessary address masking.
We use views like on x86_64, so this isn't needed.
2017-12-28 23:58:30 -08:00

1995 lines
54 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#if PPSSPP_ARCH(ARM64)
#include <cmath>
#include "math/math_util.h"
#include "Core/MemMap.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/MIPSTables.h"
#include "Core/MIPS/MIPSAnalyst.h"
#include "Core/MIPS/MIPSCodeUtils.h"
#include "Common/CPUDetect.h"
#include "Core/Config.h"
#include "Core/Reporting.h"
#include "Common/Arm64Emitter.h"
#include "Core/MIPS/ARM64/Arm64Jit.h"
#include "Core/MIPS/ARM64/Arm64RegCache.h"
// All functions should have CONDITIONAL_DISABLE, so we can narrow things down to a file quickly.
// Currently known non working ones should have DISABLE.
// #define CONDITIONAL_DISABLE { fpr.ReleaseSpillLocksAndDiscardTemps(); Comp_Generic(op); return; }
#define CONDITIONAL_DISABLE ;
#define DISABLE { fpr.ReleaseSpillLocksAndDiscardTemps(); Comp_Generic(op); return; }
#define _RS MIPS_GET_RS(op)
#define _RT MIPS_GET_RT(op)
#define _RD MIPS_GET_RD(op)
#define _FS MIPS_GET_FS(op)
#define _FT MIPS_GET_FT(op)
#define _FD MIPS_GET_FD(op)
#define _SA MIPS_GET_SA(op)
#define _POS ((op>> 6) & 0x1F)
#define _SIZE ((op>>11) & 0x1F)
#define _IMM16 (signed short)(op & 0xFFFF)
#define _IMM26 (op & 0x03FFFFFF)
namespace MIPSComp {
using namespace Arm64Gen;
using namespace Arm64JitConstants;
// Vector regs can overlap in all sorts of swizzled ways.
// This does allow a single overlap in sregs[i].
static bool IsOverlapSafeAllowS(int dreg, int di, int sn, u8 sregs[], int tn = 0, u8 tregs[] = NULL)
{
for (int i = 0; i < sn; ++i) {
if (sregs[i] == dreg && i != di)
return false;
}
for (int i = 0; i < tn; ++i) {
if (tregs[i] == dreg)
return false;
}
// Hurray, no overlap, we can write directly.
return true;
}
static bool IsOverlapSafe(int dreg, int di, int sn, u8 sregs[], int tn = 0, u8 tregs[] = NULL)
{
return IsOverlapSafeAllowS(dreg, di, sn, sregs, tn, tregs) && sregs[di] != dreg;
}
void Arm64Jit::Comp_VPFX(MIPSOpcode op) {
CONDITIONAL_DISABLE;
int data = op & 0xFFFFF;
int regnum = (op >> 24) & 3;
switch (regnum) {
case 0: // S
js.prefixS = data;
js.prefixSFlag = JitState::PREFIX_KNOWN_DIRTY;
break;
case 1: // T
js.prefixT = data;
js.prefixTFlag = JitState::PREFIX_KNOWN_DIRTY;
break;
case 2: // D
js.prefixD = data;
js.prefixDFlag = JitState::PREFIX_KNOWN_DIRTY;
break;
default:
ERROR_LOG(CPU, "VPFX - bad regnum %i : data=%08x", regnum, data);
break;
}
}
void Arm64Jit::ApplyPrefixST(u8 *vregs, u32 prefix, VectorSize sz) {
if (prefix == 0xE4)
return;
int n = GetNumVectorElements(sz);
u8 origV[4];
static const float constantArray[8] = { 0.f, 1.f, 2.f, 0.5f, 3.f, 1.f / 3.f, 0.25f, 1.f / 6.f };
for (int i = 0; i < n; i++)
origV[i] = vregs[i];
for (int i = 0; i < n; i++) {
int regnum = (prefix >> (i * 2)) & 3;
int abs = (prefix >> (8 + i)) & 1;
int negate = (prefix >> (16 + i)) & 1;
int constants = (prefix >> (12 + i)) & 1;
// Unchanged, hurray.
if (!constants && regnum == i && !abs && !negate)
continue;
// This puts the value into a temp reg, so we won't write the modified value back.
vregs[i] = fpr.GetTempV();
if (!constants) {
fpr.MapDirtyInV(vregs[i], origV[regnum]);
fpr.SpillLockV(vregs[i]);
// Prefix may say "z, z, z, z" but if this is a pair, we force to x.
// TODO: But some ops seem to use const 0 instead?
if (regnum >= n) {
WARN_LOG(CPU, "JIT: Invalid VFPU swizzle: %08x : %d / %d at PC = %08x (%s)", prefix, regnum, n, GetCompilerPC(), MIPSDisasmAt(GetCompilerPC()));
regnum = 0;
}
if (abs) {
fp.FABS(fpr.V(vregs[i]), fpr.V(origV[regnum]));
if (negate)
fp.FNEG(fpr.V(vregs[i]), fpr.V(vregs[i]));
} else {
if (negate)
fp.FNEG(fpr.V(vregs[i]), fpr.V(origV[regnum]));
else
fp.FMOV(fpr.V(vregs[i]), fpr.V(origV[regnum]));
}
} else {
fpr.MapRegV(vregs[i], MAP_DIRTY | MAP_NOINIT);
fpr.SpillLockV(vregs[i]);
fp.MOVI2F(fpr.V(vregs[i]), constantArray[regnum + (abs << 2)], SCRATCH1, (bool)negate);
}
}
}
void Arm64Jit::GetVectorRegsPrefixD(u8 *regs, VectorSize sz, int vectorReg) {
_assert_(js.prefixDFlag & JitState::PREFIX_KNOWN);
GetVectorRegs(regs, sz, vectorReg);
if (js.prefixD == 0)
return;
int n = GetNumVectorElements(sz);
for (int i = 0; i < n; i++) {
// Hopefully this is rare, we'll just write it into a reg we drop.
if (js.VfpuWriteMask(i))
regs[i] = fpr.GetTempV();
}
}
void Arm64Jit::ApplyPrefixD(const u8 *vregs, VectorSize sz) {
_assert_msg_(JIT, js.prefixDFlag & JitState::PREFIX_KNOWN, "Unexpected unknown prefix!");
if (!js.prefixD)
return;
int n = GetNumVectorElements(sz);
for (int i = 0; i < n; i++) {
if (js.VfpuWriteMask(i))
continue;
int sat = (js.prefixD >> (i * 2)) & 3;
if (sat == 1) {
// clamped = x < 0 ? (x > 1 ? 1 : x) : x [0, 1]
fpr.MapRegV(vregs[i], MAP_DIRTY);
fp.MOVI2F(S0, 0.0f, SCRATCH1);
fp.MOVI2F(S1, 1.0f, SCRATCH1);
fp.FMIN(fpr.V(vregs[i]), fpr.V(vregs[i]), S1);
fp.FMAX(fpr.V(vregs[i]), fpr.V(vregs[i]), S0);
} else if (sat == 3) {
// clamped = x < -1 ? (x > 1 ? 1 : x) : x [-1, 1]
fpr.MapRegV(vregs[i], MAP_DIRTY);
fp.MOVI2F(S0, -1.0f, SCRATCH1);
fp.MOVI2F(S1, 1.0f, SCRATCH1);
fp.FMIN(fpr.V(vregs[i]), fpr.V(vregs[i]), S1);
fp.FMAX(fpr.V(vregs[i]), fpr.V(vregs[i]), S0);
}
}
}
void Arm64Jit::Comp_SV(MIPSOpcode op) {
CONDITIONAL_DISABLE;
s32 offset = (signed short)(op & 0xFFFC);
int vt = ((op >> 16) & 0x1f) | ((op & 3) << 5);
MIPSGPReg rs = _RS;
std::vector<FixupBranch> skips;
switch (op >> 26) {
case 50: //lv.s // VI(vt) = Memory::Read_U32(addr);
{
if (!gpr.IsImm(rs) && jo.cachePointers && g_Config.bFastMemory && (offset & 3) == 0 && offset >= 0 && offset < 16384) {
gpr.MapRegAsPointer(rs);
fpr.MapRegV(vt, MAP_NOINIT | MAP_DIRTY);
fp.LDR(32, INDEX_UNSIGNED, fpr.V(vt), gpr.RPtr(rs), offset);
break;
}
// CC might be set by slow path below, so load regs first.
fpr.MapRegV(vt, MAP_DIRTY | MAP_NOINIT);
if (gpr.IsImm(rs)) {
u32 addr = offset + gpr.GetImm(rs);
gpr.SetRegImm(SCRATCH1, addr);
} else {
gpr.MapReg(rs);
if (g_Config.bFastMemory) {
SetScratch1ToEffectiveAddress(rs, offset);
} else {
skips = SetScratch1ForSafeAddress(rs, offset, SCRATCH2);
}
}
fp.LDR(32, fpr.V(vt), SCRATCH1_64, ArithOption(MEMBASEREG));
for (auto skip : skips) {
SetJumpTarget(skip);
}
}
break;
case 58: //sv.s // Memory::Write_U32(VI(vt), addr);
{
if (!gpr.IsImm(rs) && jo.cachePointers && g_Config.bFastMemory && (offset & 3) == 0 && offset >= 0 && offset < 16384) {
gpr.MapRegAsPointer(rs);
fpr.MapRegV(vt, 0);
fp.STR(32, INDEX_UNSIGNED, fpr.V(vt), gpr.RPtr(rs), offset);
break;
}
// CC might be set by slow path below, so load regs first.
fpr.MapRegV(vt);
if (gpr.IsImm(rs)) {
u32 addr = offset + gpr.GetImm(rs);
gpr.SetRegImm(SCRATCH1, addr);
} else {
gpr.MapReg(rs);
if (g_Config.bFastMemory) {
SetScratch1ToEffectiveAddress(rs, offset);
} else {
skips = SetScratch1ForSafeAddress(rs, offset, SCRATCH2);
}
}
fp.STR(32, fpr.V(vt), SCRATCH1_64, ArithOption(MEMBASEREG));
for (auto skip : skips) {
SetJumpTarget(skip);
}
}
break;
default:
DISABLE;
}
}
void Arm64Jit::Comp_SVQ(MIPSOpcode op) {
CONDITIONAL_DISABLE;
int imm = (signed short)(op&0xFFFC);
int vt = (((op >> 16) & 0x1f)) | ((op&1) << 5);
MIPSGPReg rs = _RS;
std::vector<FixupBranch> skips;
switch (op >> 26)
{
case 54: //lv.q
{
// CC might be set by slow path below, so load regs first.
u8 vregs[4];
GetVectorRegs(vregs, V_Quad, vt);
fpr.MapRegsAndSpillLockV(vregs, V_Quad, MAP_DIRTY | MAP_NOINIT);
if (gpr.IsImm(rs)) {
u32 addr = imm + gpr.GetImm(rs);
gpr.SetRegImm(SCRATCH1_64, addr + (uintptr_t)Memory::base);
} else {
gpr.MapReg(rs);
if (g_Config.bFastMemory) {
SetScratch1ToEffectiveAddress(rs, imm);
} else {
skips = SetScratch1ForSafeAddress(rs, imm, SCRATCH2);
}
if (jo.enablePointerify) {
MOVK(SCRATCH1_64, ((uint64_t)Memory::base) >> 32, SHIFT_32);
} else {
ADD(SCRATCH1_64, SCRATCH1_64, MEMBASEREG);
}
}
fp.LDP(32, INDEX_SIGNED, fpr.V(vregs[0]), fpr.V(vregs[1]), SCRATCH1_64, 0);
fp.LDP(32, INDEX_SIGNED, fpr.V(vregs[2]), fpr.V(vregs[3]), SCRATCH1_64, 8);
for (auto skip : skips) {
SetJumpTarget(skip);
}
}
break;
case 62: //sv.q
{
// CC might be set by slow path below, so load regs first.
u8 vregs[4];
GetVectorRegs(vregs, V_Quad, vt);
fpr.MapRegsAndSpillLockV(vregs, V_Quad, 0);
if (gpr.IsImm(rs)) {
u32 addr = imm + gpr.GetImm(rs);
gpr.SetRegImm(SCRATCH1_64, addr + (uintptr_t)Memory::base);
} else {
gpr.MapReg(rs);
if (g_Config.bFastMemory) {
SetScratch1ToEffectiveAddress(rs, imm);
} else {
skips = SetScratch1ForSafeAddress(rs, imm, SCRATCH2);
}
if (jo.enablePointerify) {
MOVK(SCRATCH1_64, ((uint64_t)Memory::base) >> 32, SHIFT_32);
} else {
ADD(SCRATCH1_64, SCRATCH1_64, MEMBASEREG);
}
}
fp.STP(32, INDEX_SIGNED, fpr.V(vregs[0]), fpr.V(vregs[1]), SCRATCH1_64, 0);
fp.STP(32, INDEX_SIGNED, fpr.V(vregs[2]), fpr.V(vregs[3]), SCRATCH1_64, 8);
for (auto skip : skips) {
SetJumpTarget(skip);
}
}
break;
default:
DISABLE;
break;
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_VVectorInit(MIPSOpcode op) {
CONDITIONAL_DISABLE;
// WARNING: No prefix support!
if (js.HasUnknownPrefix()) {
DISABLE;
}
switch ((op >> 16) & 0xF) {
case 6: // v=zeros; break; //vzero
fp.MOVI2F(S0, 0.0f, SCRATCH1);
break;
case 7: // v=ones; break; //vone
fp.MOVI2F(S0, 1.0f, SCRATCH1);
break;
default:
DISABLE;
break;
}
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
u8 dregs[4];
GetVectorRegsPrefixD(dregs, sz, _VD);
fpr.MapRegsAndSpillLockV(dregs, sz, MAP_NOINIT | MAP_DIRTY);
for (int i = 0; i < n; ++i)
fp.FMOV(fpr.V(dregs[i]), S0);
ApplyPrefixD(dregs, sz);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_VIdt(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
int vd = _VD;
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
fp.MOVI2F(S0, 0.0f, SCRATCH1);
fp.MOVI2F(S1, 1.0f, SCRATCH1);
u8 dregs[4];
GetVectorRegsPrefixD(dregs, sz, _VD);
fpr.MapRegsAndSpillLockV(dregs, sz, MAP_NOINIT | MAP_DIRTY);
switch (sz) {
case V_Pair:
fp.FMOV(fpr.V(dregs[0]), (vd & 1) == 0 ? S1 : S0);
fp.FMOV(fpr.V(dregs[1]), (vd & 1) == 1 ? S1 : S0);
break;
case V_Quad:
fp.FMOV(fpr.V(dregs[0]), (vd & 3) == 0 ? S1 : S0);
fp.FMOV(fpr.V(dregs[1]), (vd & 3) == 1 ? S1 : S0);
fp.FMOV(fpr.V(dregs[2]), (vd & 3) == 2 ? S1 : S0);
fp.FMOV(fpr.V(dregs[3]), (vd & 3) == 3 ? S1 : S0);
break;
default:
_dbg_assert_msg_(CPU, 0, "Trying to interpret instruction that can't be interpreted");
break;
}
ApplyPrefixD(dregs, sz);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_VMatrixInit(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
// Don't think matrix init ops care about prefixes.
// DISABLE;
}
MatrixSize sz = GetMtxSize(op);
int n = GetMatrixSide(sz);
u8 dregs[16];
GetMatrixRegs(dregs, sz, _VD);
switch ((op >> 16) & 0xF) {
case 3: // vmidt
fp.MOVI2F(S0, 0.0f, SCRATCH1);
fp.MOVI2F(S1, 1.0f, SCRATCH1);
for (int a = 0; a < n; a++) {
for (int b = 0; b < n; b++) {
fpr.MapRegV(dregs[a * 4 + b], MAP_DIRTY | MAP_NOINIT);
fp.FMOV(fpr.V(dregs[a * 4 + b]), a == b ? S1 : S0);
}
}
break;
case 6: // vmzero
fp.MOVI2F(S0, 0.0f, SCRATCH1);
for (int a = 0; a < n; a++) {
for (int b = 0; b < n; b++) {
fpr.MapRegV(dregs[a * 4 + b], MAP_DIRTY | MAP_NOINIT);
fp.FMOV(fpr.V(dregs[a * 4 + b]), S0);
}
}
break;
case 7: // vmone
fp.MOVI2F(S1, 1.0f, SCRATCH1);
for (int a = 0; a < n; a++) {
for (int b = 0; b < n; b++) {
fpr.MapRegV(dregs[a * 4 + b], MAP_DIRTY | MAP_NOINIT);
fp.FMOV(fpr.V(dregs[a * 4 + b]), S1);
}
}
break;
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_VHdp(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
int vd = _VD;
int vs = _VS;
int vt = _VT;
VectorSize sz = GetVecSize(op);
// TODO: Force read one of them into regs? probably not.
u8 sregs[4], tregs[4], dregs[1];
GetVectorRegsPrefixS(sregs, sz, vs);
GetVectorRegsPrefixT(tregs, sz, vt);
GetVectorRegsPrefixD(dregs, V_Single, vd);
// TODO: applyprefixST here somehow (shuffle, etc...)
fpr.MapRegsAndSpillLockV(sregs, sz, 0);
fpr.MapRegsAndSpillLockV(tregs, sz, 0);
fp.FMUL(S0, fpr.V(sregs[0]), fpr.V(tregs[0]));
int n = GetNumVectorElements(sz);
for (int i = 1; i < n; i++) {
// sum += s[i]*t[i];
if (i == n - 1) {
fp.FADD(S0, S0, fpr.V(tregs[i]));
} else {
fp.FMADD(S0, fpr.V(sregs[i]), fpr.V(tregs[i]), S0);
}
}
fpr.ReleaseSpillLocksAndDiscardTemps();
fpr.MapRegV(dregs[0], MAP_NOINIT | MAP_DIRTY);
fp.FMOV(fpr.V(dregs[0]), S0);
ApplyPrefixD(dregs, V_Single);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
alignas(16) static const float vavg_table[4] = { 1.0f, 1.0f / 2.0f, 1.0f / 3.0f, 1.0f / 4.0f };
void Arm64Jit::Comp_Vhoriz(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
int vd = _VD;
int vs = _VS;
int vt = _VT;
VectorSize sz = GetVecSize(op);
// TODO: Force read one of them into regs? probably not.
u8 sregs[4], tregs[4], dregs[1];
GetVectorRegsPrefixS(sregs, sz, vs);
GetVectorRegsPrefixD(dregs, V_Single, vd);
// TODO: applyprefixST here somehow (shuffle, etc...)
fpr.MapRegsAndSpillLockV(sregs, sz, 0);
int n = GetNumVectorElements(sz);
bool is_vavg = ((op >> 16) & 0x1f) == 7;
if (is_vavg) {
fp.MOVI2F(S1, vavg_table[n - 1], SCRATCH1);
}
// Have to start at +0.000 for the correct sign.
fp.MOVI2F(S0, 0.0f, SCRATCH1);
for (int i = 0; i < n; i++) {
// sum += s[i];
fp.FADD(S0, S0, fpr.V(sregs[i]));
}
fpr.MapRegV(dregs[0], MAP_NOINIT | MAP_DIRTY);
if (is_vavg) {
fp.FMUL(fpr.V(dregs[0]), S0, S1);
} else {
fp.FMOV(fpr.V(dregs[0]), S0);
}
ApplyPrefixD(dregs, V_Single);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_VDot(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
int vd = _VD;
int vs = _VS;
int vt = _VT;
VectorSize sz = GetVecSize(op);
// TODO: Force read one of them into regs? probably not.
u8 sregs[4], tregs[4], dregs[1];
GetVectorRegsPrefixS(sregs, sz, vs);
GetVectorRegsPrefixT(tregs, sz, vt);
GetVectorRegsPrefixD(dregs, V_Single, vd);
// TODO: applyprefixST here somehow (shuffle, etc...)
fpr.MapRegsAndSpillLockV(sregs, sz, 0);
fpr.MapRegsAndSpillLockV(tregs, sz, 0);
fp.FMUL(S0, fpr.V(sregs[0]), fpr.V(tregs[0]));
int n = GetNumVectorElements(sz);
for (int i = 1; i < n; i++) {
// sum += s[i]*t[i];
fp.FMADD(S0, fpr.V(sregs[i]), fpr.V(tregs[i]), S0);
}
fpr.ReleaseSpillLocksAndDiscardTemps();
fpr.MapRegV(dregs[0], MAP_NOINIT | MAP_DIRTY);
fp.FMOV(fpr.V(dregs[0]), S0);
ApplyPrefixD(dregs, V_Single);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_VecDo3(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
int vd = _VD;
int vs = _VS;
int vt = _VT;
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
u8 sregs[4], tregs[4], dregs[4];
GetVectorRegsPrefixS(sregs, sz, _VS);
GetVectorRegsPrefixT(tregs, sz, _VT);
GetVectorRegsPrefixD(dregs, sz, _VD);
MIPSReg tempregs[4];
for (int i = 0; i < n; i++) {
if (!IsOverlapSafe(dregs[i], i, n, sregs, n, tregs)) {
tempregs[i] = fpr.GetTempV();
} else {
tempregs[i] = dregs[i];
}
}
// Map first, then work. This will allow us to use VLDMIA more often
// (when we add the appropriate map function) and the instruction ordering
// will improve.
// Note that mapping like this (instead of first all sregs, first all tregs etc)
// reduces the amount of continuous registers a lot :(
for (int i = 0; i < n; i++) {
fpr.MapDirtyInInV(tempregs[i], sregs[i], tregs[i]);
fpr.SpillLockV(tempregs[i]);
fpr.SpillLockV(sregs[i]);
fpr.SpillLockV(tregs[i]);
}
for (int i = 0; i < n; i++) {
switch (op >> 26) {
case 24: //VFPU0
switch ((op >> 23) & 7) {
case 0: // d[i] = s[i] + t[i]; break; //vadd
fp.FADD(fpr.V(tempregs[i]), fpr.V(sregs[i]), fpr.V(tregs[i]));
break;
case 1: // d[i] = s[i] - t[i]; break; //vsub
fp.FSUB(fpr.V(tempregs[i]), fpr.V(sregs[i]), fpr.V(tregs[i]));
break;
case 7: // d[i] = s[i] / t[i]; break; //vdiv
fp.FDIV(fpr.V(tempregs[i]), fpr.V(sregs[i]), fpr.V(tregs[i]));
break;
default:
DISABLE;
}
break;
case 25: //VFPU1
switch ((op >> 23) & 7) {
case 0: // d[i] = s[i] * t[i]; break; //vmul
fp.FMUL(fpr.V(tempregs[i]), fpr.V(sregs[i]), fpr.V(tregs[i]));
break;
default:
DISABLE;
}
break;
// Fortunately there is FMIN/FMAX on ARM64!
case 27: //VFPU3
switch ((op >> 23) & 7) {
case 2: // vmin
{
fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i]));
FixupBranch unordered = B(CC_VS);
fp.FMIN(fpr.V(tempregs[i]), fpr.V(sregs[i]), fpr.V(tregs[i]));
FixupBranch skip = B();
SetJumpTarget(unordered);
// Move to integer registers, it'll be easier. Or maybe there's a simd way?
fp.FMOV(SCRATCH1, fpr.V(sregs[i]));
fp.FMOV(SCRATCH2, fpr.V(tregs[i]));
// And together to find if both have negative set.
TST(SCRATCH1, SCRATCH2);
FixupBranch cmpPositive = B(CC_PL);
// If both are negative, "min" is the greater of the two, since it has the largest mantissa.
CMP(SCRATCH1, SCRATCH2);
CSEL(SCRATCH1, SCRATCH1, SCRATCH2, CC_GE);
FixupBranch skipPositive = B();
// If either one is positive, we just want the lowest one.
SetJumpTarget(cmpPositive);
CMP(SCRATCH1, SCRATCH2);
CSEL(SCRATCH1, SCRATCH1, SCRATCH2, CC_LE);
SetJumpTarget(skipPositive);
// Now, whether negative or positive, move to the result.
fp.FMOV(fpr.V(tempregs[i]), SCRATCH1);
SetJumpTarget(skip);
break;
}
case 3: // vmax
{
fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i]));
FixupBranch unordered = B(CC_VS);
fp.FMAX(fpr.V(tempregs[i]), fpr.V(sregs[i]), fpr.V(tregs[i]));
FixupBranch skip = B();
SetJumpTarget(unordered);
// Move to integer registers, it'll be easier. Or maybe there's a simd way?
fp.FMOV(SCRATCH1, fpr.V(sregs[i]));
fp.FMOV(SCRATCH2, fpr.V(tregs[i]));
// And together to find if both have negative set.
TST(SCRATCH1, SCRATCH2);
FixupBranch cmpPositive = B(CC_PL);
// If both are negative, "max" is the least of the two, since it has the lowest mantissa.
CMP(SCRATCH1, SCRATCH2);
CSEL(SCRATCH1, SCRATCH1, SCRATCH2, CC_LE);
FixupBranch skipPositive = B();
// If either one is positive, we just want the highest one.
SetJumpTarget(cmpPositive);
CMP(SCRATCH1, SCRATCH2);
CSEL(SCRATCH1, SCRATCH1, SCRATCH2, CC_GE);
SetJumpTarget(skipPositive);
// Now, whether negative or positive, move to the result.
fp.FMOV(fpr.V(tempregs[i]), SCRATCH1);
SetJumpTarget(skip);
break;
}
case 6: // vsge
DISABLE; // pending testing
break;
case 7: // vslt
DISABLE; // pending testing
break;
}
break;
default:
DISABLE;
}
}
for (int i = 0; i < n; i++) {
if (dregs[i] != tempregs[i]) {
fpr.MapDirtyInV(dregs[i], tempregs[i]);
fp.FMOV(fpr.V(dregs[i]), fpr.V(tempregs[i]));
}
}
ApplyPrefixD(dregs, sz);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_VV2Op(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
// Pre-processing: Eliminate silly no-op VMOVs, common in Wipeout Pure
if (((op >> 16) & 0x1f) == 0 && _VS == _VD && js.HasNoPrefix()) {
return;
}
// Catch the disabled operations immediately so we don't map registers unnecessarily later.
// Move these down to the big switch below as they are implemented.
switch ((op >> 16) & 0x1f) {
case 18: // d[i] = sinf((float)M_PI_2 * s[i]); break; //vsin
DISABLE;
break;
case 19: // d[i] = cosf((float)M_PI_2 * s[i]); break; //vcos
DISABLE;
break;
case 20: // d[i] = powf(2.0f, s[i]); break; //vexp2
DISABLE;
break;
case 21: // d[i] = logf(s[i])/log(2.0f); break; //vlog2
DISABLE;
break;
case 26: // d[i] = -sinf((float)M_PI_2 * s[i]); break; // vnsin
DISABLE;
break;
case 28: // d[i] = 1.0f / expf(s[i] * (float)M_LOG2E); break; // vrexp2
DISABLE;
break;
default:
;
}
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
u8 sregs[4], dregs[4];
GetVectorRegsPrefixS(sregs, sz, _VS);
GetVectorRegsPrefixD(dregs, sz, _VD);
MIPSReg tempregs[4];
for (int i = 0; i < n; ++i) {
if (!IsOverlapSafe(dregs[i], i, n, sregs)) {
tempregs[i] = fpr.GetTempV();
} else {
tempregs[i] = dregs[i];
}
}
// Pre map the registers to get better instruction ordering.
// Note that mapping like this (instead of first all sregs, first all tempregs etc)
// reduces the amount of continuous registers a lot :(
for (int i = 0; i < n; i++) {
fpr.MapDirtyInV(tempregs[i], sregs[i]);
fpr.SpillLockV(tempregs[i]);
fpr.SpillLockV(sregs[i]);
}
// Warning: sregs[i] and tempxregs[i] may be the same reg.
// Helps for vmov, hurts for vrcp, etc.
for (int i = 0; i < n; i++) {
switch ((op >> 16) & 0x1f) {
case 0: // d[i] = s[i]; break; //vmov
// Probably for swizzle.
fp.FMOV(fpr.V(tempregs[i]), fpr.V(sregs[i]));
break;
case 1: // d[i] = fabsf(s[i]); break; //vabs
fp.FABS(fpr.V(tempregs[i]), fpr.V(sregs[i]));
break;
case 2: // d[i] = -s[i]; break; //vneg
fp.FNEG(fpr.V(tempregs[i]), fpr.V(sregs[i]));
break;
case 4: // if (s[i] < 0) d[i] = 0; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat0
if (i == 0) {
fp.MOVI2F(S0, 0.0f, SCRATCH1);
fp.MOVI2F(S1, 1.0f, SCRATCH1);
}
fp.FCMP(fpr.V(sregs[i]), S0);
fp.FMOV(fpr.V(tempregs[i]), fpr.V(sregs[i]));
fp.FMAX(fpr.V(tempregs[i]), fpr.V(tempregs[i]), S0);
fp.FMIN(fpr.V(tempregs[i]), fpr.V(tempregs[i]), S1);
break;
case 5: // if (s[i] < -1.0f) d[i] = -1.0f; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat1
if (i == 0) {
fp.MOVI2F(S0, -1.0f, SCRATCH1);
fp.MOVI2F(S1, 1.0f, SCRATCH1);
}
fp.FCMP(fpr.V(sregs[i]), S0);
fp.FMOV(fpr.V(tempregs[i]), fpr.V(sregs[i]));
fp.FMAX(fpr.V(tempregs[i]), fpr.V(tempregs[i]), S0);
fp.FMIN(fpr.V(tempregs[i]), fpr.V(tempregs[i]), S1);
break;
case 16: // d[i] = 1.0f / s[i]; break; //vrcp
if (i == 0) {
fp.MOVI2F(S0, 1.0f, SCRATCH1);
}
fp.FDIV(fpr.V(tempregs[i]), S0, fpr.V(sregs[i]));
break;
case 17: // d[i] = 1.0f / sqrtf(s[i]); break; //vrsq
if (i == 0) {
fp.MOVI2F(S0, 1.0f, SCRATCH1);
}
fp.FSQRT(S1, fpr.V(sregs[i]));
fp.FDIV(fpr.V(tempregs[i]), S0, S1);
break;
case 22: // d[i] = sqrtf(s[i]); break; //vsqrt
fp.FSQRT(fpr.V(tempregs[i]), fpr.V(sregs[i]));
fp.FABS(fpr.V(tempregs[i]), fpr.V(tempregs[i]));
break;
case 23: // d[i] = asinf(s[i] * (float)M_2_PI); break; //vasin
DISABLE;
break;
case 24: // d[i] = -1.0f / s[i]; break; // vnrcp
if (i == 0) {
fp.MOVI2F(S0, -1.0f, SCRATCH1);
}
fp.FDIV(fpr.V(tempregs[i]), S0, fpr.V(sregs[i]));
break;
default:
ERROR_LOG(JIT, "case missing in vfpu vv2op");
DISABLE;
break;
}
}
for (int i = 0; i < n; ++i) {
if (dregs[i] != tempregs[i]) {
fpr.MapDirtyInV(dregs[i], tempregs[i]);
fp.FMOV(fpr.V(dregs[i]), fpr.V(tempregs[i]));
}
}
ApplyPrefixD(dregs, sz);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_Vi2f(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
int imm = (op >> 16) & 0x1f;
const float mult = 1.0f / (float)(1UL << imm);
u8 sregs[4], dregs[4];
GetVectorRegsPrefixS(sregs, sz, _VS);
GetVectorRegsPrefixD(dregs, sz, _VD);
MIPSReg tempregs[4];
for (int i = 0; i < n; ++i) {
if (!IsOverlapSafe(dregs[i], i, n, sregs)) {
tempregs[i] = fpr.GetTempV();
} else {
tempregs[i] = dregs[i];
}
}
if (mult != 1.0f)
fp.MOVI2F(S0, mult, SCRATCH1);
// TODO: Use the SCVTF with builtin scaling where possible.
for (int i = 0; i < n; i++) {
fpr.MapDirtyInV(tempregs[i], sregs[i]);
fp.SCVTF(fpr.V(tempregs[i]), fpr.V(sregs[i]));
if (mult != 1.0f)
fp.FMUL(fpr.V(tempregs[i]), fpr.V(tempregs[i]), S0);
}
for (int i = 0; i < n; ++i) {
if (dregs[i] != tempregs[i]) {
fpr.MapDirtyInV(dregs[i], tempregs[i]);
fp.FMOV(fpr.V(dregs[i]), fpr.V(tempregs[i]));
}
}
ApplyPrefixD(dregs, sz);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_Vh2f(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
u8 sregs[4], dregs[4];
VectorSize sz = GetVecSize(op);
VectorSize outSz;
switch (sz) {
case V_Single:
outSz = V_Pair;
break;
case V_Pair:
outSz = V_Quad;
break;
default:
DISABLE;
}
int n = GetNumVectorElements(sz);
int nOut = n * 2;
GetVectorRegsPrefixS(sregs, sz, _VS);
GetVectorRegsPrefixD(dregs, outSz, _VD);
// Take the single registers and combine them to a D register.
for (int i = 0; i < n; i++) {
fpr.MapRegV(sregs[i], sz);
fp.INS(32, Q0, i, fpr.V(sregs[i]), 0);
}
// Convert four 16-bit floats in D0 to four 32-bit floats in Q0 (even if we only have two...)
fp.FCVTL(32, Q0, D0);
// Split apart again.
for (int i = 0; i < nOut; i++) {
fpr.MapRegV(dregs[i], MAP_DIRTY | MAP_NOINIT);
fp.INS(32, fpr.V(dregs[i]), 0, Q0, i);
}
ApplyPrefixD(dregs, sz);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_Vf2i(MIPSOpcode op) {
DISABLE;
}
void Arm64Jit::Comp_Mftv(MIPSOpcode op) {
int imm = op & 0xFF;
MIPSGPReg rt = _RT;
switch ((op >> 21) & 0x1f) {
case 3: //mfv / mfvc
// rt = 0, imm = 255 appears to be used as a CPU interlock by some games.
if (rt != 0) {
if (imm < 128) { //R(rt) = VI(imm);
if (!fpr.IsInRAMV(imm)) {
fpr.MapRegV(imm, 0);
gpr.MapReg(rt, MAP_NOINIT | MAP_DIRTY);
fp.FMOV(gpr.R(rt), fpr.V(imm));
} else {
gpr.MapReg(rt, MAP_NOINIT | MAP_DIRTY);
LDR(INDEX_UNSIGNED, gpr.R(rt), CTXREG, fpr.GetMipsRegOffsetV(imm));
}
} else if (imm < 128 + VFPU_CTRL_MAX) { //mtvc
if (imm - 128 == VFPU_CTRL_CC) {
if (gpr.IsImm(MIPS_REG_VFPUCC)) {
gpr.SetImm(rt, gpr.GetImm(MIPS_REG_VFPUCC));
} else {
gpr.MapDirtyIn(rt, MIPS_REG_VFPUCC);
MOV(gpr.R(rt), gpr.R(MIPS_REG_VFPUCC));
}
} else {
// In case we have a saved prefix.
FlushPrefixV();
gpr.MapReg(rt, MAP_NOINIT | MAP_DIRTY);
LDR(INDEX_UNSIGNED, gpr.R(rt), CTXREG, offsetof(MIPSState, vfpuCtrl) + 4 * (imm - 128));
}
} else {
//ERROR - maybe need to make this value too an "interlock" value?
ERROR_LOG(CPU, "mfv - invalid register %i", imm);
}
}
break;
case 7: // mtv
if (imm < 128) {
if (rt == MIPS_REG_ZERO) {
fpr.MapRegV(imm, MAP_DIRTY | MAP_NOINIT);
fp.MOVI2F(fpr.V(imm), 0.0f, SCRATCH1);
} else if (!gpr.IsInRAM(rt)) {
gpr.MapReg(rt);
fpr.MapRegV(imm, MAP_DIRTY | MAP_NOINIT);
fp.FMOV(fpr.V(imm), gpr.R(rt));
} else {
fpr.MapRegV(imm, MAP_DIRTY | MAP_NOINIT);
fp.LDR(32, INDEX_UNSIGNED, fpr.V(imm), CTXREG, gpr.GetMipsRegOffset(rt));
}
} else if (imm < 128 + VFPU_CTRL_MAX) { //mtvc //currentMIPS->vfpuCtrl[imm - 128] = R(rt);
if (imm - 128 == VFPU_CTRL_CC) {
if (gpr.IsImm(rt)) {
gpr.SetImm(MIPS_REG_VFPUCC, gpr.GetImm(rt));
} else {
gpr.MapDirtyIn(MIPS_REG_VFPUCC, rt);
MOV(gpr.R(MIPS_REG_VFPUCC), gpr.R(rt));
}
} else {
gpr.MapReg(rt);
STR(INDEX_UNSIGNED, gpr.R(rt), CTXREG, offsetof(MIPSState, vfpuCtrl) + 4 * (imm - 128));
}
// TODO: Optimization if rt is Imm?
// Set these BEFORE disable!
if (imm - 128 == VFPU_CTRL_SPREFIX) {
js.prefixSFlag = JitState::PREFIX_UNKNOWN;
} else if (imm - 128 == VFPU_CTRL_TPREFIX) {
js.prefixTFlag = JitState::PREFIX_UNKNOWN;
} else if (imm - 128 == VFPU_CTRL_DPREFIX) {
js.prefixDFlag = JitState::PREFIX_UNKNOWN;
}
} else {
//ERROR
_dbg_assert_msg_(CPU, 0, "mtv - invalid register");
}
break;
default:
DISABLE;
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_Vmfvc(MIPSOpcode op) {
CONDITIONAL_DISABLE;
int vs = _VS;
int imm = op & 0xFF;
if (imm >= 128 && imm < 128 + VFPU_CTRL_MAX) {
fpr.MapRegV(vs);
if (imm - 128 == VFPU_CTRL_CC) {
gpr.MapReg(MIPS_REG_VFPUCC, 0);
fp.FMOV(fpr.V(vs), gpr.R(MIPS_REG_VFPUCC));
} else {
ADDI2R(SCRATCH1_64, CTXREG, offsetof(MIPSState, vfpuCtrl[0]) + (imm - 128) * 4, SCRATCH2);
fp.LDR(32, INDEX_UNSIGNED, fpr.V(vs), SCRATCH1_64, 0);
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
}
void Arm64Jit::Comp_Vmtvc(MIPSOpcode op) {
CONDITIONAL_DISABLE;
int vs = _VS;
int imm = op & 0xFF;
if (imm >= 128 && imm < 128 + VFPU_CTRL_MAX) {
fpr.MapRegV(vs);
if (imm - 128 == VFPU_CTRL_CC) {
gpr.MapReg(MIPS_REG_VFPUCC, MAP_DIRTY | MAP_NOINIT);
fp.FMOV(gpr.R(MIPS_REG_VFPUCC), fpr.V(vs));
} else {
ADDI2R(SCRATCH1_64, CTXREG, offsetof(MIPSState, vfpuCtrl[0]) + (imm - 128) * 4, SCRATCH2);
fp.STR(32, INDEX_UNSIGNED, fpr.V(vs), SCRATCH1_64, 0);
}
fpr.ReleaseSpillLocksAndDiscardTemps();
if (imm - 128 == VFPU_CTRL_SPREFIX) {
js.prefixSFlag = JitState::PREFIX_UNKNOWN;
} else if (imm - 128 == VFPU_CTRL_TPREFIX) {
js.prefixTFlag = JitState::PREFIX_UNKNOWN;
} else if (imm - 128 == VFPU_CTRL_DPREFIX) {
js.prefixDFlag = JitState::PREFIX_UNKNOWN;
}
}
}
void Arm64Jit::Comp_Vmmov(MIPSOpcode op) {
CONDITIONAL_DISABLE;
// This probably ignores prefixes for all sane intents and purposes.
if (_VS == _VD) {
// A lot of these no-op matrix moves in Wipeout... Just drop the instruction entirely.
return;
}
MatrixSize sz = GetMtxSize(op);
int n = GetMatrixSide(sz);
u8 sregs[16], dregs[16];
GetMatrixRegs(sregs, sz, _VS);
GetMatrixRegs(dregs, sz, _VD);
// Rough overlap check.
bool overlap = false;
if (GetMtx(_VS) == GetMtx(_VD)) {
// Potential overlap (guaranteed for 3x3 or more).
overlap = true;
}
if (overlap) {
// Not so common, fallback.
DISABLE;
} else {
for (int a = 0; a < n; a++) {
for (int b = 0; b < n; b++) {
fpr.MapDirtyInV(dregs[a * 4 + b], sregs[a * 4 + b]);
fp.FMOV(fpr.V(dregs[a * 4 + b]), fpr.V(sregs[a * 4 + b]));
}
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
}
void Arm64Jit::Comp_VScl(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
u8 sregs[4], dregs[4], treg;
GetVectorRegsPrefixS(sregs, sz, _VS);
// TODO: Prefixes seem strange...
GetVectorRegsPrefixT(&treg, V_Single, _VT);
GetVectorRegsPrefixD(dregs, sz, _VD);
// Move to S0 early, so we don't have to worry about overlap with scale.
fpr.LoadToRegV(S0, treg);
// For prefixes to work, we just have to ensure that none of the output registers spill
// and that there's no overlap.
MIPSReg tempregs[4];
for (int i = 0; i < n; ++i) {
if (!IsOverlapSafe(dregs[i], i, n, sregs)) {
// Need to use temp regs
tempregs[i] = fpr.GetTempV();
} else {
tempregs[i] = dregs[i];
}
}
// The meat of the function!
for (int i = 0; i < n; i++) {
fpr.MapDirtyInV(tempregs[i], sregs[i]);
fp.FMUL(fpr.V(tempregs[i]), fpr.V(sregs[i]), S0);
}
for (int i = 0; i < n; i++) {
// All must be mapped for prefixes to work.
if (dregs[i] != tempregs[i]) {
fpr.MapDirtyInV(dregs[i], tempregs[i]);
fp.FMOV(fpr.V(dregs[i]), fpr.V(tempregs[i]));
}
}
ApplyPrefixD(dregs, sz);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_Vmmul(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
// TODO: This probably ignores prefixes?
MatrixSize sz = GetMtxSize(op);
int n = GetMatrixSide(sz);
u8 sregs[16], tregs[16], dregs[16];
GetMatrixRegs(sregs, sz, _VS);
GetMatrixRegs(tregs, sz, _VT);
GetMatrixRegs(dregs, sz, _VD);
// Rough overlap check.
bool overlap = false;
if (GetMtx(_VS) == GetMtx(_VD) || GetMtx(_VT) == GetMtx(_VD)) {
// Potential overlap (guaranteed for 3x3 or more).
overlap = true;
}
if (overlap) {
DISABLE;
} else {
for (int a = 0; a < n; a++) {
for (int b = 0; b < n; b++) {
fpr.MapInInV(sregs[b * 4], tregs[a * 4]);
fp.FMUL(S0, fpr.V(sregs[b * 4]), fpr.V(tregs[a * 4]));
for (int c = 1; c < n; c++) {
fpr.MapInInV(sregs[b * 4 + c], tregs[a * 4 + c]);
fp.FMADD(S0, fpr.V(sregs[b * 4 + c]), fpr.V(tregs[a * 4 + c]), S0);
}
fpr.MapRegV(dregs[a * 4 + b], MAP_DIRTY | MAP_NOINIT);
fp.FMOV(fpr.V(dregs[a * 4 + b]), S0);
}
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
}
void Arm64Jit::Comp_Vmscl(MIPSOpcode op) {
DISABLE;
}
void Arm64Jit::Comp_Vtfm(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
// TODO: This probably ignores prefixes? Or maybe uses D?
VectorSize sz = GetVecSize(op);
MatrixSize msz = GetMtxSize(op);
int n = GetNumVectorElements(sz);
int ins = (op >> 23) & 7;
bool homogenous = false;
if (n == ins) {
n++;
sz = (VectorSize)((int)(sz)+1);
msz = (MatrixSize)((int)(msz)+1);
homogenous = true;
}
// Otherwise, n should already be ins + 1.
else if (n != ins + 1) {
DISABLE;
}
u8 sregs[16], dregs[4], tregs[4];
GetMatrixRegs(sregs, msz, _VS);
GetVectorRegs(tregs, sz, _VT);
GetVectorRegs(dregs, sz, _VD);
// TODO: test overlap, optimize.
int tempregs[4];
for (int i = 0; i < n; i++) {
fpr.MapInInV(sregs[i * 4], tregs[0]);
fp.FMUL(S0, fpr.V(sregs[i * 4]), fpr.V(tregs[0]));
for (int k = 1; k < n; k++) {
if (!homogenous || k != n - 1) {
fpr.MapInInV(sregs[i * 4 + k], tregs[k]);
fp.FMADD(S0, fpr.V(sregs[i * 4 + k]), fpr.V(tregs[k]), S0);
} else {
fpr.MapRegV(sregs[i * 4 + k]);
fp.FADD(S0, S0, fpr.V(sregs[i * 4 + k]));
}
}
int temp = fpr.GetTempV();
fpr.MapRegV(temp, MAP_NOINIT | MAP_DIRTY);
fpr.SpillLockV(temp);
fp.FMOV(fpr.V(temp), S0);
tempregs[i] = temp;
}
for (int i = 0; i < n; i++) {
u8 temp = tempregs[i];
fpr.MapRegV(dregs[i], MAP_NOINIT | MAP_DIRTY);
fp.FMOV(fpr.V(dregs[i]), fpr.V(temp));
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_VCrs(MIPSOpcode op) {
DISABLE;
}
void Arm64Jit::Comp_VDet(MIPSOpcode op) {
DISABLE;
}
void Arm64Jit::Comp_Vi2x(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix())
DISABLE;
int bits = ((op >> 16) & 2) == 0 ? 8 : 16; // vi2uc/vi2c (0/1), vi2us/vi2s (2/3)
bool unsignedOp = ((op >> 16) & 1) == 0; // vi2uc (0), vi2us (2)
// These instructions pack pairs or quads of integers into 32 bits.
// The unsigned (u) versions skip the sign bit when packing.
VectorSize sz = GetVecSize(op);
VectorSize outsize;
if (bits == 8) {
outsize = V_Single;
if (sz != V_Quad) {
DISABLE;
}
} else {
switch (sz) {
case V_Pair:
outsize = V_Single;
break;
case V_Quad:
outsize = V_Pair;
break;
default:
DISABLE;
}
}
u8 sregs[4], dregs[4];
GetVectorRegsPrefixS(sregs, sz, _VS);
GetVectorRegsPrefixD(dregs, outsize, _VD);
int n = GetNumVectorElements(sz);
int nOut = GetNumVectorElements(outsize);
// Take the single registers and combine them to a D or Q register.
for (int i = 0; i < n; i++) {
fpr.MapRegV(sregs[i], sz);
fp.INS(32, Q0, i, fpr.V(sregs[i]), 0);
}
if (unsignedOp) {
// What's the best way to zero a Q reg?
fp.EOR(Q1, Q1, Q1);
fp.SMAX(32, Q0, Q0, Q1);
}
// At this point, we simply need to collect the high bits of each 32-bit lane into one register.
if (bits == 8) {
// Really want to do a SHRN(..., 23/24) but that can't be encoded. So we synthesize it.
fp.USHR(32, Q0, Q0, 16);
fp.SHRN(16, D0, Q0, unsignedOp ? 7 : 8);
fp.XTN(8, D0, Q0);
} else {
fp.SHRN(16, D0, Q0, unsignedOp ? 15 : 16);
}
// Split apart again.
for (int i = 0; i < nOut; i++) {
fpr.MapRegV(dregs[i], MAP_DIRTY | MAP_NOINIT);
fp.INS(32, fpr.V(dregs[i]), 0, Q0, i);
}
ApplyPrefixD(dregs, outsize);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_Vx2i(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix())
DISABLE;
int bits = ((op >> 16) & 2) == 0 ? 8 : 16; // vuc2i/vc2i (0/1), vus2i/vs2i (2/3)
bool unsignedOp = ((op >> 16) & 1) == 0; // vuc2i (0), vus2i (2)
// vs2i or vus2i unpack pairs of 16-bit integers into 32-bit integers, with the values
// at the top. vus2i shifts it an extra bit right afterward.
// vc2i and vuc2i unpack quads of 8-bit integers into 32-bit integers, with the values
// at the top too. vuc2i is a bit special (see below.)
// Let's do this similarly as h2f - we do a solution that works for both singles and pairs
// then use it for both.
VectorSize sz = GetVecSize(op);
VectorSize outsize;
if (bits == 8) {
outsize = V_Quad;
} else {
switch (sz) {
case V_Single:
outsize = V_Pair;
break;
case V_Pair:
outsize = V_Quad;
break;
default:
DISABLE;
}
}
u8 sregs[4], dregs[4];
GetVectorRegsPrefixS(sregs, sz, _VS);
GetVectorRegsPrefixD(dregs, outsize, _VD);
fpr.MapRegsAndSpillLockV(sregs, sz, 0);
int n = 1;
if (sz == V_Single) {
n = 1;
} else if (sz == V_Pair) {
n = 2;
} else if (bits == 8) {
n = 1;
}
// Take the single registers and combine them to a D or Q register.
for (int i = 0; i < n; i++) {
fpr.MapRegV(sregs[i], sz);
fp.INS(32, Q0, i, fpr.V(sregs[i]), 0);
}
if (bits == 16) {
// Simply expand, to upper bits.
// Hm, can't find a USHLL equivalent that works with shift == size?
fp.UXTL(16, Q0, D0);
fp.SHL(32, Q0, Q0, 16);
} else if (bits == 8) {
fp.UXTL(8, Q0, D0);
fp.UXTL(16, Q0, D0);
fp.SHL(32, Q0, D0, 24);
if (unsignedOp) {
// vuc2i is a bit special. It spreads out the bits like this:
// s[0] = 0xDDCCBBAA -> d[0] = (0xAAAAAAAA >> 1), d[1] = (0xBBBBBBBB >> 1), etc.
fp.USHR(32, Q1, Q0, 8);
fp.ORR(Q0, Q0, Q1);
fp.USHR(32, Q1, Q0, 16);
fp.ORR(Q0, Q0, Q1);
}
}
// At this point we have the regs in the 4 lanes.
// In the "u" mode, we need to shift it out of the sign bit.
if (unsignedOp) {
Arm64Gen::ARM64Reg reg = (outsize == V_Quad) ? Q0 : D0;
fp.USHR(32, reg, reg, 1);
}
fpr.MapRegsAndSpillLockV(dregs, outsize, MAP_NOINIT);
int nOut = 2;
if (outsize == V_Quad)
nOut = 4;
// Split apart again.
for (int i = 0; i < nOut; i++) {
fpr.MapRegV(dregs[i], MAP_DIRTY | MAP_NOINIT);
fp.INS(32, fpr.V(dregs[i]), 0, Q0, i);
}
ApplyPrefixD(dregs, outsize);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_VCrossQuat(MIPSOpcode op) {
// This op does not support prefixes anyway.
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix())
DISABLE;
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
u8 sregs[4], tregs[4], dregs[4];
GetVectorRegs(sregs, sz, _VS);
GetVectorRegs(tregs, sz, _VT);
GetVectorRegs(dregs, sz, _VD);
// Map everything into registers.
fpr.MapRegsAndSpillLockV(sregs, sz, 0);
fpr.MapRegsAndSpillLockV(tregs, sz, 0);
if (sz == V_Triple) {
MIPSReg temp3 = fpr.GetTempV();
fpr.MapRegV(temp3, MAP_DIRTY | MAP_NOINIT);
// Cross product vcrsp.t
// Compute X
fp.FMUL(S0, fpr.V(sregs[1]), fpr.V(tregs[2]));
fp.FMSUB(S0, fpr.V(sregs[2]), fpr.V(tregs[1]), S0);
// Compute Y
fp.FMUL(S1, fpr.V(sregs[2]), fpr.V(tregs[0]));
fp.FMSUB(S1, fpr.V(sregs[0]), fpr.V(tregs[2]), S1);
// Compute Z
fp.FMUL(fpr.V(temp3), fpr.V(sregs[0]), fpr.V(tregs[1]));
fp.FMSUB(fpr.V(temp3), fpr.V(sregs[1]), fpr.V(tregs[0]), fpr.V(temp3));
fpr.MapRegsAndSpillLockV(dregs, sz, MAP_NOINIT);
fp.FMOV(fpr.V(dregs[0]), S0);
fp.FMOV(fpr.V(dregs[1]), S1);
fp.FMOV(fpr.V(dregs[2]), fpr.V(temp3));
} else if (sz == V_Quad) {
MIPSReg temp3 = fpr.GetTempV();
MIPSReg temp4 = fpr.GetTempV();
fpr.MapRegV(temp3, MAP_DIRTY | MAP_NOINIT);
fpr.MapRegV(temp4, MAP_DIRTY | MAP_NOINIT);
// Quaternion product vqmul.q untested
// d[0] = s[0] * t[3] + s[1] * t[2] - s[2] * t[1] + s[3] * t[0];
fp.FMUL(S0, fpr.V(sregs[0]), fpr.V(tregs[3]));
fp.FMADD(S0, fpr.V(sregs[1]), fpr.V(tregs[2]), S0);
fp.FMSUB(S0, fpr.V(sregs[2]), fpr.V(tregs[1]), S0);
fp.FMADD(S0, fpr.V(sregs[3]), fpr.V(tregs[0]), S0);
//d[1] = -s[0] * t[2] + s[1] * t[3] + s[2] * t[0] + s[3] * t[1];
fp.FNMUL(S1, fpr.V(sregs[0]), fpr.V(tregs[2]));
fp.FMADD(S1, fpr.V(sregs[1]), fpr.V(tregs[3]), S1);
fp.FMADD(S1, fpr.V(sregs[2]), fpr.V(tregs[0]), S1);
fp.FMADD(S1, fpr.V(sregs[3]), fpr.V(tregs[1]), S1);
//d[2] = s[0] * t[1] - s[1] * t[0] + s[2] * t[3] + s[3] * t[2];
fp.FMUL(fpr.V(temp3), fpr.V(sregs[0]), fpr.V(tregs[1]));
fp.FMSUB(fpr.V(temp3), fpr.V(sregs[1]), fpr.V(tregs[0]), fpr.V(temp3));
fp.FMADD(fpr.V(temp3), fpr.V(sregs[2]), fpr.V(tregs[3]), fpr.V(temp3));
fp.FMADD(fpr.V(temp3), fpr.V(sregs[3]), fpr.V(tregs[2]), fpr.V(temp3));
//d[3] = -s[0] * t[0] - s[1] * t[1] - s[2] * t[2] + s[3] * t[3];
fp.FNMUL(fpr.V(temp4), fpr.V(sregs[0]), fpr.V(tregs[0]));
fp.FMSUB(fpr.V(temp4), fpr.V(sregs[1]), fpr.V(tregs[1]), fpr.V(temp4));
fp.FMSUB(fpr.V(temp4), fpr.V(sregs[2]), fpr.V(tregs[2]), fpr.V(temp4));
fp.FMADD(fpr.V(temp4), fpr.V(sregs[3]), fpr.V(tregs[3]), fpr.V(temp4));
fpr.MapRegsAndSpillLockV(dregs, sz, MAP_NOINIT);
fp.FMOV(fpr.V(dregs[0]), S0);
fp.FMOV(fpr.V(dregs[1]), S1);
fp.FMOV(fpr.V(dregs[2]), fpr.V(temp3));
fp.FMOV(fpr.V(dregs[3]), fpr.V(temp4));
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_Vcmp(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix())
DISABLE;
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
VCondition cond = (VCondition)(op & 0xF);
u8 sregs[4], tregs[4];
GetVectorRegsPrefixS(sregs, sz, _VS);
GetVectorRegsPrefixT(tregs, sz, _VT);
// Some, we just fall back to the interpreter.
// ES is just really equivalent to (value & 0x7F800000) == 0x7F800000.
switch (cond) {
case VC_EI: // c = my_isinf(s[i]); break;
case VC_NI: // c = !my_isinf(s[i]); break;
DISABLE;
case VC_ES: // c = my_isnan(s[i]) || my_isinf(s[i]); break; // Tekken Dark Resurrection
case VC_NS: // c = !my_isnan(s[i]) && !my_isinf(s[i]); break;
case VC_EN: // c = my_isnan(s[i]); break;
case VC_NN: // c = !my_isnan(s[i]); break;
if (_VS != _VT)
DISABLE;
break;
case VC_EZ:
case VC_NZ:
break;
default:
;
}
// First, let's get the trivial ones.
int affected_bits = (1 << 4) | (1 << 5); // 4 and 5
MOVI2R(SCRATCH1, 0);
for (int i = 0; i < n; ++i) {
// Let's only handle the easy ones, and fall back on the interpreter for the rest.
CCFlags flag = CC_AL;
switch (cond) {
case VC_FL: // c = 0;
break;
case VC_TR: // c = 1
if (i == 0) {
if (n == 1) {
MOVI2R(SCRATCH1, 0x31);
} else {
MOVI2R(SCRATCH1, 1 << i);
}
} else {
ORRI2R(SCRATCH1, SCRATCH1, 1 << i);
}
break;
case VC_ES: // c = my_isnan(s[i]) || my_isinf(s[i]); break; // Tekken Dark Resurrection
case VC_NS: // c = !(my_isnan(s[i]) || my_isinf(s[i])); break;
// For these, we use the integer ALU as there is no support on ARM for testing for INF.
// Testing for nan or inf is the same as testing for &= 0x7F800000 == 0x7F800000.
// We need an extra temporary register so we store away SCRATCH1.
STR(INDEX_UNSIGNED, SCRATCH1, CTXREG, offsetof(MIPSState, temp));
fpr.MapRegV(sregs[i], 0);
MOVI2R(SCRATCH1, 0x7F800000);
fp.FMOV(SCRATCH2, fpr.V(sregs[i]));
AND(SCRATCH2, SCRATCH2, SCRATCH1);
CMP(SCRATCH2, SCRATCH1); // (SCRATCH2 & 0x7F800000) == 0x7F800000
flag = cond == VC_ES ? CC_EQ : CC_NEQ;
LDR(INDEX_UNSIGNED, SCRATCH1, CTXREG, offsetof(MIPSState, temp));
break;
case VC_EN: // c = my_isnan(s[i]); break; // Tekken 6
// Should we involve T? Where I found this used, it compared a register with itself so should be fine.
fpr.MapInInV(sregs[i], tregs[i]);
fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i]));
flag = CC_VS; // overflow = unordered : http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204j/Chdhcfbc.html
break;
case VC_NN: // c = !my_isnan(s[i]); break;
// Should we involve T? Where I found this used, it compared a register with itself so should be fine.
fpr.MapInInV(sregs[i], tregs[i]);
fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i]));
flag = CC_VC; // !overflow = !unordered : http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204j/Chdhcfbc.html
break;
case VC_EQ: // c = s[i] == t[i]
fpr.MapInInV(sregs[i], tregs[i]);
fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i]));
flag = CC_EQ;
break;
case VC_LT: // c = s[i] < t[i]
fpr.MapInInV(sregs[i], tregs[i]);
fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i]));
flag = CC_LO;
break;
case VC_LE: // c = s[i] <= t[i];
fpr.MapInInV(sregs[i], tregs[i]);
fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i]));
flag = CC_LS;
break;
case VC_NE: // c = s[i] != t[i]
fpr.MapInInV(sregs[i], tregs[i]);
fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i]));
flag = CC_NEQ;
break;
case VC_GE: // c = s[i] >= t[i]
fpr.MapInInV(sregs[i], tregs[i]);
fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i]));
flag = CC_GE;
break;
case VC_GT: // c = s[i] > t[i]
fpr.MapInInV(sregs[i], tregs[i]);
fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i]));
flag = CC_GT;
break;
case VC_EZ: // c = s[i] == 0.0f || s[i] == -0.0f
fpr.MapRegV(sregs[i]);
fp.FCMP(fpr.V(sregs[i])); // vcmp(sregs[i], #0.0)
flag = CC_EQ;
break;
case VC_NZ: // c = s[i] != 0
fpr.MapRegV(sregs[i]);
fp.FCMP(fpr.V(sregs[i])); // vcmp(sregs[i], #0.0)
flag = CC_NEQ;
break;
default:
DISABLE;
}
if (flag != CC_AL) {
FixupBranch b = B(InvertCond(flag));
if (i == 0) {
if (n == 1) {
MOVI2R(SCRATCH1, 0x31);
} else {
MOVI2R(SCRATCH1, 1); // 1 << i, but i == 0
}
} else {
ORRI2R(SCRATCH1, SCRATCH1, 1 << i);
}
SetJumpTarget(b);
}
affected_bits |= 1 << i;
}
// Aggregate the bits. Urgh, expensive. Can optimize for the case of one comparison, which is the most common
// after all.
if (n > 1) {
CMP(SCRATCH1, affected_bits & 0xF);
FixupBranch skip1 = B(CC_NEQ);
ORRI2R(SCRATCH1, SCRATCH1, 1 << 5);
SetJumpTarget(skip1);
CMP(SCRATCH1, 0);
FixupBranch skip2 = B(CC_EQ);
ORRI2R(SCRATCH1, SCRATCH1, 1 << 4);
SetJumpTarget(skip2);
}
gpr.MapReg(MIPS_REG_VFPUCC, MAP_DIRTY);
ANDI2R(gpr.R(MIPS_REG_VFPUCC), gpr.R(MIPS_REG_VFPUCC), ~affected_bits, SCRATCH2);
ORR(gpr.R(MIPS_REG_VFPUCC), gpr.R(MIPS_REG_VFPUCC), SCRATCH1);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_Vcmov(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
u8 sregs[4], dregs[4];
GetVectorRegsPrefixS(sregs, sz, _VS);
GetVectorRegsPrefixD(dregs, sz, _VD);
int tf = (op >> 19) & 1;
int imm3 = (op >> 16) & 7;
for (int i = 0; i < n; ++i) {
// Simplification: Disable if overlap unsafe
if (!IsOverlapSafeAllowS(dregs[i], i, n, sregs)) {
DISABLE;
}
}
if (imm3 < 6) {
// Test one bit of CC. This bit decides whether none or all subregisters are copied.
fpr.MapRegsAndSpillLockV(dregs, sz, MAP_DIRTY);
fpr.MapRegsAndSpillLockV(sregs, sz, 0);
gpr.MapReg(MIPS_REG_VFPUCC);
TSTI2R(gpr.R(MIPS_REG_VFPUCC), 1 << imm3);
// TODO: Use fsel?
FixupBranch b = B(tf ? CC_NEQ : CC_EQ);
for (int i = 0; i < n; i++) {
fp.FMOV(fpr.V(dregs[i]), fpr.V(sregs[i]));
}
SetJumpTarget(b);
} else {
// Look at the bottom four bits of CC to individually decide if the subregisters should be copied.
fpr.MapRegsAndSpillLockV(dregs, sz, MAP_DIRTY);
fpr.MapRegsAndSpillLockV(sregs, sz, 0);
gpr.MapReg(MIPS_REG_VFPUCC);
for (int i = 0; i < n; i++) {
TSTI2R(gpr.R(MIPS_REG_VFPUCC), 1 << i);
FixupBranch b = B(tf ? CC_NEQ : CC_EQ);
fp.FMOV(fpr.V(dregs[i]), fpr.V(sregs[i]));
SetJumpTarget(b);
}
}
ApplyPrefixD(dregs, sz);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_Viim(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
u8 dreg;
GetVectorRegs(&dreg, V_Single, _VT);
s32 imm = (s32)(s16)(u16)(op & 0xFFFF);
fpr.MapRegV(dreg, MAP_DIRTY | MAP_NOINIT);
fp.MOVI2F(fpr.V(dreg), (float)imm, SCRATCH1);
ApplyPrefixD(&dreg, V_Single);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_Vfim(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
u8 dreg;
GetVectorRegs(&dreg, V_Single, _VT);
FP16 half;
half.u = op & 0xFFFF;
FP32 fval = half_to_float_fast5(half);
fpr.MapRegV(dreg, MAP_DIRTY | MAP_NOINIT);
fp.MOVI2F(fpr.V(dreg), fval.f, SCRATCH1);
ApplyPrefixD(&dreg, V_Single);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_Vcst(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
int conNum = (op >> 16) & 0x1f;
int vd = _VD;
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
u8 dregs[4];
GetVectorRegsPrefixD(dregs, sz, _VD);
fpr.MapRegsAndSpillLockV(dregs, sz, MAP_NOINIT | MAP_DIRTY);
MOVP2R(SCRATCH1_64, (void *)&cst_constants[conNum]);
fp.LDR(32, INDEX_UNSIGNED, S0, SCRATCH1_64, 0);
for (int i = 0; i < n; ++i)
fp.FMOV(fpr.V(dregs[i]), S0);
ApplyPrefixD(dregs, sz);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
static double SinCos(float angle) {
union { struct { float sin; float cos; }; double out; } sincos;
vfpu_sincos(angle, sincos.sin, sincos.cos);
return sincos.out;
}
static double SinCosNegSin(float angle) {
union { struct { float sin; float cos; }; double out; } sincos;
vfpu_sincos(angle, sincos.sin, sincos.cos);
sincos.sin = -sincos.sin;
return sincos.out;
}
void Arm64Jit::CompVrotShuffle(u8 *dregs, int imm, VectorSize sz, bool negSin) {
int n = GetNumVectorElements(sz);
char what[4] = { '0', '0', '0', '0' };
if (((imm >> 2) & 3) == (imm & 3)) {
for (int i = 0; i < 4; i++)
what[i] = 'S';
}
what[(imm >> 2) & 3] = 'S';
what[imm & 3] = 'C';
fpr.MapRegsAndSpillLockV(dregs, sz, MAP_DIRTY | MAP_NOINIT);
for (int i = 0; i < n; i++) {
switch (what[i]) {
case 'C': fp.FMOV(fpr.V(dregs[i]), S1); break;
case 'S': if (negSin) fp.FNEG(fpr.V(dregs[i]), S0); else fp.FMOV(fpr.V(dregs[i]), S0); break;
case '0':
{
fp.MOVI2F(fpr.V(dregs[i]), 0.0f);
break;
}
default:
ERROR_LOG(JIT, "Bad what in vrot");
break;
}
}
}
// Very heavily used by FF:CC. Should be replaced by a fast approximation instead of
// calling the math library.
void Arm64Jit::Comp_VRot(MIPSOpcode op) {
// VRot probably doesn't accept prefixes anyway.
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
int vd = _VD;
int vs = _VS;
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
u8 dregs[4];
u8 dregs2[4];
u32 nextOp = GetOffsetInstruction(1).encoding;
int vd2 = -1;
int imm2 = -1;
if ((nextOp >> 26) == 60 && ((nextOp >> 21) & 0x1F) == 29 && _VS == MIPS_GET_VS(nextOp)) {
// Pair of vrot. Let's join them.
vd2 = MIPS_GET_VD(nextOp);
imm2 = (nextOp >> 16) & 0x1f;
// NOTICE_LOG(JIT, "Joint VFPU at %08x", js.blockStart);
}
u8 sreg;
GetVectorRegs(dregs, sz, vd);
if (vd2 >= 0)
GetVectorRegs(dregs2, sz, vd2);
GetVectorRegs(&sreg, V_Single, vs);
int imm = (op >> 16) & 0x1f;
gpr.FlushBeforeCall();
fpr.FlushAll();
// Don't need to SaveStaticRegs here as long as they are all in callee-save regs - this callee won't read them.
bool negSin1 = (imm & 0x10) ? true : false;
fpr.MapRegV(sreg);
fp.FMOV(S0, fpr.V(sreg));
QuickCallFunction(SCRATCH2_64, negSin1 ? (void *)&SinCosNegSin : (void *)&SinCos);
// Here, sin and cos are stored together in Q0.d. On ARM32 we could use it directly
// but with ARM64's register organization, we need to split it up.
fp.INS(32, Q1, 0, Q0, 1);
CompVrotShuffle(dregs, imm, sz, false);
if (vd2 != -1) {
// If the negsin setting differs between the two joint invocations, we need to flip the second one.
bool negSin2 = (imm2 & 0x10) ? true : false;
CompVrotShuffle(dregs2, imm2, sz, negSin1 != negSin2);
js.compilerPC += 4;
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_Vsgn(MIPSOpcode op) {
DISABLE;
}
void Arm64Jit::Comp_Vocp(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
u8 sregs[4], dregs[4];
// Actually, not sure that this instruction accepts an S prefix. We don't apply it in the
// interpreter. But whatever.
GetVectorRegsPrefixS(sregs, sz, _VS);
GetVectorRegsPrefixD(dregs, sz, _VD);
MIPSReg tempregs[4];
for (int i = 0; i < n; ++i) {
if (!IsOverlapSafe(dregs[i], i, n, sregs)) {
tempregs[i] = fpr.GetTempV();
} else {
tempregs[i] = dregs[i];
}
}
fp.MOVI2F(S0, 1.0f, SCRATCH1);
for (int i = 0; i < n; ++i) {
fpr.MapDirtyInV(tempregs[i], sregs[i]);
fp.FSUB(fpr.V(tempregs[i]), S0, fpr.V(sregs[i]));
}
for (int i = 0; i < n; ++i) {
if (dregs[i] != tempregs[i]) {
fpr.MapDirtyInV(dregs[i], tempregs[i]);
fp.FMOV(fpr.V(dregs[i]), fpr.V(tempregs[i]));
}
}
ApplyPrefixD(dregs, sz);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void Arm64Jit::Comp_ColorConv(MIPSOpcode op) {
DISABLE;
}
void Arm64Jit::Comp_Vbfy(MIPSOpcode op) {
DISABLE;
}
}
#endif // PPSSPP_ARCH(ARM64)