ppsspp/Core/MIPS/ARM64/Arm64RegCacheFPU.cpp
Florent Castelli 8c3552de74 cmake: Detect features at compile time
Instead of relying on manually passed down flags from CMake,
we now have ppsspp_config.h file to create the platform defines for us.
This improves support for multiplatform builds (such as iOS).
2016-10-19 12:31:19 +02:00

534 lines
14 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#if PPSSPP_ARCH(ARM64)
#include <cstring>
#include "base/logging.h"
#include "Common/CPUDetect.h"
#include "Core/Reporting.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/ARM64/Arm64RegCacheFPU.h"
#include "Core/MIPS/ARM64/Arm64Jit.h"
#include "Core/MIPS/MIPSTables.h"
using namespace Arm64Gen;
using namespace Arm64JitConstants;
Arm64RegCacheFPU::Arm64RegCacheFPU(MIPSState *mips, MIPSComp::JitState *js, MIPSComp::JitOptions *jo) : mips_(mips), vr(mr + 32), js_(js), jo_(jo), initialReady(false) {
numARMFpuReg_ = 32;
}
void Arm64RegCacheFPU::Init(Arm64Gen::ARM64XEmitter *emit, Arm64Gen::ARM64FloatEmitter *fp) {
emit_ = emit;
fp_ = fp;
}
void Arm64RegCacheFPU::Start(MIPSAnalyst::AnalysisResults &stats) {
if (!initialReady) {
SetupInitialRegs();
initialReady = true;
}
memcpy(ar, arInitial, sizeof(ar));
memcpy(mr, mrInitial, sizeof(mr));
pendingFlush = false;
}
void Arm64RegCacheFPU::SetupInitialRegs() {
for (int i = 0; i < numARMFpuReg_; i++) {
arInitial[i].mipsReg = -1;
arInitial[i].isDirty = false;
}
for (int i = 0; i < NUM_MIPSFPUREG; i++) {
mrInitial[i].loc = ML_MEM;
mrInitial[i].reg = INVALID_REG;
mrInitial[i].spillLock = false;
mrInitial[i].tempLock = false;
}
}
const ARM64Reg *Arm64RegCacheFPU::GetMIPSAllocationOrder(int &count) {
// On ARM64, all 32 registers are fully 128-bit and fully interchangable so we don't
// have to care about upper or lower registers. However, only S8-S15 are callee-save, and
// only the bottom 64 bits of those. So we should allocate into these when we call
// C functions, although we don't currently do so...
static const ARM64Reg allocationOrder[] = {
// Reserve four full 128-bit temp registers, should be plenty.
S4, S5, S6, S7,
S8, S9, S10, S11, // Partially callee-save (bottom 64 bits)
S12, S13, S14, S15, // Partially callee-save (bottom 64 bits)
S16, S17, S18, S19,
S20, S21, S22, S23,
S24, S25, S26, S27,
S28, S29, S30, S31,
};
static const ARM64Reg allocationOrderNEONVFPU[] = {
// Reserve four full 128-bit temp registers, should be plenty.
// Then let's use 12 register as singles
S4, S5, S6, S7,
S8, S9, S10, S11,
S12, S13, S14, S15,
// And do quads in the rest? Or use a strategy more similar to what we do on x86?
};
if (jo_->useASIMDVFPU) {
count = sizeof(allocationOrderNEONVFPU) / sizeof(const ARM64Reg);
return allocationOrderNEONVFPU;
} else {
count = sizeof(allocationOrder) / sizeof(const ARM64Reg);
return allocationOrder;
}
}
bool Arm64RegCacheFPU::IsMapped(MIPSReg r) {
return mr[r].loc == ML_ARMREG;
}
bool Arm64RegCacheFPU::IsInRAM(MIPSReg r) {
return mr[r].loc == ML_MEM;
}
ARM64Reg Arm64RegCacheFPU::MapReg(MIPSReg mipsReg, int mapFlags) {
// INFO_LOG(JIT, "FPR MapReg: %i flags=%i", mipsReg, mapFlags);
if (jo_->useASIMDVFPU && mipsReg >= 32) {
ERROR_LOG(JIT, "Cannot map VFPU registers to ARM VFP registers in NEON mode. PC=%08x", js_->compilerPC);
return S0;
}
pendingFlush = true;
// Let's see if it's already mapped. If so we just need to update the dirty flag.
// We don't need to check for ML_NOINIT because we assume that anyone who maps
// with that flag immediately writes a "known" value to the register.
if (mr[mipsReg].loc == ML_ARMREG) {
if (ar[mr[mipsReg].reg].mipsReg != mipsReg) {
ERROR_LOG(JIT, "Reg mapping out of sync! MR %i", mipsReg);
}
if (mapFlags & MAP_DIRTY) {
ar[mr[mipsReg].reg].isDirty = true;
}
//INFO_LOG(JIT, "Already mapped %i to %i", mipsReg, mr[mipsReg].reg);
return (ARM64Reg)(mr[mipsReg].reg + S0);
}
// Okay, not mapped, so we need to allocate an ARM register.
int allocCount;
const ARM64Reg *allocOrder = GetMIPSAllocationOrder(allocCount);
allocate:
for (int i = 0; i < allocCount; i++) {
int reg = DecodeReg(allocOrder[i]);
if (ar[reg].mipsReg == -1) {
// That means it's free. Grab it, and load the value into it (if requested).
ar[reg].isDirty = (mapFlags & MAP_DIRTY) ? true : false;
if ((mapFlags & MAP_NOINIT) != MAP_NOINIT) {
if (mr[mipsReg].loc == ML_MEM && mipsReg < TEMP0) {
fp_->LDR(32, INDEX_UNSIGNED, (ARM64Reg)(reg + S0), CTXREG, GetMipsRegOffset(mipsReg));
}
}
ar[reg].mipsReg = mipsReg;
mr[mipsReg].loc = ML_ARMREG;
mr[mipsReg].reg = reg;
//INFO_LOG(JIT, "Mapped %i to %i", mipsReg, mr[mipsReg].reg);
return (ARM64Reg)(reg + S0);
}
}
// Still nothing. Let's spill a reg and goto 10.
// TODO: Use age or something to choose which register to spill?
// TODO: Spill dirty regs first? or opposite?
int bestToSpill = -1;
for (int i = 0; i < allocCount; i++) {
int reg = allocOrder[i] - S0;
if (ar[reg].mipsReg != -1 && (mr[ar[reg].mipsReg].spillLock || mr[ar[reg].mipsReg].tempLock))
continue;
bestToSpill = reg;
break;
}
if (bestToSpill != -1) {
FlushArmReg((ARM64Reg)(S0 + bestToSpill));
goto allocate;
}
// Uh oh, we have all them spilllocked....
ERROR_LOG(JIT, "Out of spillable registers at PC %08x!!!", js_->compilerPC);
return INVALID_REG;
}
void Arm64RegCacheFPU::MapInIn(MIPSReg rd, MIPSReg rs) {
SpillLock(rd, rs);
MapReg(rd);
MapReg(rs);
ReleaseSpillLock(rd);
ReleaseSpillLock(rs);
}
void Arm64RegCacheFPU::MapDirtyIn(MIPSReg rd, MIPSReg rs, bool avoidLoad) {
SpillLock(rd, rs);
bool overlap = avoidLoad && rd == rs;
MapReg(rd, overlap ? MAP_DIRTY : MAP_NOINIT);
MapReg(rs);
ReleaseSpillLock(rd);
ReleaseSpillLock(rs);
}
void Arm64RegCacheFPU::MapDirtyInIn(MIPSReg rd, MIPSReg rs, MIPSReg rt, bool avoidLoad) {
SpillLock(rd, rs, rt);
bool overlap = avoidLoad && (rd == rs || rd == rt);
MapReg(rd, overlap ? MAP_DIRTY : MAP_NOINIT);
MapReg(rt);
MapReg(rs);
ReleaseSpillLock(rd);
ReleaseSpillLock(rs);
ReleaseSpillLock(rt);
}
void Arm64RegCacheFPU::SpillLockV(const u8 *v, VectorSize sz) {
for (int i = 0; i < GetNumVectorElements(sz); i++) {
vr[v[i]].spillLock = true;
}
}
void Arm64RegCacheFPU::SpillLockV(int vec, VectorSize sz) {
u8 v[4];
GetVectorRegs(v, sz, vec);
SpillLockV(v, sz);
}
void Arm64RegCacheFPU::MapRegV(int vreg, int flags) {
MapReg(vreg + 32, flags);
}
void Arm64RegCacheFPU::LoadToRegV(ARM64Reg armReg, int vreg) {
if (vr[vreg].loc == ML_ARMREG) {
fp_->FMOV(armReg, (ARM64Reg)(S0 + vr[vreg].reg));
} else {
MapRegV(vreg);
fp_->FMOV(armReg, V(vreg));
}
}
void Arm64RegCacheFPU::MapRegsAndSpillLockV(int vec, VectorSize sz, int flags) {
u8 v[4];
GetVectorRegs(v, sz, vec);
SpillLockV(v, sz);
for (int i = 0; i < GetNumVectorElements(sz); i++) {
MapRegV(v[i], flags);
}
}
void Arm64RegCacheFPU::MapRegsAndSpillLockV(const u8 *v, VectorSize sz, int flags) {
SpillLockV(v, sz);
for (int i = 0; i < GetNumVectorElements(sz); i++) {
MapRegV(v[i], flags);
}
}
void Arm64RegCacheFPU::MapInInV(int vs, int vt) {
SpillLockV(vs);
SpillLockV(vt);
MapRegV(vs);
MapRegV(vt);
ReleaseSpillLockV(vs);
ReleaseSpillLockV(vt);
}
void Arm64RegCacheFPU::MapDirtyInV(int vd, int vs, bool avoidLoad) {
bool overlap = avoidLoad && (vd == vs);
SpillLockV(vd);
SpillLockV(vs);
MapRegV(vd, overlap ? MAP_DIRTY : MAP_NOINIT);
MapRegV(vs);
ReleaseSpillLockV(vd);
ReleaseSpillLockV(vs);
}
void Arm64RegCacheFPU::MapDirtyInInV(int vd, int vs, int vt, bool avoidLoad) {
bool overlap = avoidLoad && ((vd == vs) || (vd == vt));
SpillLockV(vd);
SpillLockV(vs);
SpillLockV(vt);
MapRegV(vd, overlap ? MAP_DIRTY : MAP_NOINIT);
MapRegV(vs);
MapRegV(vt);
ReleaseSpillLockV(vd);
ReleaseSpillLockV(vs);
ReleaseSpillLockV(vt);
}
void Arm64RegCacheFPU::FlushArmReg(ARM64Reg r) {
if (r >= S0 && r <= S31) {
int reg = r - S0;
if (ar[reg].mipsReg == -1) {
// Nothing to do, reg not mapped.
return;
}
if (ar[reg].mipsReg != -1) {
if (ar[reg].isDirty && mr[ar[reg].mipsReg].loc == ML_ARMREG){
//INFO_LOG(JIT, "Flushing ARM reg %i", reg);
fp_->STR(32, INDEX_UNSIGNED, r, CTXREG, GetMipsRegOffset(ar[reg].mipsReg));
}
// IMMs won't be in an ARM reg.
mr[ar[reg].mipsReg].loc = ML_MEM;
mr[ar[reg].mipsReg].reg = INVALID_REG;
} else {
ERROR_LOG(JIT, "Dirty but no mipsreg?");
}
ar[reg].mipsReg = -1;
ar[reg].isDirty = false;
}
}
void Arm64RegCacheFPU::FlushV(MIPSReg r) {
FlushR(r + 32);
}
void Arm64RegCacheFPU::FlushR(MIPSReg r) {
switch (mr[r].loc) {
case ML_IMM:
// IMM is always "dirty".
// IMM is not allowed for FP (yet).
ERROR_LOG(JIT, "Imm in FP register?");
break;
case ML_ARMREG:
if (mr[r].reg == INVALID_REG) {
ERROR_LOG(JIT, "FlushR: MipsReg had bad ArmReg");
}
break;
case ML_MEM:
// Already there, nothing to do.
break;
default:
//BAD
break;
}
mr[r].loc = ML_MEM;
mr[r].reg = (int)INVALID_REG;
}
Arm64Gen::ARM64Reg Arm64RegCacheFPU::ARM64RegForFlush(int r) {
switch (mr[r].loc) {
case ML_IMM:
// IMM is always "dirty".
// IMM is not allowed for FP (yet).
ERROR_LOG(JIT, "Imm in FP register?");
return INVALID_REG;
case ML_ARMREG:
if (mr[r].reg == INVALID_REG) {
ERROR_LOG_REPORT(JIT, "ARM64RegForFlush: MipsReg %d had bad ArmReg", r);
return INVALID_REG;
}
// No need to flush if it's not dirty.
if (!ar[mr[r].reg].isDirty) {
return INVALID_REG;
}
return (ARM64Reg)(S0 + mr[r].reg);
case ML_MEM:
return INVALID_REG;
default:
ERROR_LOG_REPORT(JIT, "ARM64RegForFlush: MipsReg %d with invalid location %d", r, mr[r].loc);
return INVALID_REG;
}
}
void Arm64RegCacheFPU::FlushAll() {
if (!pendingFlush) {
// Nothing allocated. FPU regs are not nearly as common as GPR.
return;
}
// Discard temps!
for (int i = TEMP0; i < TEMP0 + NUM_TEMPS; i++) {
DiscardR(i);
}
int numArmRegs = 0;
const ARM64Reg *order = GetMIPSAllocationOrder(numArmRegs);
// Flush pairs first when possible. Note that STP's offset can't reach more than 256 bytes so
// most VFPU registers cannot be flushed this way, unless we are willing to generate another offset pointer
// (which we could actually do right here, point right in the middle of the VFPU stuff and would reach it all)... TODO
for (int i = 0; i < 31; i++) {
int mr1 = i;
int mr2 = i + 1;
ARM64Reg ar1 = ARM64RegForFlush(mr1);
ARM64Reg ar2 = ARM64RegForFlush(mr2);
if (ar1 != INVALID_REG && ar2 != INVALID_REG) {
fp_->STP(32, INDEX_SIGNED, ar1, ar2, CTXREG, GetMipsRegOffset(mr1));
DiscardR(mr1);
DiscardR(mr2);
}
}
// Then flush one by one.
for (int i = 0; i < numArmRegs; i++) {
int a = DecodeReg(order[i]);
int m = ar[a].mipsReg;
if (ar[a].isDirty) {
if (m == -1) {
ILOG("ARM reg %i is dirty but has no mipsreg", a);
continue;
}
fp_->STR(32, INDEX_UNSIGNED, (ARM64Reg)(a + S0), CTXREG, GetMipsRegOffset(m));
mr[m].loc = ML_MEM;
mr[m].reg = (int)INVALID_REG;
ar[a].mipsReg = -1;
ar[a].isDirty = false;
} else {
if (m != -1) {
mr[m].loc = ML_MEM;
mr[m].reg = (int)INVALID_REG;
}
ar[a].mipsReg = -1;
// already not dirty
}
}
// Sanity check
for (int i = 0; i < numARMFpuReg_; i++) {
if (ar[i].mipsReg != -1) {
ERROR_LOG(JIT, "Flush fail: ar[%i].mipsReg=%i", i, ar[i].mipsReg);
}
}
pendingFlush = false;
}
void Arm64RegCacheFPU::DiscardR(MIPSReg r) {
switch (mr[r].loc) {
case ML_IMM:
// IMM is always "dirty".
// IMM is not allowed for FP (yet).
ERROR_LOG(JIT, "Imm in FP register?");
break;
case ML_ARMREG:
if (mr[r].reg == INVALID_REG) {
ERROR_LOG(JIT, "DiscardR: MipsReg had bad ArmReg");
} else {
// Note that we DO NOT write it back here. That's the whole point of Discard.
ar[mr[r].reg].isDirty = false;
ar[mr[r].reg].mipsReg = -1;
}
break;
case ML_MEM:
// Already there, nothing to do.
break;
default:
//BAD
break;
}
mr[r].loc = ML_MEM;
mr[r].reg = (int)INVALID_REG;
mr[r].tempLock = false;
mr[r].spillLock = false;
}
bool Arm64RegCacheFPU::IsTempX(ARM64Reg r) const {
return ar[r - S0].mipsReg >= TEMP0;
}
int Arm64RegCacheFPU::GetTempR() {
if (jo_->useASIMDVFPU) {
ERROR_LOG(JIT, "VFP temps not allowed in NEON mode");
return 0;
}
pendingFlush = true;
for (int r = TEMP0; r < TEMP0 + NUM_TEMPS; ++r) {
if (mr[r].loc == ML_MEM && !mr[r].tempLock) {
mr[r].tempLock = true;
return r;
}
}
ERROR_LOG(CPU, "Out of temp regs! Might need to DiscardR() some");
_assert_msg_(JIT, 0, "Regcache ran out of temp regs, might need to DiscardR() some.");
return -1;
}
int Arm64RegCacheFPU::GetMipsRegOffset(MIPSReg r) {
// These are offsets within the MIPSState structure. First there are the GPRS, then FPRS, then the "VFPURs", then the VFPU ctrls.
if (r < 0 || r > 32 + 128 + NUM_TEMPS) {
ERROR_LOG(JIT, "bad mips register %i, out of range", r);
return 0; // or what?
}
if (r < 32 || r >= 32 + 128) {
return (32 + r) << 2;
} else {
// r is between 32 and 128 + 32
return (32 + 32 + voffset[r - 32]) << 2;
}
}
void Arm64RegCacheFPU::SpillLock(MIPSReg r1, MIPSReg r2, MIPSReg r3, MIPSReg r4) {
mr[r1].spillLock = true;
if (r2 != -1) mr[r2].spillLock = true;
if (r3 != -1) mr[r3].spillLock = true;
if (r4 != -1) mr[r4].spillLock = true;
}
// This is actually pretty slow with all the 160 regs...
void Arm64RegCacheFPU::ReleaseSpillLocksAndDiscardTemps() {
for (int i = 0; i < NUM_MIPSFPUREG; i++) {
mr[i].spillLock = false;
}
for (int i = TEMP0; i < TEMP0 + NUM_TEMPS; ++i) {
DiscardR(i);
}
}
ARM64Reg Arm64RegCacheFPU::R(int mipsReg) {
if (mr[mipsReg].loc == ML_ARMREG) {
return (ARM64Reg)(mr[mipsReg].reg + S0);
} else {
if (mipsReg < 32) {
ERROR_LOG(JIT, "FReg %i not in ARM reg. compilerPC = %08x : %s", mipsReg, js_->compilerPC, MIPSDisasmAt(js_->compilerPC));
} else if (mipsReg < 32 + 128) {
ERROR_LOG(JIT, "VReg %i not in ARM reg. compilerPC = %08x : %s", mipsReg - 32, js_->compilerPC, MIPSDisasmAt(js_->compilerPC));
} else {
ERROR_LOG(JIT, "Tempreg %i not in ARM reg. compilerPC = %08x : %s", mipsReg - 128 - 32, js_->compilerPC, MIPSDisasmAt(js_->compilerPC));
}
return INVALID_REG; // BAAAD
}
}
#endif // PPSSPP_ARCH(ARM64)