mirror of
https://github.com/hrydgard/ppsspp.git
synced 2024-11-27 07:20:49 +00:00
1864 lines
68 KiB
C++
1864 lines
68 KiB
C++
// Copyright (c) 2013- PPSSPP Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official git repository and contact information can be found at
|
|
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
|
|
|
|
#include "ppsspp_config.h"
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
|
|
#include "Common/Common.h"
|
|
#include "Common/CPUDetect.h"
|
|
#include "Common/Data/Convert/ColorConv.h"
|
|
#include "Common/Profiler/Profiler.h"
|
|
#include "Common/StringUtils.h"
|
|
#include "Core/Config.h"
|
|
#include "Core/Debugger/MemBlockInfo.h"
|
|
#include "Core/MemMap.h"
|
|
#include "GPU/GPUState.h"
|
|
|
|
#include "GPU/Common/TextureDecoder.h"
|
|
#include "GPU/Software/BinManager.h"
|
|
#include "GPU/Software/DrawPixel.h"
|
|
#include "GPU/Software/Rasterizer.h"
|
|
#include "GPU/Software/Sampler.h"
|
|
#include "GPU/Software/SoftGpu.h"
|
|
#include "GPU/Software/TransformUnit.h"
|
|
|
|
#if defined(_M_SSE)
|
|
#include <emmintrin.h>
|
|
#include <smmintrin.h>
|
|
#endif
|
|
|
|
namespace Rasterizer {
|
|
|
|
// Only OK on x64 where our stack is aligned
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
static inline __m128 InterpolateF(const __m128 &c0, const __m128 &c1, const __m128 &c2, int w0, int w1, int w2, float wsum) {
|
|
__m128 v = _mm_mul_ps(c0, _mm_cvtepi32_ps(_mm_set1_epi32(w0)));
|
|
v = _mm_add_ps(v, _mm_mul_ps(c1, _mm_cvtepi32_ps(_mm_set1_epi32(w1))));
|
|
v = _mm_add_ps(v, _mm_mul_ps(c2, _mm_cvtepi32_ps(_mm_set1_epi32(w2))));
|
|
return _mm_mul_ps(v, _mm_set_ps1(wsum));
|
|
}
|
|
|
|
static inline __m128i InterpolateI(const __m128i &c0, const __m128i &c1, const __m128i &c2, int w0, int w1, int w2, float wsum) {
|
|
return _mm_cvtps_epi32(InterpolateF(_mm_cvtepi32_ps(c0), _mm_cvtepi32_ps(c1), _mm_cvtepi32_ps(c2), w0, w1, w2, wsum));
|
|
}
|
|
#elif PPSSPP_ARCH(ARM64_NEON)
|
|
static inline float32x4_t InterpolateF(const float32x4_t &c0, const float32x4_t &c1, const float32x4_t &c2, int w0, int w1, int w2, float wsum) {
|
|
float32x4_t v = vmulq_f32(c0, vcvtq_f32_s32(vdupq_n_s32(w0)));
|
|
v = vaddq_f32(v, vmulq_f32(c1, vcvtq_f32_s32(vdupq_n_s32(w1))));
|
|
v = vaddq_f32(v, vmulq_f32(c2, vcvtq_f32_s32(vdupq_n_s32(w2))));
|
|
return vmulq_f32(v, vdupq_n_f32(wsum));
|
|
}
|
|
|
|
static inline int32x4_t InterpolateI(const int32x4_t &c0, const int32x4_t &c1, const int32x4_t &c2, int w0, int w1, int w2, float wsum) {
|
|
return vcvtq_s32_f32(InterpolateF(vcvtq_f32_s32(c0), vcvtq_f32_s32(c1), vcvtq_f32_s32(c2), w0, w1, w2, wsum));
|
|
}
|
|
#endif
|
|
|
|
// NOTE: When not casting color0 and color1 to float vectors, this code suffers from severe overflow issues.
|
|
// Not sure if that should be regarded as a bug or if casting to float is a valid fix.
|
|
|
|
static inline Vec4<int> Interpolate(const Vec4<int> &c0, const Vec4<int> &c1, const Vec4<int> &c2, int w0, int w1, int w2, float wsum) {
|
|
#if (defined(_M_SSE) || PPSSPP_ARCH(ARM64_NEON)) && !PPSSPP_ARCH(X86)
|
|
return Vec4<int>(InterpolateI(c0.ivec, c1.ivec, c2.ivec, w0, w1, w2, wsum));
|
|
#else
|
|
return ((c0.Cast<float>() * w0 + c1.Cast<float>() * w1 + c2.Cast<float>() * w2) * wsum).Cast<int>();
|
|
#endif
|
|
}
|
|
|
|
static inline Vec3<int> Interpolate(const Vec3<int> &c0, const Vec3<int> &c1, const Vec3<int> &c2, int w0, int w1, int w2, float wsum) {
|
|
#if (defined(_M_SSE) || PPSSPP_ARCH(ARM64_NEON)) && !PPSSPP_ARCH(X86)
|
|
return Vec3<int>(InterpolateI(c0.ivec, c1.ivec, c2.ivec, w0, w1, w2, wsum));
|
|
#else
|
|
return ((c0.Cast<float>() * w0 + c1.Cast<float>() * w1 + c2.Cast<float>() * w2) * wsum).Cast<int>();
|
|
#endif
|
|
}
|
|
|
|
static inline Vec4<float> Interpolate(const float &c0, const float &c1, const float &c2, const Vec4<float> &w0, const Vec4<float> &w1, const Vec4<float> &w2, const Vec4<float> &wsum_recip) {
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
__m128 v = _mm_mul_ps(w0.vec, _mm_set1_ps(c0));
|
|
v = _mm_add_ps(v, _mm_mul_ps(w1.vec, _mm_set1_ps(c1)));
|
|
v = _mm_add_ps(v, _mm_mul_ps(w2.vec, _mm_set1_ps(c2)));
|
|
return _mm_mul_ps(v, wsum_recip.vec);
|
|
#elif PPSSPP_ARCH(ARM64_NEON)
|
|
float32x4_t v = vmulq_f32(w0.vec, vdupq_n_f32(c0));
|
|
v = vaddq_f32(v, vmulq_f32(w1.vec, vdupq_n_f32(c1)));
|
|
v = vaddq_f32(v, vmulq_f32(w2.vec, vdupq_n_f32(c2)));
|
|
return vmulq_f32(v, wsum_recip.vec);
|
|
#else
|
|
return (w0 * c0 + w1 * c1 + w2 * c2) * wsum_recip;
|
|
#endif
|
|
}
|
|
|
|
static inline Vec4<float> Interpolate(const float &c0, const float &c1, const float &c2, const Vec4<int> &w0, const Vec4<int> &w1, const Vec4<int> &w2, const Vec4<float> &wsum_recip) {
|
|
return Interpolate(c0, c1, c2, w0.Cast<float>(), w1.Cast<float>(), w2.Cast<float>(), wsum_recip);
|
|
}
|
|
|
|
void ComputeRasterizerState(RasterizerState *state, BinManager *binner) {
|
|
ComputePixelFuncID(&state->pixelID);
|
|
state->drawPixel = Rasterizer::GetSingleFunc(state->pixelID, binner);
|
|
|
|
state->enableTextures = gstate.isTextureMapEnabled() && !state->pixelID.clearMode;
|
|
if (state->enableTextures) {
|
|
ComputeSamplerID(&state->samplerID);
|
|
state->linear = Sampler::GetLinearFunc(state->samplerID, binner);
|
|
state->nearest = Sampler::GetNearestFunc(state->samplerID, binner);
|
|
|
|
// Since the definitions are the same, just force this setting using the func pointer.
|
|
if (g_Config.iTexFiltering == TEX_FILTER_FORCE_LINEAR) {
|
|
state->nearest = state->linear;
|
|
} else if (g_Config.iTexFiltering == TEX_FILTER_FORCE_NEAREST) {
|
|
state->linear = state->nearest;
|
|
}
|
|
|
|
state->maxTexLevel = state->samplerID.hasAnyMips ? gstate.getTextureMaxLevel() : 0;
|
|
|
|
GETextureFormat texfmt = state->samplerID.TexFmt();
|
|
for (uint8_t i = 0; i <= state->maxTexLevel; i++) {
|
|
u32 texaddr = gstate.getTextureAddress(i);
|
|
state->texaddr[i] = texaddr;
|
|
state->texbufw[i] = (uint16_t)GetTextureBufw(i, texaddr, texfmt);
|
|
if (Memory::IsValidAddress(texaddr))
|
|
state->texptr[i] = Memory::GetPointerUnchecked(texaddr);
|
|
else
|
|
state->texptr[i] = nullptr;
|
|
}
|
|
|
|
state->textureLodSlope = gstate.getTextureLodSlope();
|
|
state->texLevelMode = gstate.getTexLevelMode();
|
|
state->texLevelOffset = (int8_t)gstate.getTexLevelOffset16();
|
|
state->mipFilt = gstate.isMipmapFilteringEnabled();
|
|
state->minFilt = gstate.isMinifyFilteringEnabled();
|
|
state->magFilt = gstate.isMagnifyFilteringEnabled();
|
|
state->textureProj = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX;
|
|
if (state->textureProj) {
|
|
// We may be able to optimize this off. This is actually kinda common.
|
|
const bool qZeroST = gstate.tgenMatrix[2] == 0.0f && gstate.tgenMatrix[5] == 0.0f;
|
|
const bool qZeroQ = gstate.tgenMatrix[8] == 0.0f;
|
|
|
|
// Two common cases: the source q factor is zero, OR source is UV.
|
|
const bool qFactorZero = gstate.getUVProjMode() == GE_PROJMAP_UV;
|
|
if (qZeroST && (qZeroQ || qFactorZero) && gstate.tgenMatrix[11] == 1.0f) {
|
|
state->textureProj = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
state->shadeGouraud = !gstate.isModeClear() && gstate.getShadeMode() == GE_SHADE_GOURAUD;
|
|
state->throughMode = gstate.isModeThrough();
|
|
state->antialiasLines = gstate.isAntiAliasEnabled();
|
|
|
|
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
|
|
DisplayList currentList{};
|
|
if (gpuDebug)
|
|
gpuDebug->GetCurrentDisplayList(currentList);
|
|
state->listPC = currentList.pc;
|
|
#endif
|
|
}
|
|
|
|
static inline void CalculateRasterStateFlags(RasterizerState *state, const VertexData &v0, bool useColor) {
|
|
if (useColor) {
|
|
if ((v0.color0 & 0x00FFFFFF) != 0x00FFFFFF)
|
|
state->flags |= RasterizerStateFlags::VERTEX_NON_FULL_WHITE;
|
|
uint8_t alpha = v0.color0 >> 24;
|
|
if (alpha != 0)
|
|
state->flags |= RasterizerStateFlags::VERTEX_ALPHA_NON_ZERO;
|
|
if (alpha != 0xFF)
|
|
state->flags |= RasterizerStateFlags::VERTEX_ALPHA_NON_FULL;
|
|
}
|
|
if (!(v0.fogdepth >= 1.0f))
|
|
state->flags |= RasterizerStateFlags::VERTEX_HAS_FOG;
|
|
}
|
|
|
|
void CalculateRasterStateFlags(RasterizerState *state, const VertexData &v0) {
|
|
CalculateRasterStateFlags(state, v0, true);
|
|
}
|
|
|
|
void CalculateRasterStateFlags(RasterizerState *state, const VertexData &v0, const VertexData &v1, bool forceFlat) {
|
|
CalculateRasterStateFlags(state, v0, !forceFlat && state->shadeGouraud);
|
|
CalculateRasterStateFlags(state, v1, true);
|
|
}
|
|
|
|
void CalculateRasterStateFlags(RasterizerState *state, const VertexData &v0, const VertexData &v1, const VertexData &v2) {
|
|
CalculateRasterStateFlags(state, v0, state->shadeGouraud);
|
|
CalculateRasterStateFlags(state, v1, state->shadeGouraud);
|
|
CalculateRasterStateFlags(state, v2, true);
|
|
}
|
|
|
|
static inline int OptimizePixelIDFlags(const RasterizerStateFlags &flags) {
|
|
return (int)flags & (int)RasterizerStateFlags::OPTIMIZED_PIXELID;
|
|
}
|
|
|
|
static inline int OptimizeSamplerIDFlags(const RasterizerStateFlags &flags) {
|
|
return (int)flags & (int)RasterizerStateFlags::OPTIMIZED_SAMPLERID;
|
|
}
|
|
|
|
static inline int OptimizeAllFlags(const RasterizerStateFlags &flags) {
|
|
return OptimizePixelIDFlags(flags) | OptimizeSamplerIDFlags(flags);
|
|
}
|
|
|
|
static inline RasterizerStateFlags ClearFlags(const RasterizerStateFlags &flags, const RasterizerStateFlags &mask) {
|
|
int clearBits = (int)flags & (int)mask;
|
|
return (RasterizerStateFlags)((int)flags & ~clearBits);
|
|
}
|
|
|
|
static inline RasterizerStateFlags ReplacePixelIDFlags(const RasterizerStateFlags &flags, const RasterizerStateFlags &replace) {
|
|
RasterizerStateFlags updated = ClearFlags(flags, RasterizerStateFlags::OPTIMIZED_PIXELID);
|
|
return updated | (RasterizerStateFlags)OptimizePixelIDFlags(replace);
|
|
}
|
|
|
|
static inline RasterizerStateFlags ReplaceSamplerIDFlags(const RasterizerStateFlags &flags, const RasterizerStateFlags &replace) {
|
|
RasterizerStateFlags updated = ClearFlags(flags, RasterizerStateFlags::OPTIMIZED_SAMPLERID);
|
|
return updated | (RasterizerStateFlags)OptimizeSamplerIDFlags(replace);
|
|
}
|
|
|
|
static bool CheckClutAlphaFull(RasterizerState *state) {
|
|
// We only need to check it once.
|
|
if (state->flags & RasterizerStateFlags::CLUT_ALPHA_CHECKED)
|
|
return !(state->flags & RasterizerStateFlags::CLUT_ALPHA_NON_FULL);
|
|
// For now, let's keep things simple.
|
|
const SamplerID &samplerID = state->samplerID;
|
|
if (samplerID.hasClutOffset || !samplerID.useSharedClut)
|
|
return false;
|
|
|
|
uint32_t count = samplerID.TexFmt() == GE_TFMT_CLUT4 ? 16 : 256;
|
|
if (samplerID.hasClutMask)
|
|
count = std::min(count, ((samplerID.cached.clutFormat >> 8) & 0xFF) + 1);
|
|
|
|
u32 alphaSum = 0xFFFFFFFF;
|
|
if (samplerID.ClutFmt() == GE_CMODE_32BIT_ABGR8888) {
|
|
CheckMask32((const uint32_t *)samplerID.cached.clut, count, &alphaSum);
|
|
} else {
|
|
CheckMask16((const uint16_t *)samplerID.cached.clut, count, &alphaSum);
|
|
}
|
|
|
|
bool onlyFull = true;
|
|
switch (samplerID.ClutFmt()) {
|
|
case GE_CMODE_16BIT_BGR5650:
|
|
break;
|
|
|
|
case GE_CMODE_16BIT_ABGR5551:
|
|
onlyFull = (alphaSum & 0x8000) != 0;
|
|
break;
|
|
|
|
case GE_CMODE_16BIT_ABGR4444:
|
|
onlyFull = (alphaSum & 0xF000) == 0xF000;
|
|
break;
|
|
|
|
case GE_CMODE_32BIT_ABGR8888:
|
|
onlyFull = (alphaSum & 0xFF000000) == 0xFF000000;
|
|
break;
|
|
}
|
|
|
|
// Might just be different patterns, but if alphaSum != 0, it can't contain zero.
|
|
if (alphaSum != 0)
|
|
state->flags |= RasterizerStateFlags::CLUT_ALPHA_NON_ZERO;
|
|
if (!onlyFull)
|
|
state->flags |= RasterizerStateFlags::CLUT_ALPHA_NON_FULL;
|
|
state->flags |= RasterizerStateFlags::CLUT_ALPHA_CHECKED;
|
|
|
|
return onlyFull;
|
|
}
|
|
|
|
static RasterizerStateFlags DetectStateOptimizations(RasterizerState *state) {
|
|
// Note: all optimizations must be undoable.
|
|
RasterizerStateFlags optimize = RasterizerStateFlags::NONE;
|
|
auto &pixelID = state->pixelID;
|
|
auto &samplerID = state->samplerID;
|
|
|
|
bool alphaZero = !(state->flags & RasterizerStateFlags::VERTEX_ALPHA_NON_ZERO);
|
|
bool alphaFull = !(state->flags & RasterizerStateFlags::VERTEX_ALPHA_NON_FULL);
|
|
bool needTextureAlpha = state->enableTextures && samplerID.useTextureAlpha;
|
|
|
|
if (!pixelID.clearMode) {
|
|
auto &cached = pixelID.cached;
|
|
|
|
bool alphaBlend = pixelID.alphaBlend || (state->flags & RasterizerStateFlags::OPTIMIZED_BLEND_OFF);
|
|
if (needTextureAlpha && alphaBlend && alphaFull) {
|
|
bool usesClut = (samplerID.texfmt & 4) != 0;
|
|
if (usesClut && CheckClutAlphaFull(state))
|
|
needTextureAlpha = false;
|
|
}
|
|
|
|
if (alphaBlend && !needTextureAlpha) {
|
|
PixelBlendFactor src = pixelID.AlphaBlendSrc();
|
|
PixelBlendFactor dst = pixelID.AlphaBlendDst();
|
|
if (state->flags & RasterizerStateFlags::OPTIMIZED_BLEND_SRC)
|
|
src = PixelBlendFactor::SRCALPHA;
|
|
if (state->flags & RasterizerStateFlags::OPTIMIZED_BLEND_DST)
|
|
dst = PixelBlendFactor::INVSRCALPHA;
|
|
|
|
// Okay, we may be able to convert this to a fixed value.
|
|
if (alphaZero || alphaFull) {
|
|
// If it was already set and we still can, set it again.
|
|
if (src == PixelBlendFactor::SRCALPHA)
|
|
optimize |= RasterizerStateFlags::OPTIMIZED_BLEND_SRC;
|
|
if (dst == PixelBlendFactor::INVSRCALPHA)
|
|
optimize |= RasterizerStateFlags::OPTIMIZED_BLEND_DST;
|
|
}
|
|
if (alphaFull && (src == PixelBlendFactor::SRCALPHA || src == PixelBlendFactor::ONE) && (dst == PixelBlendFactor::INVSRCALPHA || dst == PixelBlendFactor::ZERO)) {
|
|
optimize |= RasterizerStateFlags::OPTIMIZED_BLEND_OFF;
|
|
}
|
|
}
|
|
|
|
if (alphaBlend && (needTextureAlpha || !alphaFull)) {
|
|
// Okay, we're blending, and we need to. Are we alpha testing?
|
|
GEComparison alphaTestFunc = pixelID.AlphaTestFunc();
|
|
if (state->flags & RasterizerStateFlags::OPTIMIZED_ALPHATEST_OFF_NE)
|
|
alphaTestFunc = GE_COMP_NOTEQUAL;
|
|
if (state->flags & RasterizerStateFlags::OPTIMIZED_ALPHATEST_OFF_GT)
|
|
alphaTestFunc = GE_COMP_GREATER;
|
|
if (state->flags & RasterizerStateFlags::OPTIMIZED_ALPHATEST_ON)
|
|
alphaTestFunc = GE_COMP_ALWAYS;
|
|
|
|
PixelBlendFactor src = pixelID.AlphaBlendSrc();
|
|
PixelBlendFactor dst = pixelID.AlphaBlendDst();
|
|
if (state->flags & RasterizerStateFlags::OPTIMIZED_BLEND_SRC)
|
|
src = PixelBlendFactor::SRCALPHA;
|
|
if (state->flags & RasterizerStateFlags::OPTIMIZED_BLEND_DST)
|
|
dst = PixelBlendFactor::INVSRCALPHA;
|
|
|
|
if (alphaTestFunc == GE_COMP_ALWAYS && src == PixelBlendFactor::SRCALPHA && dst == PixelBlendFactor::INVSRCALPHA) {
|
|
bool usesClut = (samplerID.texfmt & 4) != 0;
|
|
bool couldHaveZeroTexAlpha = true;
|
|
if (usesClut && CheckClutAlphaFull(state))
|
|
couldHaveZeroTexAlpha = false;
|
|
if (state->flags & RasterizerStateFlags::CLUT_ALPHA_NON_ZERO)
|
|
couldHaveZeroTexAlpha = false;
|
|
|
|
// Blending is expensive, since we read the target. Force alpha testing on.
|
|
if (!pixelID.depthWrite && !pixelID.stencilTest && couldHaveZeroTexAlpha)
|
|
optimize |= RasterizerStateFlags::OPTIMIZED_ALPHATEST_ON;
|
|
}
|
|
}
|
|
|
|
bool applyFog = pixelID.applyFog || (state->flags & RasterizerStateFlags::OPTIMIZED_FOG_OFF);
|
|
if (applyFog) {
|
|
bool hasFog = state->flags & RasterizerStateFlags::VERTEX_HAS_FOG;
|
|
if (!hasFog)
|
|
optimize |= RasterizerStateFlags::OPTIMIZED_FOG_OFF;
|
|
}
|
|
}
|
|
|
|
if (state->enableTextures) {
|
|
bool colorFull = !(state->flags & RasterizerStateFlags::VERTEX_NON_FULL_WHITE);
|
|
if (colorFull && (!needTextureAlpha || alphaFull)) {
|
|
// Modulate is common, sometimes even with a fixed color. Replace is cheaper.
|
|
GETexFunc texFunc = samplerID.TexFunc();
|
|
if (state->flags & RasterizerStateFlags::OPTIMIZED_TEXREPLACE)
|
|
texFunc = GE_TEXFUNC_MODULATE;
|
|
|
|
if (texFunc == GE_TEXFUNC_MODULATE)
|
|
optimize |= RasterizerStateFlags::OPTIMIZED_TEXREPLACE;
|
|
}
|
|
|
|
bool usesClut = (samplerID.texfmt & 4) != 0;
|
|
if (usesClut && alphaFull && samplerID.useTextureAlpha) {
|
|
GEComparison alphaTestFunc = pixelID.AlphaTestFunc();
|
|
// We optimize > 0 to != 0, so this is especially common.
|
|
if (state->flags & RasterizerStateFlags::OPTIMIZED_ALPHATEST_OFF_NE)
|
|
alphaTestFunc = GE_COMP_NOTEQUAL;
|
|
// > 16, 8, or similar are also very common.
|
|
if (state->flags & RasterizerStateFlags::OPTIMIZED_ALPHATEST_OFF_GT)
|
|
alphaTestFunc = GE_COMP_GREATER;
|
|
if (state->flags & RasterizerStateFlags::OPTIMIZED_ALPHATEST_ON)
|
|
alphaTestFunc = GE_COMP_ALWAYS;
|
|
|
|
bool alphaTest = (alphaTestFunc == GE_COMP_NOTEQUAL || alphaTestFunc == GE_COMP_GREATER) && pixelID.alphaTestRef < 0xFF && !state->pixelID.hasAlphaTestMask;
|
|
if (alphaTest) {
|
|
bool canSkipAlphaTest = CheckClutAlphaFull(state);
|
|
if ((state->flags & RasterizerStateFlags::CLUT_ALPHA_NON_ZERO) && pixelID.alphaTestRef == 0)
|
|
canSkipAlphaTest = true;
|
|
if (canSkipAlphaTest)
|
|
optimize |= alphaTestFunc == GE_COMP_NOTEQUAL ? RasterizerStateFlags::OPTIMIZED_ALPHATEST_OFF_NE : RasterizerStateFlags::OPTIMIZED_ALPHATEST_OFF_GT;
|
|
}
|
|
}
|
|
}
|
|
|
|
return optimize;
|
|
}
|
|
|
|
static bool ApplyStateOptimizations(RasterizerState *state, const RasterizerStateFlags &optimize) {
|
|
bool changed = false;
|
|
|
|
// Check if we can compile the new funcs before replacing.
|
|
if (OptimizePixelIDFlags(state->flags) != OptimizePixelIDFlags(optimize)) {
|
|
bool canFull = !(state->flags & RasterizerStateFlags::VERTEX_ALPHA_NON_FULL);
|
|
|
|
PixelFuncID pixelID = state->pixelID;
|
|
if (optimize & RasterizerStateFlags::OPTIMIZED_BLEND_OFF)
|
|
pixelID.alphaBlend = false;
|
|
else if (state->flags & RasterizerStateFlags::OPTIMIZED_BLEND_OFF)
|
|
pixelID.alphaBlend = true;
|
|
if (optimize & RasterizerStateFlags::OPTIMIZED_BLEND_SRC)
|
|
pixelID.alphaBlendSrc = (uint8_t)(canFull ? PixelBlendFactor::ONE : PixelBlendFactor::ZERO);
|
|
else if (state->flags & RasterizerStateFlags::OPTIMIZED_BLEND_SRC)
|
|
pixelID.alphaBlendSrc = (uint8_t)PixelBlendFactor::SRCALPHA;
|
|
if (optimize & RasterizerStateFlags::OPTIMIZED_BLEND_DST)
|
|
pixelID.alphaBlendDst = (uint8_t)(canFull ? PixelBlendFactor::ZERO : PixelBlendFactor::ONE);
|
|
else if (state->flags & RasterizerStateFlags::OPTIMIZED_BLEND_DST)
|
|
pixelID.alphaBlendDst = (uint8_t)PixelBlendFactor::INVSRCALPHA;
|
|
if (optimize & RasterizerStateFlags::OPTIMIZED_FOG_OFF)
|
|
pixelID.applyFog = false;
|
|
else if (state->flags & RasterizerStateFlags::OPTIMIZED_FOG_OFF)
|
|
pixelID.applyFog = true;
|
|
if (optimize & (RasterizerStateFlags::OPTIMIZED_ALPHATEST_OFF_NE | RasterizerStateFlags::OPTIMIZED_ALPHATEST_OFF_GT))
|
|
pixelID.alphaTestFunc = GE_COMP_ALWAYS;
|
|
else if (state->flags & RasterizerStateFlags::OPTIMIZED_ALPHATEST_OFF_NE)
|
|
pixelID.alphaTestFunc = GE_COMP_NOTEQUAL;
|
|
else if (state->flags & RasterizerStateFlags::OPTIMIZED_ALPHATEST_OFF_GT)
|
|
pixelID.alphaTestFunc = GE_COMP_GREATER;
|
|
else if (optimize & RasterizerStateFlags::OPTIMIZED_ALPHATEST_ON) {
|
|
pixelID.alphaTestFunc = GE_COMP_NOTEQUAL;
|
|
pixelID.alphaTestRef = 0;
|
|
pixelID.hasAlphaTestMask = false;
|
|
} else if (state->flags & RasterizerStateFlags::OPTIMIZED_ALPHATEST_ON) {
|
|
pixelID.alphaTestFunc = GE_COMP_ALWAYS;
|
|
}
|
|
|
|
SingleFunc drawPixel = Rasterizer::GetSingleFunc(pixelID, nullptr);
|
|
// Can't compile during runtime. This failing is a bit of a problem when undoing...
|
|
if (drawPixel) {
|
|
state->drawPixel = drawPixel;
|
|
memcpy(&state->pixelID, &pixelID, sizeof(PixelFuncID));
|
|
state->flags = ReplacePixelIDFlags(state->flags, optimize) | RasterizerStateFlags::OPTIMIZED;
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
if (OptimizeSamplerIDFlags(state->flags) != OptimizeSamplerIDFlags(optimize)) {
|
|
SamplerID samplerID = state->samplerID;
|
|
if (optimize & RasterizerStateFlags::OPTIMIZED_TEXREPLACE)
|
|
samplerID.texFunc = (uint8_t)GE_TEXFUNC_REPLACE;
|
|
else if (state->flags & RasterizerStateFlags::OPTIMIZED_TEXREPLACE)
|
|
samplerID.texFunc = (uint8_t)GE_TEXFUNC_MODULATE;
|
|
|
|
Sampler::LinearFunc linear = Sampler::GetLinearFunc(samplerID, nullptr);
|
|
Sampler::LinearFunc nearest = Sampler::GetNearestFunc(samplerID, nullptr);
|
|
// Can't compile during runtime. This failing is a bit of a problem when undoing...
|
|
if (linear && nearest) {
|
|
// Since the definitions are the same, just force this setting using the func pointer.
|
|
if (g_Config.iTexFiltering == TEX_FILTER_FORCE_LINEAR) {
|
|
state->nearest = linear;
|
|
state->linear = linear;
|
|
} else if (g_Config.iTexFiltering == TEX_FILTER_FORCE_NEAREST) {
|
|
state->nearest = nearest;
|
|
state->linear = nearest;
|
|
} else {
|
|
state->nearest = nearest;
|
|
state->linear = linear;
|
|
}
|
|
memcpy(&state->samplerID, &samplerID, sizeof(SamplerID));
|
|
state->flags = ReplaceSamplerIDFlags(state->flags, optimize) | RasterizerStateFlags::OPTIMIZED;
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
state->lastFlags = state->flags;
|
|
return changed;
|
|
}
|
|
|
|
bool OptimizeRasterState(RasterizerState *state) {
|
|
if (state->flags == state->lastFlags)
|
|
return false;
|
|
|
|
RasterizerStateFlags optimize = DetectStateOptimizations(state);
|
|
|
|
// If it was optimized before, just revert and don't churn.
|
|
if ((state->flags & RasterizerStateFlags::OPTIMIZED) && OptimizeAllFlags(state->flags) != OptimizeAllFlags(optimize)) {
|
|
optimize = RasterizerStateFlags::NONE;
|
|
} else if (optimize == RasterizerStateFlags::NONE && !(state->flags & RasterizerStateFlags::OPTIMIZED)) {
|
|
state->lastFlags = state->flags;
|
|
return false;
|
|
}
|
|
|
|
return ApplyStateOptimizations(state, optimize);
|
|
}
|
|
|
|
RasterizerState OptimizeFlatRasterizerState(const RasterizerState &origState, const VertexData &v1) {
|
|
uint8_t alpha = v1.color0 >> 24;
|
|
RasterizerState state = origState;
|
|
|
|
// Sometimes, a particular draw can do better than the overall state.
|
|
state.flags = ClearFlags(state.flags, RasterizerStateFlags::VERTEX_FLAT_RESET);
|
|
CalculateRasterStateFlags(&state, v1, true);
|
|
|
|
RasterizerStateFlags optimize = DetectStateOptimizations(&state);
|
|
if (OptimizeAllFlags(state.flags) != OptimizeAllFlags(optimize)) {
|
|
ApplyStateOptimizations(&state, optimize);
|
|
return state;
|
|
}
|
|
|
|
return origState;
|
|
}
|
|
|
|
static inline u8 ClampFogDepth(float fogdepth) {
|
|
union FloatBits {
|
|
float f;
|
|
u32 u;
|
|
};
|
|
FloatBits f;
|
|
f.f = fogdepth;
|
|
|
|
u32 exp = f.u >> 23;
|
|
if ((f.u & 0x80000000) != 0 || exp <= 126 - 8)
|
|
return 0;
|
|
if (exp > 126)
|
|
return 255;
|
|
|
|
u32 mantissa = (f.u & 0x007FFFFF) | 0x00800000;
|
|
return mantissa >> (16 + 126 - exp);
|
|
}
|
|
|
|
static inline void GetTextureCoordinates(const VertexData& v0, const VertexData& v1, const float p, float &s, float &t) {
|
|
// Note that for environment mapping, texture coordinates have been calculated during lighting
|
|
float q0 = 1.f / v0.clipw;
|
|
float q1 = 1.f / v1.clipw;
|
|
float wq0 = p * q0;
|
|
float wq1 = (1.0f - p) * q1;
|
|
|
|
float q_recip = 1.0f / (wq0 + wq1);
|
|
s = (v0.texturecoords.s() * wq0 + v1.texturecoords.s() * wq1) * q_recip;
|
|
t = (v0.texturecoords.t() * wq0 + v1.texturecoords.t() * wq1) * q_recip;
|
|
}
|
|
|
|
static inline void GetTextureCoordinatesProj(const VertexData& v0, const VertexData& v1, const float p, float &s, float &t) {
|
|
// This is for texture matrix projection.
|
|
float q0 = 1.f / v0.clipw;
|
|
float q1 = 1.f / v1.clipw;
|
|
float wq0 = p * q0;
|
|
float wq1 = (1.0f - p) * q1;
|
|
|
|
float q_recip = 1.0f / (v0.texturecoords.q() * wq0 + v1.texturecoords.q() * wq1);
|
|
|
|
s = (v0.texturecoords.s() * wq0 + v1.texturecoords.s() * wq1) * q_recip;
|
|
t = (v0.texturecoords.t() * wq0 + v1.texturecoords.t() * wq1) * q_recip;
|
|
}
|
|
|
|
static inline void GetTextureCoordinates(const VertexData &v0, const VertexData &v1, const VertexData &v2, const Vec4<int> &w0, const Vec4<int> &w1, const Vec4<int> &w2, const Vec4<float> &wsum_recip, Vec4<float> &s, Vec4<float> &t) {
|
|
// Note that for environment mapping, texture coordinates have been calculated during lighting.
|
|
float q0 = 1.f / v0.clipw;
|
|
float q1 = 1.f / v1.clipw;
|
|
float q2 = 1.f / v2.clipw;
|
|
Vec4<float> wq0 = w0.Cast<float>() * q0;
|
|
Vec4<float> wq1 = w1.Cast<float>() * q1;
|
|
Vec4<float> wq2 = w2.Cast<float>() * q2;
|
|
|
|
Vec4<float> q_recip = (wq0 + wq1 + wq2).Reciprocal();
|
|
s = Interpolate(v0.texturecoords.s(), v1.texturecoords.s(), v2.texturecoords.s(), wq0, wq1, wq2, q_recip);
|
|
t = Interpolate(v0.texturecoords.t(), v1.texturecoords.t(), v2.texturecoords.t(), wq0, wq1, wq2, q_recip);
|
|
}
|
|
|
|
static inline void GetTextureCoordinatesProj(const VertexData &v0, const VertexData &v1, const VertexData &v2, const Vec4<int> &w0, const Vec4<int> &w1, const Vec4<int> &w2, const Vec4<float> &wsum_recip, Vec4<float> &s, Vec4<float> &t) {
|
|
// This is for texture matrix projection.
|
|
float q0 = 1.f / v0.clipw;
|
|
float q1 = 1.f / v1.clipw;
|
|
float q2 = 1.f / v2.clipw;
|
|
Vec4<float> wq0 = w0.Cast<float>() * q0;
|
|
Vec4<float> wq1 = w1.Cast<float>() * q1;
|
|
Vec4<float> wq2 = w2.Cast<float>() * q2;
|
|
|
|
// Here, Interpolate() is a bit suboptimal, since
|
|
// there's no need to multiply by 1.0f.
|
|
Vec4<float> q_recip = Interpolate(v0.texturecoords.q(), v1.texturecoords.q(), v2.texturecoords.q(), wq0, wq1, wq2, Vec4<float>::AssignToAll(1.0f)).Reciprocal();
|
|
|
|
s = Interpolate(v0.texturecoords.s(), v1.texturecoords.s(), v2.texturecoords.s(), wq0, wq1, wq2, q_recip);
|
|
t = Interpolate(v0.texturecoords.t(), v1.texturecoords.t(), v2.texturecoords.t(), wq0, wq1, wq2, q_recip);
|
|
}
|
|
|
|
static inline void SetPixelDepth(int x, int y, int stride, u16 value) {
|
|
depthbuf.Set16(x, y, stride, value);
|
|
}
|
|
|
|
static inline bool IsRightSideOrFlatBottomLine(const Vec2<int>& vertex, const Vec2<int>& line1, const Vec2<int>& line2)
|
|
{
|
|
if (line1.y == line2.y) {
|
|
// just check if vertex is above us => bottom line parallel to x-axis
|
|
return vertex.y < line1.y;
|
|
} else {
|
|
// check if vertex is on our left => right side
|
|
return vertex.x < line1.x + (line2.x - line1.x) * (vertex.y - line1.y) / (line2.y - line1.y);
|
|
}
|
|
}
|
|
|
|
static inline Vec4IntResult SOFTRAST_CALL ApplyTexturing(float s, float t, Vec4IntArg prim_color, int texlevel, int frac_texlevel, bool bilinear, const RasterizerState &state) {
|
|
const u8 **tptr0 = const_cast<const u8 **>(&state.texptr[texlevel]);
|
|
const uint16_t *bufw0 = &state.texbufw[texlevel];
|
|
|
|
if (!bilinear) {
|
|
return state.nearest(s, t, prim_color, tptr0, bufw0, texlevel, frac_texlevel, state.samplerID);
|
|
}
|
|
return state.linear(s, t, prim_color, tptr0, bufw0, texlevel, frac_texlevel, state.samplerID);
|
|
}
|
|
|
|
static inline Vec4IntResult SOFTRAST_CALL ApplyTexturingSingle(float s, float t, Vec4IntArg prim_color, int texlevel, int frac_texlevel, bool bilinear, const RasterizerState &state) {
|
|
return ApplyTexturing(s, t, prim_color, texlevel, frac_texlevel, bilinear, state);
|
|
}
|
|
|
|
// Produces a signed 1.27.4 value.
|
|
static int TexLog2(float delta) {
|
|
union FloatBits {
|
|
float f;
|
|
u32 u;
|
|
};
|
|
FloatBits f;
|
|
f.f = delta;
|
|
// Use the exponent as the tex level, and the top mantissa bits for a frac.
|
|
// We can't support more than 4 bits of frac, so truncate.
|
|
int useful = (f.u >> 19) & 0x0FFF;
|
|
// Now offset so the exponent aligns with log2f (exp=127 is 0.)
|
|
return useful - 127 * 16;
|
|
}
|
|
|
|
static inline void CalculateSamplingParams(const float ds, const float dt, float w, const RasterizerState &state, int &level, int &levelFrac, bool &filt) {
|
|
const int width = 1 << state.samplerID.width0Shift;
|
|
const int height = 1 << state.samplerID.height0Shift;
|
|
|
|
// With 8 bits of fraction (because texslope can be fairly precise.)
|
|
int detail;
|
|
switch (state.TexLevelMode()) {
|
|
case GE_TEXLEVEL_MODE_AUTO:
|
|
detail = TexLog2(std::max(std::abs(ds * width), std::abs(dt * height)));
|
|
break;
|
|
case GE_TEXLEVEL_MODE_SLOPE:
|
|
// This is always offset by an extra texlevel.
|
|
detail = TexLog2(2.0f * w * state.textureLodSlope);
|
|
break;
|
|
case GE_TEXLEVEL_MODE_CONST:
|
|
default:
|
|
// Unused value 3 operates the same as CONST.
|
|
detail = 0;
|
|
break;
|
|
}
|
|
|
|
// Add in the bias (used in all modes), with 4 bits of fraction.
|
|
detail += state.texLevelOffset;
|
|
|
|
if (detail > 0 && state.maxTexLevel > 0) {
|
|
bool mipFilt = state.mipFilt;
|
|
|
|
int level8 = std::min(detail, state.maxTexLevel * 16);
|
|
if (!mipFilt) {
|
|
// Round up at 1.5.
|
|
level8 += 8;
|
|
}
|
|
level = level8 >> 4;
|
|
levelFrac = mipFilt ? level8 & 0xF : 0;
|
|
} else {
|
|
level = 0;
|
|
levelFrac = 0;
|
|
}
|
|
|
|
if (detail > 0)
|
|
filt = state.minFilt;
|
|
else
|
|
filt = state.magFilt;
|
|
}
|
|
|
|
static inline void ApplyTexturing(const RasterizerState &state, Vec4<int> *prim_color, const Vec4<int> &mask, const Vec4<float> &s, const Vec4<float> &t, float w) {
|
|
float ds = s[1] - s[0];
|
|
float dt = t[2] - t[0];
|
|
|
|
int level;
|
|
int levelFrac;
|
|
bool bilinear;
|
|
CalculateSamplingParams(ds, dt, w, state, level, levelFrac, bilinear);
|
|
|
|
PROFILE_THIS_SCOPE("sampler");
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (mask[i] >= 0)
|
|
prim_color[i] = ApplyTexturing(s[i], t[i], ToVec4IntArg(prim_color[i]), level, levelFrac, bilinear, state);
|
|
}
|
|
}
|
|
|
|
static inline Vec4<int> SOFTRAST_CALL CheckDepthTestPassed4(const Vec4<int> &mask, GEComparison func, int x, int y, int stride, Vec4<int> z) {
|
|
// Skip the depth buffer read if we're masked already.
|
|
#if defined(_M_SSE)
|
|
__m128i result = SAFE_M128I(mask.ivec);
|
|
int maskbits = _mm_movemask_epi8(result);
|
|
if (maskbits >= 0xFFFF)
|
|
return mask;
|
|
#else
|
|
Vec4<int> result = mask;
|
|
if (mask.x < 0 && mask.y < 0 && mask.z < 0 && mask.w < 0)
|
|
return result;
|
|
#endif
|
|
|
|
// Read in the existing depth values.
|
|
#if defined(_M_SSE)
|
|
// Tried using flags from maskbits to skip dwords... seemed neutral.
|
|
__m128i refz = _mm_cvtsi32_si128(*(u32 *)depthbuf.Get16Ptr(x, y, stride));
|
|
refz = _mm_unpacklo_epi32(refz, _mm_cvtsi32_si128(*(u32 *)depthbuf.Get16Ptr(x, y + 1, stride)));
|
|
refz = _mm_unpacklo_epi16(refz, _mm_setzero_si128());
|
|
#else
|
|
Vec4<int> refz(depthbuf.Get16(x, y, stride), depthbuf.Get16(x + 1, y, stride), depthbuf.Get16(x, y + 1, stride), depthbuf.Get16(x + 1, y + 1, stride));
|
|
#endif
|
|
|
|
switch (func) {
|
|
case GE_COMP_NEVER:
|
|
#if defined(_M_SSE)
|
|
result = _mm_set1_epi32(-1);
|
|
#else
|
|
result = Vec4<int>::AssignToAll(-1);
|
|
#endif
|
|
break;
|
|
|
|
case GE_COMP_ALWAYS:
|
|
break;
|
|
|
|
case GE_COMP_EQUAL:
|
|
#if defined(_M_SSE)
|
|
result = _mm_or_si128(result, _mm_xor_si128(_mm_cmpeq_epi32(z.ivec, refz), _mm_set1_epi32(-1)));
|
|
#else
|
|
for (int i = 0; i < 4; ++i)
|
|
result[i] |= z[i] != refz[i] ? -1 : 0;
|
|
#endif
|
|
break;
|
|
|
|
case GE_COMP_NOTEQUAL:
|
|
#if defined(_M_SSE)
|
|
result = _mm_or_si128(result, _mm_cmpeq_epi32(z.ivec, refz));
|
|
#else
|
|
for (int i = 0; i < 4; ++i)
|
|
result[i] |= z[i] == refz[i] ? -1 : 0;
|
|
#endif
|
|
break;
|
|
|
|
case GE_COMP_LESS:
|
|
#if defined(_M_SSE)
|
|
result = _mm_or_si128(result, _mm_cmpgt_epi32(z.ivec, refz));
|
|
result = _mm_or_si128(result, _mm_cmpeq_epi32(z.ivec, refz));
|
|
#else
|
|
for (int i = 0; i < 4; ++i)
|
|
result[i] |= z[i] >= refz[i] ? -1 : 0;
|
|
#endif
|
|
break;
|
|
|
|
case GE_COMP_LEQUAL:
|
|
#if defined(_M_SSE)
|
|
result = _mm_or_si128(result, _mm_cmpgt_epi32(z.ivec, refz));
|
|
#else
|
|
for (int i = 0; i < 4; ++i)
|
|
result[i] |= z[i] > refz[i] ? -1 : 0;
|
|
#endif
|
|
break;
|
|
|
|
case GE_COMP_GREATER:
|
|
#if defined(_M_SSE)
|
|
result = _mm_or_si128(result, _mm_cmplt_epi32(z.ivec, refz));
|
|
result = _mm_or_si128(result, _mm_cmpeq_epi32(z.ivec, refz));
|
|
#else
|
|
for (int i = 0; i < 4; ++i)
|
|
result[i] |= z[i] <= refz[i] ? -1 : 0;
|
|
#endif
|
|
break;
|
|
|
|
case GE_COMP_GEQUAL:
|
|
#if defined(_M_SSE)
|
|
result = _mm_or_si128(result, _mm_cmplt_epi32(z.ivec, refz));
|
|
#else
|
|
for (int i = 0; i < 4; ++i)
|
|
result[i] |= z[i] < refz[i] ? -1 : 0;
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
template <bool useSSE4>
|
|
struct TriangleEdge {
|
|
Vec4<int> Start(const ScreenCoords &v0, const ScreenCoords &v1, const ScreenCoords &origin);
|
|
inline Vec4<int> StepX(const Vec4<int> &w);
|
|
inline Vec4<int> StepY(const Vec4<int> &w);
|
|
|
|
inline void NarrowMinMaxX(const Vec4<int> &w, int64_t minX, int64_t &rowMinX, int64_t &rowMaxX);
|
|
inline Vec4<int> StepXTimes(const Vec4<int> &w, int c);
|
|
|
|
Vec4<int> stepX;
|
|
Vec4<int> stepY;
|
|
};
|
|
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
#if defined(__GNUC__) || defined(__clang__) || defined(__INTEL_COMPILER)
|
|
[[gnu::target("sse4.1")]]
|
|
#endif
|
|
static inline __m128i SOFTRAST_CALL TriangleEdgeStartSSE4(__m128i initX, __m128i initY, int xf, int yf, int c) {
|
|
initX = _mm_mullo_epi32(initX, _mm_set1_epi32(xf));
|
|
initY = _mm_mullo_epi32(initY, _mm_set1_epi32(yf));
|
|
return _mm_add_epi32(_mm_add_epi32(initX, initY), _mm_set1_epi32(c));
|
|
}
|
|
#endif
|
|
|
|
template <bool useSSE4>
|
|
Vec4<int> TriangleEdge<useSSE4>::Start(const ScreenCoords &v0, const ScreenCoords &v1, const ScreenCoords &origin) {
|
|
// Start at pixel centers.
|
|
static constexpr int centerOff = (SCREEN_SCALE_FACTOR / 2) - 1;
|
|
static constexpr int centerPlus1 = SCREEN_SCALE_FACTOR + centerOff;
|
|
Vec4<int> initX = Vec4<int>::AssignToAll(origin.x) + Vec4<int>(centerOff, centerPlus1, centerOff, centerPlus1);
|
|
Vec4<int> initY = Vec4<int>::AssignToAll(origin.y) + Vec4<int>(centerOff, centerOff, centerPlus1, centerPlus1);
|
|
|
|
// orient2d refactored.
|
|
int xf = v0.y - v1.y;
|
|
int yf = v1.x - v0.x;
|
|
int c = v1.y * v0.x - v1.x * v0.y;
|
|
|
|
stepX = Vec4<int>::AssignToAll(xf * SCREEN_SCALE_FACTOR * 2);
|
|
stepY = Vec4<int>::AssignToAll(yf * SCREEN_SCALE_FACTOR * 2);
|
|
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
if constexpr (useSSE4)
|
|
return TriangleEdgeStartSSE4(initX.ivec, initY.ivec, xf, yf, c);
|
|
#endif
|
|
return Vec4<int>::AssignToAll(xf) * initX + Vec4<int>::AssignToAll(yf) * initY + Vec4<int>::AssignToAll(c);
|
|
}
|
|
|
|
template <bool useSSE4>
|
|
inline Vec4<int> TriangleEdge<useSSE4>::StepX(const Vec4<int> &w) {
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
return _mm_add_epi32(w.ivec, stepX.ivec);
|
|
#elif PPSSPP_ARCH(ARM64_NEON)
|
|
return vaddq_s32(w.ivec, stepX.ivec);
|
|
#else
|
|
return w + stepX;
|
|
#endif
|
|
}
|
|
|
|
template <bool useSSE4>
|
|
inline Vec4<int> TriangleEdge<useSSE4>::StepY(const Vec4<int> &w) {
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
return _mm_add_epi32(w.ivec, stepY.ivec);
|
|
#elif PPSSPP_ARCH(ARM64_NEON)
|
|
return vaddq_s32(w.ivec, stepY.ivec);
|
|
#else
|
|
return w + stepY;
|
|
#endif
|
|
}
|
|
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
#if defined(__GNUC__) || defined(__clang__) || defined(__INTEL_COMPILER)
|
|
[[gnu::target("sse4.1")]]
|
|
#endif
|
|
static inline int SOFTRAST_CALL MaxWeightSSE4(__m128i w) {
|
|
__m128i max2 = _mm_max_epi32(w, _mm_shuffle_epi32(w, _MM_SHUFFLE(3, 2, 3, 2)));
|
|
__m128i max1 = _mm_max_epi32(max2, _mm_shuffle_epi32(max2, _MM_SHUFFLE(1, 1, 1, 1)));
|
|
return _mm_cvtsi128_si32(max1);
|
|
}
|
|
#endif
|
|
|
|
template <bool useSSE4>
|
|
void TriangleEdge<useSSE4>::NarrowMinMaxX(const Vec4<int> &w, int64_t minX, int64_t &rowMinX, int64_t &rowMaxX) {
|
|
int wmax;
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
if constexpr (useSSE4) {
|
|
wmax = MaxWeightSSE4(w.ivec);
|
|
} else {
|
|
wmax = std::max(std::max(w.x, w.y), std::max(w.z, w.w));
|
|
}
|
|
#elif PPSSPP_ARCH(ARM64_NEON)
|
|
int32x2_t wmax_temp = vpmax_s32(vget_low_s32(w.ivec), vget_high_s32(w.ivec));
|
|
wmax = vget_lane_s32(vpmax_s32(wmax_temp, wmax_temp), 0);
|
|
#else
|
|
wmax = std::max(std::max(w.x, w.y), std::max(w.z, w.w));
|
|
#endif
|
|
if (wmax < 0) {
|
|
if (stepX.x > 0) {
|
|
int steps = -wmax / stepX.x;
|
|
rowMinX = std::max(rowMinX, minX + steps * SCREEN_SCALE_FACTOR * 2);
|
|
} else if (stepX.x <= 0) {
|
|
rowMinX = rowMaxX + 1;
|
|
}
|
|
}
|
|
|
|
if (wmax >= 0 && stepX.x < 0) {
|
|
int steps = (-wmax / stepX.x) + 1;
|
|
rowMaxX = std::min(rowMaxX, minX + steps * SCREEN_SCALE_FACTOR * 2);
|
|
}
|
|
}
|
|
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
#if defined(__GNUC__) || defined(__clang__) || defined(__INTEL_COMPILER)
|
|
[[gnu::target("sse4.1")]]
|
|
#endif
|
|
static inline __m128i SOFTRAST_CALL StepTimesSSE4(__m128i w, __m128i step, int c) {
|
|
return _mm_add_epi32(w, _mm_mullo_epi32(_mm_set1_epi32(c), step));
|
|
}
|
|
#endif
|
|
|
|
template <bool useSSE4>
|
|
inline Vec4<int> TriangleEdge<useSSE4>::StepXTimes(const Vec4<int> &w, int c) {
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
if constexpr (useSSE4)
|
|
return StepTimesSSE4(w.ivec, stepX.ivec, c);
|
|
#elif PPSSPP_ARCH(ARM64_NEON)
|
|
return vaddq_s32(w.ivec, vmulq_s32(vdupq_n_s32(c), stepX.ivec));
|
|
#endif
|
|
return w + stepX * c;
|
|
}
|
|
|
|
static inline Vec4<int> MakeMask(const Vec4<int> &w0, const Vec4<int> &w1, const Vec4<int> &w2, const Vec4<int> &bias0, const Vec4<int> &bias1, const Vec4<int> &bias2, const Vec4<int> &scissor) {
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
__m128i biased0 = _mm_add_epi32(w0.ivec, bias0.ivec);
|
|
__m128i biased1 = _mm_add_epi32(w1.ivec, bias1.ivec);
|
|
__m128i biased2 = _mm_add_epi32(w2.ivec, bias2.ivec);
|
|
|
|
return _mm_or_si128(_mm_or_si128(biased0, _mm_or_si128(biased1, biased2)), scissor.ivec);
|
|
#elif PPSSPP_ARCH(ARM64_NEON)
|
|
int32x4_t biased0 = vaddq_s32(w0.ivec, bias0.ivec);
|
|
int32x4_t biased1 = vaddq_s32(w1.ivec, bias1.ivec);
|
|
int32x4_t biased2 = vaddq_s32(w2.ivec, bias2.ivec);
|
|
|
|
return vorrq_s32(vorrq_s32(biased0, vorrq_s32(biased1, biased2)), scissor.ivec);
|
|
#else
|
|
return (w0 + bias0) | (w1 + bias1) | (w2 + bias2) | scissor;
|
|
#endif
|
|
}
|
|
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
#if defined(__GNUC__) || defined(__clang__) || defined(__INTEL_COMPILER)
|
|
[[gnu::target("sse4.1")]]
|
|
#endif
|
|
static inline bool SOFTRAST_CALL AnyMaskSSE4(__m128i mask) {
|
|
__m128i sig = _mm_srai_epi32(mask, 31);
|
|
return _mm_test_all_ones(sig) == 0;
|
|
}
|
|
#endif
|
|
|
|
template <bool useSSE4>
|
|
static inline bool AnyMask(const Vec4<int> &mask) {
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
if constexpr (useSSE4) {
|
|
return AnyMaskSSE4(mask.ivec);
|
|
}
|
|
|
|
// Source: https://fgiesen.wordpress.com/2013/02/10/optimizing-the-basic-rasterizer/#comment-6676
|
|
return _mm_movemask_ps(_mm_castsi128_ps(mask.ivec)) != 15;
|
|
#elif PPSSPP_ARCH(ARM64_NEON)
|
|
int64x2_t sig = vreinterpretq_s64_s32(vshrq_n_s32(mask.ivec, 31));
|
|
return vgetq_lane_s64(sig, 0) != -1 || vgetq_lane_s64(sig, 1) != -1;
|
|
#else
|
|
return mask.x >= 0 || mask.y >= 0 || mask.z >= 0 || mask.w >= 0;
|
|
#endif
|
|
}
|
|
|
|
static inline Vec4<float> EdgeRecip(const Vec4<int> &w0, const Vec4<int> &w1, const Vec4<int> &w2) {
|
|
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
|
|
__m128i wsum = _mm_add_epi32(w0.ivec, _mm_add_epi32(w1.ivec, w2.ivec));
|
|
// _mm_rcp_ps loses too much precision.
|
|
return _mm_div_ps(_mm_set1_ps(1.0f), _mm_cvtepi32_ps(wsum));
|
|
#elif PPSSPP_ARCH(ARM64_NEON)
|
|
int32x4_t wsum = vaddq_s32(w0.ivec, vaddq_s32(w1.ivec, w2.ivec));
|
|
return vdivq_f32(vdupq_n_f32(1.0f), vcvtq_f32_s32(wsum));
|
|
#else
|
|
return (w0 + w1 + w2).Cast<float>().Reciprocal();
|
|
#endif
|
|
}
|
|
|
|
template <bool clearMode, bool useSSE4>
|
|
void DrawTriangleSlice(
|
|
const VertexData& v0, const VertexData& v1, const VertexData& v2,
|
|
int x1, int y1, int x2, int y2,
|
|
const RasterizerState &state)
|
|
{
|
|
Vec4<int> bias0 = Vec4<int>::AssignToAll(IsRightSideOrFlatBottomLine(v0.screenpos.xy(), v1.screenpos.xy(), v2.screenpos.xy()) ? -1 : 0);
|
|
Vec4<int> bias1 = Vec4<int>::AssignToAll(IsRightSideOrFlatBottomLine(v1.screenpos.xy(), v2.screenpos.xy(), v0.screenpos.xy()) ? -1 : 0);
|
|
Vec4<int> bias2 = Vec4<int>::AssignToAll(IsRightSideOrFlatBottomLine(v2.screenpos.xy(), v0.screenpos.xy(), v1.screenpos.xy()) ? -1 : 0);
|
|
|
|
const PixelFuncID &pixelID = state.pixelID;
|
|
|
|
TriangleEdge<useSSE4> e0;
|
|
TriangleEdge<useSSE4> e1;
|
|
TriangleEdge<useSSE4> e2;
|
|
|
|
int64_t minX = x1, maxX = x2, minY = y1, maxY = y2;
|
|
|
|
ScreenCoords pprime(minX, minY, 0);
|
|
Vec4<int> w0_base = e0.Start(v1.screenpos, v2.screenpos, pprime);
|
|
Vec4<int> w1_base = e1.Start(v2.screenpos, v0.screenpos, pprime);
|
|
Vec4<int> w2_base = e2.Start(v0.screenpos, v1.screenpos, pprime);
|
|
|
|
// The sum of weights should remain constant as we move toward/away from the edges.
|
|
const Vec4<float> wsum_recip = EdgeRecip(w0_base, w1_base, w2_base);
|
|
|
|
// All the z values are the same, no interpolation required.
|
|
// This is common, and when we interpolate, we lose accuracy.
|
|
const bool flatZ = v0.screenpos.z == v1.screenpos.z && v0.screenpos.z == v2.screenpos.z;
|
|
const bool flatColorAll = !state.shadeGouraud;
|
|
const bool flatColor0 = flatColorAll || (v0.color0 == v1.color0 && v0.color0 == v2.color0);
|
|
const bool flatColor1 = flatColorAll || (v0.color1 == v1.color1 && v0.color1 == v2.color1);
|
|
const bool noFog = clearMode || !pixelID.applyFog || (v0.fogdepth >= 1.0f && v1.fogdepth >= 1.0f && v2.fogdepth >= 1.0f);
|
|
|
|
if (pixelID.applyDepthRange && flatZ) {
|
|
if (v0.screenpos.z < pixelID.cached.minz || v0.screenpos.z > pixelID.cached.maxz)
|
|
return;
|
|
}
|
|
|
|
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
|
|
uint32_t bpp = pixelID.FBFormat() == GE_FORMAT_8888 ? 4 : 2;
|
|
std::string tag = StringFromFormat("DisplayListT_%08x", state.listPC);
|
|
std::string ztag = StringFromFormat("DisplayListTZ_%08x", state.listPC);
|
|
#endif
|
|
|
|
const Vec4<int> v0_c0 = Vec4<int>::FromRGBA(v0.color0);
|
|
const Vec4<int> v1_c0 = Vec4<int>::FromRGBA(v1.color0);
|
|
const Vec4<int> v2_c0 = Vec4<int>::FromRGBA(v2.color0);
|
|
const Vec3<int> v0_c1 = Vec3<int>::FromRGB(v0.color1);
|
|
const Vec3<int> v1_c1 = Vec3<int>::FromRGB(v1.color1);
|
|
const Vec3<int> v2_c1 = Vec3<int>::FromRGB(v2.color1);
|
|
|
|
const Vec4<float> v0_z4 = Vec4<int>::AssignToAll(v0.screenpos.z).Cast<float>();
|
|
const Vec4<float> v1_z4 = Vec4<int>::AssignToAll(v1.screenpos.z).Cast<float>();
|
|
const Vec4<float> v2_z4 = Vec4<int>::AssignToAll(v2.screenpos.z).Cast<float>();
|
|
const Vec4<int> minz = Vec4<int>::AssignToAll(pixelID.cached.minz);
|
|
const Vec4<int> maxz = Vec4<int>::AssignToAll(pixelID.cached.maxz);
|
|
|
|
for (int64_t curY = minY; curY <= maxY; curY += SCREEN_SCALE_FACTOR * 2,
|
|
w0_base = e0.StepY(w0_base),
|
|
w1_base = e1.StepY(w1_base),
|
|
w2_base = e2.StepY(w2_base)) {
|
|
Vec4<int> w0 = w0_base;
|
|
Vec4<int> w1 = w1_base;
|
|
Vec4<int> w2 = w2_base;
|
|
|
|
DrawingCoords p = TransformUnit::ScreenToDrawing(minX, curY);
|
|
|
|
int64_t rowMinX = minX, rowMaxX = maxX;
|
|
e0.NarrowMinMaxX(w0, minX, rowMinX, rowMaxX);
|
|
e1.NarrowMinMaxX(w1, minX, rowMinX, rowMaxX);
|
|
e2.NarrowMinMaxX(w2, minX, rowMinX, rowMaxX);
|
|
|
|
int skipX = (rowMinX - minX) / (SCREEN_SCALE_FACTOR * 2);
|
|
w0 = e0.StepXTimes(w0, skipX);
|
|
w1 = e1.StepXTimes(w1, skipX);
|
|
w2 = e2.StepXTimes(w2, skipX);
|
|
p.x = (p.x + 2 * skipX) & 0x3FF;
|
|
|
|
// TODO: Maybe we can clip the edges instead?
|
|
int scissorYPlus1 = curY + SCREEN_SCALE_FACTOR > maxY ? -1 : 0;
|
|
Vec4<int> scissor_mask = Vec4<int>(0, rowMaxX - rowMinX - SCREEN_SCALE_FACTOR, scissorYPlus1, (rowMaxX - rowMinX - SCREEN_SCALE_FACTOR) | scissorYPlus1);
|
|
Vec4<int> scissor_step = Vec4<int>(0, -(SCREEN_SCALE_FACTOR * 2), 0, -(SCREEN_SCALE_FACTOR * 2));
|
|
|
|
for (int64_t curX = rowMinX; curX <= rowMaxX; curX += SCREEN_SCALE_FACTOR * 2,
|
|
w0 = e0.StepX(w0),
|
|
w1 = e1.StepX(w1),
|
|
w2 = e2.StepX(w2),
|
|
scissor_mask = scissor_mask + scissor_step,
|
|
p.x = (p.x + 2) & 0x3FF) {
|
|
|
|
// If p is on or inside all edges, render pixel
|
|
Vec4<int> mask = MakeMask(w0, w1, w2, bias0, bias1, bias2, scissor_mask);
|
|
if (AnyMask<useSSE4>(mask)) {
|
|
Vec4<int> z;
|
|
if (flatZ) {
|
|
z = Vec4<int>::AssignToAll(v2.screenpos.z);
|
|
} else {
|
|
// Z is interpolated pretty much directly.
|
|
Vec4<float> zfloats = w0.Cast<float>() * v0_z4 + w1.Cast<float>() * v1_z4 + w2.Cast<float>() * v2_z4;
|
|
z = (zfloats * wsum_recip).Cast<int>();
|
|
}
|
|
|
|
if (pixelID.earlyZChecks) {
|
|
if (pixelID.applyDepthRange) {
|
|
#if defined(_M_SSE)
|
|
mask.ivec = _mm_or_si128(mask.ivec, _mm_or_si128(_mm_cmplt_epi32(z.ivec, minz.ivec), _mm_cmpgt_epi32(z.ivec, maxz.ivec)));
|
|
#else
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (z[i] < minz[i] || z[i] > maxz[i])
|
|
mask[i] = -1;
|
|
}
|
|
#endif
|
|
}
|
|
mask = CheckDepthTestPassed4(mask, pixelID.DepthTestFunc(), p.x, p.y, pixelID.cached.depthbufStride, z);
|
|
if (!AnyMask<useSSE4>(mask))
|
|
continue;
|
|
}
|
|
|
|
// Color interpolation is not perspective corrected on the PSP.
|
|
Vec4<int> prim_color[4];
|
|
if (!flatColor0) {
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (mask[i] >= 0)
|
|
prim_color[i] = Interpolate(v0_c0, v1_c0, v2_c0, w0[i], w1[i], w2[i], wsum_recip[i]);
|
|
}
|
|
} else {
|
|
for (int i = 0; i < 4; ++i) {
|
|
prim_color[i] = v2_c0;
|
|
}
|
|
}
|
|
Vec3<int> sec_color[4];
|
|
if (!flatColor1) {
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (mask[i] >= 0)
|
|
sec_color[i] = Interpolate(v0_c1, v1_c1, v2_c1, w0[i], w1[i], w2[i], wsum_recip[i]);
|
|
}
|
|
} else {
|
|
for (int i = 0; i < 4; ++i) {
|
|
sec_color[i] = v2_c1;
|
|
}
|
|
}
|
|
|
|
if (state.enableTextures) {
|
|
if constexpr (!clearMode) {
|
|
Vec4<float> s, t;
|
|
if (state.throughMode) {
|
|
s = Interpolate(v0.texturecoords.s(), v1.texturecoords.s(), v2.texturecoords.s(), w0, w1,
|
|
w2, wsum_recip);
|
|
t = Interpolate(v0.texturecoords.t(), v1.texturecoords.t(), v2.texturecoords.t(), w0, w1,
|
|
w2, wsum_recip);
|
|
|
|
// For levels > 0, mipmapping is always based on level 0. Simpler to scale first.
|
|
s *= 1.0f / (float) (1 << state.samplerID.width0Shift);
|
|
t *= 1.0f / (float) (1 << state.samplerID.height0Shift);
|
|
} else if (state.textureProj) {
|
|
// Texture coordinate interpolation must definitely be perspective-correct.
|
|
GetTextureCoordinatesProj(v0, v1, v2, w0, w1, w2, wsum_recip, s, t);
|
|
} else {
|
|
// Texture coordinate interpolation must definitely be perspective-correct.
|
|
GetTextureCoordinates(v0, v1, v2, w0, w1, w2, wsum_recip, s, t);
|
|
}
|
|
|
|
if (state.TexLevelMode() == GE_TEXLEVEL_MODE_SLOPE) {
|
|
// Not sure what's right, but we need one value for the slope.
|
|
float clipw = (v0.clipw * w0.x + v1.clipw * w1.x + v2.clipw * w2.x) * wsum_recip.x;
|
|
ApplyTexturing(state, prim_color, mask, s, t, clipw);
|
|
} else {
|
|
ApplyTexturing(state, prim_color, mask, s, t, 0.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
if constexpr (!clearMode) {
|
|
for (int i = 0; i < 4; ++i) {
|
|
#if defined(_M_SSE)
|
|
// TODO: Tried making Vec4 do this, but things got slower.
|
|
const __m128i sec = _mm_and_si128(sec_color[i].ivec, _mm_set_epi32(0, -1, -1, -1));
|
|
prim_color[i].ivec = _mm_add_epi32(prim_color[i].ivec, sec);
|
|
#elif PPSSPP_ARCH(ARM64_NEON)
|
|
int32x4_t sec = vsetq_lane_s32(0, sec_color[i].ivec, 3);
|
|
prim_color[i].ivec = vaddq_s32(prim_color[i].ivec, sec);
|
|
#else
|
|
prim_color[i] += Vec4<int>(sec_color[i], 0);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
Vec4<int> fog = Vec4<int>::AssignToAll(255);
|
|
if (!noFog) {
|
|
Vec4<float> fogdepths = w0.Cast<float>() * v0.fogdepth + w1.Cast<float>() * v1.fogdepth + w2.Cast<float>() * v2.fogdepth;
|
|
fogdepths = fogdepths * wsum_recip;
|
|
for (int i = 0; i < 4; ++i) {
|
|
fog[i] = ClampFogDepth(fogdepths[i]);
|
|
}
|
|
}
|
|
|
|
PROFILE_THIS_SCOPE("draw_tri_px");
|
|
DrawingCoords subp = p;
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (mask[i] < 0) {
|
|
continue;
|
|
}
|
|
subp.x = p.x + (i & 1);
|
|
subp.y = p.y + (i / 2);
|
|
|
|
state.drawPixel(subp.x, subp.y, z[i], fog[i], ToVec4IntArg(prim_color[i]), pixelID);
|
|
|
|
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED)
|
|
uint32_t row = gstate.getFrameBufAddress() + subp.y * pixelID.cached.framebufStride * bpp;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + subp.x * bpp, bpp, tag.c_str(), tag.size());
|
|
if (pixelID.depthWrite) {
|
|
row = gstate.getDepthBufAddress() + subp.y * pixelID.cached.depthbufStride * 2;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + subp.x * 2, 2, ztag.c_str(), ztag.size());
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !defined(SOFTGPU_MEMORY_TAGGING_DETAILED) && defined(SOFTGPU_MEMORY_TAGGING_BASIC)
|
|
for (int y = minY; y <= maxY; y += SCREEN_SCALE_FACTOR) {
|
|
DrawingCoords p = TransformUnit::ScreenToDrawing(minX, y);
|
|
DrawingCoords pend = TransformUnit::ScreenToDrawing(maxX, y);
|
|
uint32_t row = gstate.getFrameBufAddress() + p.y * pixelID.cached.framebufStride * bpp;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * bpp, (pend.x - p.x) * bpp, tag.c_str(), tag.size());
|
|
|
|
if (pixelID.depthWrite) {
|
|
row = gstate.getDepthBufAddress() + p.y * pixelID.cached.depthbufStride * 2;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * 2, (pend.x - p.x) * 2, ztag.c_str(), ztag.size());
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Draws triangle, vertices specified in counter-clockwise direction
|
|
void DrawTriangle(const VertexData &v0, const VertexData &v1, const VertexData &v2, const BinCoords &range, const RasterizerState &state) {
|
|
PROFILE_THIS_SCOPE("draw_tri");
|
|
|
|
auto drawSlice = cpu_info.bSSE4_1 ?
|
|
(state.pixelID.clearMode ? &DrawTriangleSlice<true, true> : &DrawTriangleSlice<false, true>) :
|
|
(state.pixelID.clearMode ? &DrawTriangleSlice<true, false> : &DrawTriangleSlice<false, false>);
|
|
|
|
drawSlice(v0, v1, v2, range.x1, range.y1, range.x2, range.y2, state);
|
|
}
|
|
|
|
void DrawRectangle(const VertexData &v0, const VertexData &v1, const BinCoords &range, const RasterizerState &rastState) {
|
|
int entireX1 = std::min(v0.screenpos.x, v1.screenpos.x);
|
|
int entireY1 = std::min(v0.screenpos.y, v1.screenpos.y);
|
|
int entireX2 = std::max(v0.screenpos.x, v1.screenpos.x) - 1;
|
|
int entireY2 = std::max(v0.screenpos.y, v1.screenpos.y) - 1;
|
|
int minX = std::max(entireX1 & ~(SCREEN_SCALE_FACTOR - 1), range.x1) | (SCREEN_SCALE_FACTOR / 2 - 1);
|
|
int minY = std::max(entireY1 & ~(SCREEN_SCALE_FACTOR - 1), range.y1) | (SCREEN_SCALE_FACTOR / 2 - 1);
|
|
int maxX = std::min(entireX2, range.x2);
|
|
int maxY = std::min(entireY2, range.y2);
|
|
|
|
// If TL x or y was after the half, we don't draw the pixel.
|
|
// TODO: Verify what center is used, allowing slight offset makes gpu/primitives/trianglefan pass.
|
|
if (minX < entireX1 - 1)
|
|
minX += SCREEN_SCALE_FACTOR;
|
|
if (minY < entireY1 - 1)
|
|
minY += SCREEN_SCALE_FACTOR;
|
|
|
|
RasterizerState state = OptimizeFlatRasterizerState(rastState, v1);
|
|
|
|
Vec2f rowST(0.0f, 0.0f);
|
|
// Note: this is double the x or y movement.
|
|
Vec2f stx(0.0f, 0.0f);
|
|
Vec2f sty(0.0f, 0.0f);
|
|
if (state.enableTextures) {
|
|
// Note: texture projection is not handled here, those always turn into triangles.
|
|
Vec2f tc0 = v0.texturecoords.uv();
|
|
Vec2f tc1 = v1.texturecoords.uv();
|
|
if (state.throughMode) {
|
|
// For levels > 0, mipmapping is always based on level 0. Simpler to scale first.
|
|
tc0.s() *= 1.0f / (float)(1 << state.samplerID.width0Shift);
|
|
tc1.s() *= 1.0f / (float)(1 << state.samplerID.width0Shift);
|
|
tc0.t() *= 1.0f / (float)(1 << state.samplerID.height0Shift);
|
|
tc1.t() *= 1.0f / (float)(1 << state.samplerID.height0Shift);
|
|
}
|
|
|
|
float diffX = (entireX2 - entireX1 + 1) / (float)SCREEN_SCALE_FACTOR;
|
|
float diffY = (entireY2 - entireY1 + 1) / (float)SCREEN_SCALE_FACTOR;
|
|
float diffS = tc1.s() - tc0.s();
|
|
float diffT = tc1.t() - tc0.t();
|
|
|
|
if (v0.screenpos.x < v1.screenpos.x) {
|
|
if (v0.screenpos.y < v1.screenpos.y) {
|
|
// Okay, simple, TL -> BR. S and T move toward v1 with X and Y.
|
|
rowST = tc0;
|
|
stx = Vec2f(2.0f * diffS / diffX, 0.0f);
|
|
sty = Vec2f(0.0f, 2.0f * diffT / diffY);
|
|
} else {
|
|
// BL to TR, rotated. We start at TL still.
|
|
// X moves T (not S) toward v1, and Y moves S away from v1.
|
|
rowST = Vec2f(tc1.s(), tc0.t());
|
|
stx = Vec2f(0.0f, 2.0f * diffT / diffX);
|
|
sty = Vec2f(2.0f * -diffS / diffY, 0.0f);
|
|
}
|
|
} else {
|
|
if (v0.screenpos.y < v1.screenpos.y) {
|
|
// TR to BL. Like BL to TR, rotated.
|
|
// X moves T (not s) away from v1, and Y moves S toward v1.
|
|
rowST = Vec2f(tc0.s(), tc1.t());
|
|
stx = Vec2f(0.0f, 2.0f * -diffT / diffX);
|
|
sty = Vec2f(2.0f * diffS / diffY, 0.0f);
|
|
} else {
|
|
// BR to TL, just inverse of TL to BR.
|
|
rowST = Vec2f(tc1.s(), tc1.t());
|
|
stx = Vec2f(2.0f * -diffS / diffX, 0.0f);
|
|
sty = Vec2f(0.0f, 2.0f * -diffT / diffY);
|
|
}
|
|
}
|
|
|
|
// Okay, now move ST to the minX, minY position.
|
|
rowST += (stx / (float)(SCREEN_SCALE_FACTOR * 2)) * (minX - entireX1 + 1);
|
|
rowST += (sty / (float)(SCREEN_SCALE_FACTOR * 2)) * (minY - entireY1 + 1);
|
|
}
|
|
|
|
// And now what we add to spread out to 4 values.
|
|
const Vec4f sto4(0.0f, 0.5f * stx.s(), 0.5f * sty.s(), 0.5f * stx.s() + 0.5f * sty.s());
|
|
const Vec4f tto4(0.0f, 0.5f * stx.t(), 0.5f * sty.t(), 0.5f * stx.t() + 0.5f * sty.t());
|
|
|
|
ScreenCoords pprime(minX, minY, 0);
|
|
const Vec4<int> fog = Vec4<int>::AssignToAll(ClampFogDepth(v1.fogdepth));
|
|
const Vec4<int> z = Vec4<int>::AssignToAll(v1.screenpos.z);
|
|
const Vec4<int> c0 = Vec4<int>::FromRGBA(v1.color0);
|
|
const Vec3<int> sec_color = Vec3<int>::FromRGB(v1.color1);
|
|
|
|
if (state.pixelID.applyDepthRange) {
|
|
// We can bail early since the Z is flat.
|
|
if (v1.screenpos.z < state.pixelID.cached.minz || v1.screenpos.z > state.pixelID.cached.maxz)
|
|
return;
|
|
}
|
|
|
|
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
|
|
uint32_t bpp = state.pixelID.FBFormat() == GE_FORMAT_8888 ? 4 : 2;
|
|
std::string tag = StringFromFormat("DisplayListR_%08x", state.listPC);
|
|
std::string ztag = StringFromFormat("DisplayListRZ_%08x", state.listPC);
|
|
#endif
|
|
|
|
for (int64_t curY = minY; curY < maxY; curY += SCREEN_SCALE_FACTOR * 2, rowST += sty) {
|
|
DrawingCoords p = TransformUnit::ScreenToDrawing(minX, curY);
|
|
|
|
int scissorY2 = curY + SCREEN_SCALE_FACTOR > maxY ? -1 : 0;
|
|
Vec4<int> scissor_mask = Vec4<int>(0, maxX - minX - SCREEN_SCALE_FACTOR, scissorY2, (maxX - minX - SCREEN_SCALE_FACTOR) | scissorY2);
|
|
Vec4<int> scissor_step = Vec4<int>(0, -(SCREEN_SCALE_FACTOR * 2), 0, -(SCREEN_SCALE_FACTOR * 2));
|
|
Vec2f st = rowST;
|
|
|
|
for (int64_t curX = minX; curX < maxX; curX += SCREEN_SCALE_FACTOR * 2,
|
|
st += stx,
|
|
scissor_mask += scissor_step,
|
|
p.x = (p.x + 2) & 0x3FF) {
|
|
Vec4<int> mask = scissor_mask;
|
|
|
|
Vec4<int> prim_color[4];
|
|
for (int i = 0; i < 4; ++i) {
|
|
prim_color[i] = c0;
|
|
}
|
|
|
|
if (state.pixelID.earlyZChecks) {
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (mask[i] < 0)
|
|
continue;
|
|
|
|
int x = p.x + (i & 1);
|
|
int y = p.y + (i / 2);
|
|
if (!CheckDepthTestPassed(state.pixelID.DepthTestFunc(), x, y, state.pixelID.cached.depthbufStride, z[i])) {
|
|
mask[i] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (state.enableTextures) {
|
|
Vec4<float> s, t;
|
|
s = Vec4<float>::AssignToAll(st.s()) + sto4;
|
|
t = Vec4<float>::AssignToAll(st.t()) + tto4;
|
|
|
|
ApplyTexturing(state, prim_color, mask, s, t, v1.clipw);
|
|
}
|
|
|
|
if (!state.pixelID.clearMode) {
|
|
for (int i = 0; i < 4; ++i) {
|
|
#if defined(_M_SSE)
|
|
// TODO: Tried making Vec4 do this, but things got slower.
|
|
const __m128i sec = _mm_and_si128(sec_color.ivec, _mm_set_epi32(0, -1, -1, -1));
|
|
prim_color[i].ivec = _mm_add_epi32(prim_color[i].ivec, sec);
|
|
#elif PPSSPP_ARCH(ARM64_NEON)
|
|
int32x4_t sec = vsetq_lane_s32(0, sec_color.ivec, 3);
|
|
prim_color[i].ivec = vaddq_s32(prim_color[i].ivec, sec);
|
|
#else
|
|
prim_color[i] += Vec4<int>(sec_color, 0);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
PROFILE_THIS_SCOPE("draw_rect_px");
|
|
DrawingCoords subp = p;
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (mask[i] < 0) {
|
|
continue;
|
|
}
|
|
subp.x = p.x + (i & 1);
|
|
subp.y = p.y + (i / 2);
|
|
|
|
state.drawPixel(subp.x, subp.y, z[i], fog[i], ToVec4IntArg(prim_color[i]), state.pixelID);
|
|
|
|
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED)
|
|
uint32_t row = gstate.getFrameBufAddress() + subp.y * state.pixelID.cached.framebufStride * bpp;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + subp.x * bpp, bpp, tag.c_str(), tag.size());
|
|
if (state.pixelID.depthWrite) {
|
|
row = gstate.getDepthBufAddress() + subp.y * state.pixelID.cached.depthbufStride * 2;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + subp.x * 2, 2, ztag.c_str(), ztag.size());
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !defined(SOFTGPU_MEMORY_TAGGING_DETAILED) && defined(SOFTGPU_MEMORY_TAGGING_BASIC)
|
|
for (int y = minY; y <= maxY; y += SCREEN_SCALE_FACTOR) {
|
|
DrawingCoords p = TransformUnit::ScreenToDrawing(minX, y);
|
|
DrawingCoords pend = TransformUnit::ScreenToDrawing(maxX, y);
|
|
uint32_t row = gstate.getFrameBufAddress() + p.y * state.pixelID.cached.framebufStride * bpp;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * bpp, (pend.x - p.x) * bpp, tag.c_str(), tag.size());
|
|
|
|
if (state.pixelID.depthWrite) {
|
|
row = gstate.getDepthBufAddress() + p.y * state.pixelID.cached.depthbufStride * 2;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * 2, (pend.x - p.x) * 2, ztag.c_str(), ztag.size());
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void DrawPoint(const VertexData &v0, const BinCoords &range, const RasterizerState &state) {
|
|
ScreenCoords pos = v0.screenpos;
|
|
Vec4<int> prim_color = Vec4<int>::FromRGBA(v0.color0);
|
|
|
|
auto &pixelID = state.pixelID;
|
|
auto &samplerID = state.samplerID;
|
|
|
|
DrawingCoords p = TransformUnit::ScreenToDrawing(pos);
|
|
u16 z = pos.z;
|
|
|
|
if (pixelID.earlyZChecks) {
|
|
if (pixelID.applyDepthRange) {
|
|
if (z < pixelID.cached.minz || z > pixelID.cached.maxz)
|
|
return;
|
|
}
|
|
|
|
if (!CheckDepthTestPassed(pixelID.DepthTestFunc(), p.x, p.y, pixelID.cached.depthbufStride, z)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (state.enableTextures) {
|
|
float s = v0.texturecoords.s();
|
|
float t = v0.texturecoords.t();
|
|
if (state.throughMode) {
|
|
s *= 1.0f / (float)(1 << state.samplerID.width0Shift);
|
|
t *= 1.0f / (float)(1 << state.samplerID.height0Shift);
|
|
} else if (state.textureProj) {
|
|
GetTextureCoordinatesProj(v0, v0, 0.0f, s, t);
|
|
} else {
|
|
// Texture coordinate interpolation must definitely be perspective-correct.
|
|
GetTextureCoordinates(v0, v0, 0.0f, s, t);
|
|
}
|
|
|
|
int texLevel;
|
|
int texLevelFrac;
|
|
bool bilinear;
|
|
CalculateSamplingParams(0.0f, 0.0f, v0.clipw, state, texLevel, texLevelFrac, bilinear);
|
|
PROFILE_THIS_SCOPE("sampler");
|
|
prim_color = ApplyTexturingSingle(s, t, ToVec4IntArg(prim_color), texLevel, texLevelFrac, bilinear, state);
|
|
}
|
|
|
|
if (!pixelID.clearMode) {
|
|
Vec3<int> sec_color = Vec3<int>::FromRGB(v0.color1);
|
|
prim_color += Vec4<int>(sec_color, 0);
|
|
}
|
|
|
|
u8 fog = 255;
|
|
if (pixelID.applyFog) {
|
|
fog = ClampFogDepth(v0.fogdepth);
|
|
}
|
|
|
|
PROFILE_THIS_SCOPE("draw_px");
|
|
state.drawPixel(p.x, p.y, z, fog, ToVec4IntArg(prim_color), pixelID);
|
|
|
|
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
|
|
uint32_t bpp = pixelID.FBFormat() == GE_FORMAT_8888 ? 4 : 2;
|
|
std::string tag = StringFromFormat("DisplayListP_%08x", state.listPC);
|
|
|
|
uint32_t row = gstate.getFrameBufAddress() + p.y * pixelID.cached.framebufStride * bpp;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * bpp, bpp, tag.c_str(), tag.size());
|
|
|
|
if (pixelID.depthWrite) {
|
|
std::string ztag = StringFromFormat("DisplayListPZ_%08x", state.listPC);
|
|
row = gstate.getDepthBufAddress() + p.y * pixelID.cached.depthbufStride * 2;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * 2, 2, ztag.c_str(), ztag.size());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void ClearRectangle(const VertexData &v0, const VertexData &v1, const BinCoords &range, const RasterizerState &state) {
|
|
int entireX1 = std::min(v0.screenpos.x, v1.screenpos.x);
|
|
int entireY1 = std::min(v0.screenpos.y, v1.screenpos.y);
|
|
int entireX2 = std::max(v0.screenpos.x, v1.screenpos.x) - 1;
|
|
int entireY2 = std::max(v0.screenpos.y, v1.screenpos.y) - 1;
|
|
int minX = std::max(entireX1 & ~(SCREEN_SCALE_FACTOR - 1), range.x1) | (SCREEN_SCALE_FACTOR / 2 - 1);
|
|
int minY = std::max(entireY1 & ~(SCREEN_SCALE_FACTOR - 1), range.y1) | (SCREEN_SCALE_FACTOR / 2 - 1);
|
|
int maxX = std::min(entireX2, range.x2);
|
|
int maxY = std::min(entireY2, range.y2);
|
|
|
|
// If TL x or y was after the half, we don't draw the pixel.
|
|
if (minX < entireX1 - 1)
|
|
minX += SCREEN_SCALE_FACTOR;
|
|
if (minY < entireY1 - 1)
|
|
minY += SCREEN_SCALE_FACTOR;
|
|
|
|
const DrawingCoords pprime = TransformUnit::ScreenToDrawing(minX, minY);
|
|
// Only include the end pixel when it's >= 0.5.
|
|
const DrawingCoords pend = TransformUnit::ScreenToDrawing(maxX - SCREEN_SCALE_FACTOR / 2, maxY - SCREEN_SCALE_FACTOR / 2);
|
|
auto &pixelID = state.pixelID;
|
|
auto &samplerID = state.samplerID;
|
|
|
|
const int w = pend.x - pprime.x + 1;
|
|
if (w <= 0)
|
|
return;
|
|
|
|
if (pixelID.DepthClear()) {
|
|
const u16 z = v1.screenpos.z;
|
|
const int stride = pixelID.cached.depthbufStride;
|
|
|
|
// If both bytes of Z equal, we can just use memset directly which is faster.
|
|
if ((z & 0xFF) == (z >> 8)) {
|
|
DrawingCoords p = pprime;
|
|
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
|
|
u16 *row = depthbuf.Get16Ptr(p.x, p.y, stride);
|
|
memset(row, z, w * 2);
|
|
}
|
|
} else {
|
|
DrawingCoords p = pprime;
|
|
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
|
|
for (int x = 0; x < w; ++x) {
|
|
SetPixelDepth(p.x + x, p.y, pixelID.cached.depthbufStride, z);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
|
|
std::string tag = StringFromFormat("DisplayListXZ_%08x", state.listPC);
|
|
for (int y = pprime.y; y <= pend.y; ++y) {
|
|
uint32_t row = gstate.getDepthBufAddress() + y * pixelID.cached.depthbufStride * 2;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + pprime.x * 2, w * 2, tag.c_str(), tag.size());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Note: this stays 0xFFFFFFFF if keeping color and alpha, even for 16-bit.
|
|
u32 keepOldMask = 0xFFFFFFFF;
|
|
if (pixelID.ColorClear() && pixelID.StencilClear()) {
|
|
keepOldMask = 0;
|
|
} else {
|
|
switch (pixelID.FBFormat()) {
|
|
case GE_FORMAT_565:
|
|
if (pixelID.ColorClear())
|
|
keepOldMask = 0;
|
|
break;
|
|
|
|
case GE_FORMAT_5551:
|
|
if (pixelID.ColorClear())
|
|
keepOldMask = 0xFFFF8000;
|
|
else if (pixelID.StencilClear())
|
|
keepOldMask = 0xFFFF7FFF;
|
|
break;
|
|
|
|
case GE_FORMAT_4444:
|
|
if (pixelID.ColorClear())
|
|
keepOldMask = 0xFFFFF000;
|
|
else if (pixelID.StencilClear())
|
|
keepOldMask = 0xFFFF0FFF;
|
|
break;
|
|
|
|
case GE_FORMAT_8888:
|
|
default:
|
|
if (pixelID.ColorClear())
|
|
keepOldMask = 0xFF000000;
|
|
else if (pixelID.StencilClear())
|
|
keepOldMask = 0x00FFFFFF;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The pixel write masks are respected in clear mode.
|
|
if (pixelID.applyColorWriteMask) {
|
|
keepOldMask |= pixelID.cached.colorWriteMask;
|
|
}
|
|
|
|
const u32 new_color = v1.color0;
|
|
u16 new_color16;
|
|
switch (pixelID.FBFormat()) {
|
|
case GE_FORMAT_565:
|
|
new_color16 = RGBA8888ToRGB565(new_color);
|
|
break;
|
|
|
|
case GE_FORMAT_5551:
|
|
new_color16 = RGBA8888ToRGBA5551(new_color);
|
|
break;
|
|
|
|
case GE_FORMAT_4444:
|
|
new_color16 = RGBA8888ToRGBA4444(new_color);
|
|
break;
|
|
|
|
case GE_FORMAT_8888:
|
|
break;
|
|
|
|
case GE_FORMAT_INVALID:
|
|
case GE_FORMAT_DEPTH16:
|
|
case GE_FORMAT_CLUT8:
|
|
_dbg_assert_msg_(false, "Software: invalid framebuf format.");
|
|
break;
|
|
}
|
|
|
|
if (keepOldMask == 0) {
|
|
const int stride = pixelID.cached.framebufStride;
|
|
|
|
if (pixelID.FBFormat() == GE_FORMAT_8888) {
|
|
const bool canMemsetColor = (new_color & 0xFF) == (new_color >> 8) && (new_color & 0xFFFF) == (new_color >> 16);
|
|
if (canMemsetColor) {
|
|
DrawingCoords p = pprime;
|
|
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
|
|
u32 *row = fb.Get32Ptr(p.x, p.y, stride);
|
|
memset(row, new_color, w * 4);
|
|
}
|
|
} else {
|
|
DrawingCoords p = pprime;
|
|
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
|
|
for (int x = 0; x < w; ++x) {
|
|
fb.Set32(p.x + x, p.y, stride, new_color);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
const bool canMemsetColor = (new_color16 & 0xFF) == (new_color16 >> 8);
|
|
if (canMemsetColor) {
|
|
DrawingCoords p = pprime;
|
|
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
|
|
u16 *row = fb.Get16Ptr(p.x, p.y, stride);
|
|
memset(row, new_color16, w * 2);
|
|
}
|
|
} else {
|
|
DrawingCoords p = pprime;
|
|
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
|
|
for (int x = 0; x < w; ++x) {
|
|
fb.Set16(p.x + x, p.y, stride, new_color16);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (keepOldMask != 0xFFFFFFFF) {
|
|
const int stride = pixelID.cached.framebufStride;
|
|
|
|
if (pixelID.FBFormat() == GE_FORMAT_8888) {
|
|
DrawingCoords p = pprime;
|
|
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
|
|
for (int x = 0; x < w; ++x) {
|
|
const u32 old_color = fb.Get32(p.x + x, p.y, stride);
|
|
const u32 c = (old_color & keepOldMask) | (new_color & ~keepOldMask);
|
|
fb.Set32(p.x + x, p.y, stride, c);
|
|
}
|
|
}
|
|
} else {
|
|
DrawingCoords p = pprime;
|
|
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
|
|
for (int x = 0; x < w; ++x) {
|
|
const u16 old_color = fb.Get16(p.x + x, p.y, stride);
|
|
const u16 c = (old_color & keepOldMask) | (new_color16 & ~keepOldMask);
|
|
fb.Set16(p.x + x, p.y, stride, c);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
|
|
if (keepOldMask != 0xFFFFFFFF) {
|
|
uint32_t bpp = pixelID.FBFormat() == GE_FORMAT_8888 ? 4 : 2;
|
|
std::string tag = StringFromFormat("DisplayListX_%08x", state.listPC);
|
|
for (int y = pprime.y; y < pend.y; ++y) {
|
|
uint32_t row = gstate.getFrameBufAddress() + y * pixelID.cached.framebufStride * bpp;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + pprime.x * bpp, w * bpp, tag.c_str(), tag.size());
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void DrawLine(const VertexData &v0, const VertexData &v1, const BinCoords &range, const RasterizerState &state) {
|
|
// TODO: Use a proper line drawing algorithm that handles fractional endpoints correctly.
|
|
Vec3<int> a(v0.screenpos.x, v0.screenpos.y, v0.screenpos.z);
|
|
Vec3<int> b(v1.screenpos.x, v1.screenpos.y, v1.screenpos.z);
|
|
|
|
int dx = b.x - a.x;
|
|
int dy = b.y - a.y;
|
|
int dz = b.z - a.z;
|
|
|
|
int steps;
|
|
if (abs(dx) < abs(dy))
|
|
steps = abs(dy) / SCREEN_SCALE_FACTOR;
|
|
else
|
|
steps = abs(dx) / SCREEN_SCALE_FACTOR;
|
|
|
|
// Avoid going too far since we typically don't start at the pixel center.
|
|
if (dx < 0 && dx >= -SCREEN_SCALE_FACTOR)
|
|
dx++;
|
|
if (dy < 0 && dy >= -SCREEN_SCALE_FACTOR)
|
|
dy++;
|
|
|
|
double xinc = (double)dx / steps;
|
|
double yinc = (double)dy / steps;
|
|
double zinc = (double)dz / steps;
|
|
|
|
auto &pixelID = state.pixelID;
|
|
auto &samplerID = state.samplerID;
|
|
|
|
const bool interpolateColor = !state.shadeGouraud || (v0.color0 == v1.color0 && v0.color1 == v1.color1);
|
|
const Vec4<int> v0_c0 = Vec4<int>::FromRGBA(v0.color0);
|
|
const Vec4<int> v1_c0 = Vec4<int>::FromRGBA(v1.color0);
|
|
const Vec3<int> v0_c1 = Vec3<int>::FromRGB(v0.color1);
|
|
const Vec3<int> v1_c1 = Vec3<int>::FromRGB(v1.color1);
|
|
|
|
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
|
|
std::string tag = StringFromFormat("DisplayListL_%08x", state.listPC);
|
|
std::string ztag = StringFromFormat("DisplayListLZ_%08x", state.listPC);
|
|
#endif
|
|
|
|
double x = a.x > b.x ? a.x - 1 : a.x;
|
|
double y = a.y > b.y ? a.y - 1 : a.y;
|
|
double z = a.z;
|
|
const int steps1 = steps == 0 ? 1 : steps;
|
|
for (int i = 0; i < steps; i++) {
|
|
DrawingCoords p = TransformUnit::ScreenToDrawing(x, y);
|
|
|
|
bool maskOK = x >= range.x1 && y >= range.y1 && x <= range.x2 && y <= range.y2;
|
|
if (maskOK) {
|
|
if (pixelID.earlyZChecks) {
|
|
if (pixelID.applyDepthRange) {
|
|
if (z < pixelID.cached.minz || z > pixelID.cached.maxz)
|
|
maskOK = false;
|
|
}
|
|
|
|
if (!CheckDepthTestPassed(pixelID.DepthTestFunc(), p.x, p.y, pixelID.cached.depthbufStride, z)) {
|
|
maskOK = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (maskOK) {
|
|
// Interpolate between the two points.
|
|
Vec4<int> prim_color;
|
|
Vec3<int> sec_color;
|
|
if (interpolateColor) {
|
|
prim_color = (v0_c0 * (steps - i) + v1_c0 * i) / steps1;
|
|
sec_color = (v0_c1 * (steps - i) + v1_c1 * i) / steps1;
|
|
} else {
|
|
prim_color = v1_c0;
|
|
sec_color = v1_c1;
|
|
}
|
|
|
|
u8 fog = 255;
|
|
if (pixelID.applyFog) {
|
|
fog = ClampFogDepth((v0.fogdepth * (float)(steps - i) + v1.fogdepth * (float)i) / steps1);
|
|
}
|
|
|
|
if (state.antialiasLines) {
|
|
// TODO: Clearmode?
|
|
// TODO: Calculate.
|
|
prim_color.a() = 0x7F;
|
|
}
|
|
|
|
if (state.enableTextures) {
|
|
float s, s1;
|
|
float t, t1;
|
|
if (state.throughMode) {
|
|
Vec2<float> tc = (v0.texturecoords.uv() * (float)(steps - i) + v1.texturecoords.uv() * (float)i) / steps1;
|
|
Vec2<float> tc1 = (v0.texturecoords.uv() * (float)(steps - i - 1) + v1.texturecoords.uv() * (float)(i + 1)) / steps1;
|
|
|
|
s = tc.s() * (1.0f / (float)(1 << state.samplerID.width0Shift));
|
|
s1 = tc1.s() * (1.0f / (float)(1 << state.samplerID.width0Shift));
|
|
t = tc.t() * (1.0f / (float)(1 << state.samplerID.height0Shift));
|
|
t1 = tc1.t() * (1.0f / (float)(1 << state.samplerID.height0Shift));
|
|
} else if (state.textureProj) {
|
|
GetTextureCoordinatesProj(v0, v1, (float)(steps - i) / steps1, s, t);
|
|
GetTextureCoordinatesProj(v0, v1, (float)(steps - i - 1) / steps1, s1, t1);
|
|
} else {
|
|
// Texture coordinate interpolation must definitely be perspective-correct.
|
|
GetTextureCoordinates(v0, v1, (float)(steps - i) / steps1, s, t);
|
|
GetTextureCoordinates(v0, v1, (float)(steps - i - 1) / steps1, s1, t1);
|
|
}
|
|
|
|
// If inc is 0, force the delta to zero.
|
|
float ds = xinc == 0.0 ? 0.0f : (s1 - s) * (float)SCREEN_SCALE_FACTOR * (1.0f / xinc);
|
|
float dt = yinc == 0.0 ? 0.0f : (t1 - t) * (float)SCREEN_SCALE_FACTOR * (1.0f / yinc);
|
|
float w = (v0.clipw * (float)(steps - i) + v1.clipw * (float)i) / steps1;
|
|
|
|
int texLevel;
|
|
int texLevelFrac;
|
|
bool texBilinear;
|
|
CalculateSamplingParams(ds, dt, w, state, texLevel, texLevelFrac, texBilinear);
|
|
|
|
if (state.antialiasLines) {
|
|
// TODO: This is a naive and wrong implementation.
|
|
DrawingCoords p0 = TransformUnit::ScreenToDrawing(x, y);
|
|
s = ((float)p0.x + xinc / 32.0f) / 512.0f;
|
|
t = ((float)p0.y + yinc / 32.0f) / 512.0f;
|
|
|
|
texBilinear = true;
|
|
}
|
|
|
|
PROFILE_THIS_SCOPE("sampler");
|
|
prim_color = ApplyTexturingSingle(s, t, ToVec4IntArg(prim_color), texLevel, texLevelFrac, texBilinear, state);
|
|
}
|
|
|
|
if (!pixelID.clearMode)
|
|
prim_color += Vec4<int>(sec_color, 0);
|
|
|
|
PROFILE_THIS_SCOPE("draw_px");
|
|
state.drawPixel(p.x, p.y, z, fog, ToVec4IntArg(prim_color), pixelID);
|
|
|
|
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
|
|
uint32_t bpp = pixelID.FBFormat() == GE_FORMAT_8888 ? 4 : 2;
|
|
uint32_t row = gstate.getFrameBufAddress() + p.y * pixelID.cached.framebufStride * bpp;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * bpp, bpp, tag.c_str(), tag.size());
|
|
|
|
if (pixelID.depthWrite) {
|
|
uint32_t row = gstate.getDepthBufAddress() + y * pixelID.cached.depthbufStride * 2;
|
|
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * 2, 2, ztag.c_str(), ztag.size());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
x += xinc;
|
|
y += yinc;
|
|
z += zinc;
|
|
}
|
|
}
|
|
|
|
bool GetCurrentTexture(GPUDebugBuffer &buffer, int level)
|
|
{
|
|
if (!gstate.isTextureMapEnabled()) {
|
|
return false;
|
|
}
|
|
|
|
GETextureFormat texfmt = gstate.getTextureFormat();
|
|
u32 texaddr = gstate.getTextureAddress(level);
|
|
u32 texbufw = GetTextureBufw(level, texaddr, texfmt);
|
|
int w = gstate.getTextureWidth(level);
|
|
int h = gstate.getTextureHeight(level);
|
|
|
|
u32 sizeInBits = textureBitsPerPixel[texfmt] * (texbufw * (h - 1) + w);
|
|
if (!texaddr || !Memory::IsValidRange(texaddr, sizeInBits / 8))
|
|
return false;
|
|
// We'll break trying to allocate this much.
|
|
if (w >= 0x8000 && h >= 0x8000)
|
|
return false;
|
|
|
|
buffer.Allocate(w, h, GE_FORMAT_8888, false);
|
|
|
|
SamplerID id;
|
|
ComputeSamplerID(&id);
|
|
id.cached.clut = clut;
|
|
|
|
// Slight annoyance, we may have to force a compile.
|
|
Sampler::FetchFunc sampler = Sampler::GetFetchFunc(id, nullptr);
|
|
if (!sampler) {
|
|
Sampler::FlushJit();
|
|
sampler = Sampler::GetFetchFunc(id, nullptr);
|
|
if (!sampler)
|
|
return false;
|
|
}
|
|
|
|
u8 *texptr = Memory::GetPointerWrite(texaddr);
|
|
u32 *row = (u32 *)buffer.GetData();
|
|
for (int y = 0; y < h; ++y) {
|
|
for (int x = 0; x < w; ++x) {
|
|
row[x] = Vec4<int>(sampler(x, y, texptr, texbufw, level, id)).ToRGBA();
|
|
}
|
|
row += w;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|