ppsspp/Common/VR/VRMath.cpp

243 lines
6.1 KiB
C++

#define _USE_MATH_DEFINES
#include <cmath>
#include <cstring>
#include "VRMath.h"
float ToDegrees(float rad) {
return (float)(rad / M_PI * 180.0f);
}
float ToRadians(float deg) {
return (float)(deg * M_PI / 180.0f);
}
bool IsMatrixIdentity(float* matrix) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
float value = matrix[i * 4 + j];
// Other number than zero on non-diagonale
if ((i != j) && (fabs(value) > EPSILON)) return false;
// Other number than one on diagonale
if ((i == j) && (fabs(value - 1.0f) > EPSILON)) return false;
}
}
return true;
}
/*
================================================================================
XrPosef
================================================================================
*/
XrPosef XrPosef_Identity() {
XrPosef r;
r.orientation.x = 0;
r.orientation.y = 0;
r.orientation.z = 0;
r.orientation.w = 1;
r.position.x = 0;
r.position.y = 0;
r.position.z = 0;
return r;
}
XrPosef XrPosef_Inverse(const XrPosef a) {
XrPosef b;
b.orientation = XrQuaternionf_Inverse(a.orientation);
b.position = XrQuaternionf_Rotate(b.orientation, XrVector3f_ScalarMultiply(a.position, -1.0f));
return b;
}
/*
================================================================================
XrQuaternionf
================================================================================
*/
XrQuaternionf XrQuaternionf_CreateFromVectorAngle(const XrVector3f axis, const float angle) {
XrQuaternionf r;
if (XrVector3f_LengthSquared(axis) == 0.0f) {
r.x = 0;
r.y = 0;
r.z = 0;
r.w = 1;
return r;
}
XrVector3f unitAxis = XrVector3f_Normalized(axis);
float sinHalfAngle = sinf(angle * 0.5f);
r.w = cosf(angle * 0.5f);
r.x = unitAxis.x * sinHalfAngle;
r.y = unitAxis.y * sinHalfAngle;
r.z = unitAxis.z * sinHalfAngle;
return r;
}
XrQuaternionf XrQuaternionf_Inverse(const XrQuaternionf q) {
XrQuaternionf r;
r.x = -q.x;
r.y = -q.y;
r.z = -q.z;
r.w = q.w;
return r;
}
XrQuaternionf XrQuaternionf_Multiply(const XrQuaternionf a, const XrQuaternionf b) {
XrQuaternionf c;
c.x = a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y;
c.y = a.w * b.y - a.x * b.z + a.y * b.w + a.z * b.x;
c.z = a.w * b.z + a.x * b.y - a.y * b.x + a.z * b.w;
c.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;
return c;
}
XrVector3f XrQuaternionf_Rotate(const XrQuaternionf a, const XrVector3f v) {
XrVector3f r;
XrQuaternionf q = {v.x, v.y, v.z, 0.0f};
XrQuaternionf aq = XrQuaternionf_Multiply(a, q);
XrQuaternionf aInv = XrQuaternionf_Inverse(a);
XrQuaternionf aqaInv = XrQuaternionf_Multiply(aq, aInv);
r.x = aqaInv.x;
r.y = aqaInv.y;
r.z = aqaInv.z;
return r;
}
XrVector3f XrQuaternionf_ToEulerAngles(const XrQuaternionf q) {
float M[16];
XrQuaternionf_ToMatrix4f( &q, M);
XrVector4f v1 = {0, 0, -1, 0};
XrVector4f v2 = {1, 0, 0, 0};
XrVector4f v3 = {0, 1, 0, 0};
XrVector4f forwardInVRSpace = XrVector4f_MultiplyMatrix4f(M, &v1);
XrVector4f rightInVRSpace = XrVector4f_MultiplyMatrix4f(M, &v2);
XrVector4f upInVRSpace = XrVector4f_MultiplyMatrix4f(M, &v3);
XrVector3f forward = {-forwardInVRSpace.z, -forwardInVRSpace.x, forwardInVRSpace.y};
XrVector3f right = {-rightInVRSpace.z, -rightInVRSpace.x, rightInVRSpace.y};
XrVector3f up = {-upInVRSpace.z, -upInVRSpace.x, upInVRSpace.y};
XrVector3f forwardNormal = XrVector3f_Normalized(forward);
XrVector3f rightNormal = XrVector3f_Normalized(right);
XrVector3f upNormal = XrVector3f_Normalized(up);
return XrVector3f_GetAnglesFromVectors(forwardNormal, rightNormal, upNormal);
}
void XrQuaternionf_ToMatrix4f(const XrQuaternionf* q, float* matrix) {
const float ww = q->w * q->w;
const float xx = q->x * q->x;
const float yy = q->y * q->y;
const float zz = q->z * q->z;
float M[4][4];
M[0][0] = ww + xx - yy - zz;
M[0][1] = 2 * (q->x * q->y - q->w * q->z);
M[0][2] = 2 * (q->x * q->z + q->w * q->y);
M[0][3] = 0;
M[1][0] = 2 * (q->x * q->y + q->w * q->z);
M[1][1] = ww - xx + yy - zz;
M[1][2] = 2 * (q->y * q->z - q->w * q->x);
M[1][3] = 0;
M[2][0] = 2 * (q->x * q->z - q->w * q->y);
M[2][1] = 2 * (q->y * q->z + q->w * q->x);
M[2][2] = ww - xx - yy + zz;
M[2][3] = 0;
M[3][0] = 0;
M[3][1] = 0;
M[3][2] = 0;
M[3][3] = 1;
memcpy(matrix, &M, sizeof(float) * 16);
}
/*
================================================================================
XrVector3f, XrVector4f
================================================================================
*/
float XrVector3f_LengthSquared(const XrVector3f v) {
return v.x * v.x + v.y * v.y + v.z * v.z;;
}
XrVector3f XrVector3f_GetAnglesFromVectors(const XrVector3f forward, const XrVector3f right, const XrVector3f up) {
float sr, sp, sy, cr, cp, cy;
sp = -forward.z;
float cp_x_cy = forward.x;
float cp_x_sy = forward.y;
float cp_x_sr = -right.z;
float cp_x_cr = up.z;
float yaw = atan2(cp_x_sy, cp_x_cy);
float roll = atan2(cp_x_sr, cp_x_cr);
cy = cos(yaw);
sy = sin(yaw);
cr = cos(roll);
sr = sin(roll);
if (fabs(cy) > EPSILON) {
cp = cp_x_cy / cy;
} else if (fabs(sy) > EPSILON) {
cp = cp_x_sy / sy;
} else if (fabs(sr) > EPSILON) {
cp = cp_x_sr / sr;
} else if (fabs(cr) > EPSILON) {
cp = cp_x_cr / cr;
} else {
cp = cos(asin(sp));
}
float pitch = atan2(sp, cp);
XrVector3f angles;
angles.x = ToDegrees(pitch);
angles.y = ToDegrees(yaw);
angles.z = ToDegrees(roll);
return angles;
}
XrVector3f XrVector3f_Normalized(const XrVector3f v) {
float rcpLen = 1.0f / sqrtf(XrVector3f_LengthSquared(v));
return XrVector3f_ScalarMultiply(v, rcpLen);
}
XrVector3f XrVector3f_ScalarMultiply(const XrVector3f v, float scale) {
XrVector3f u;
u.x = v.x * scale;
u.y = v.y * scale;
u.z = v.z * scale;
return u;
}
XrVector4f XrVector4f_MultiplyMatrix4f(const float* m, const XrVector4f* v) {
float M[4][4];
memcpy(&M, m, sizeof(float) * 16);
XrVector4f out;
out.x = M[0][0] * v->x + M[0][1] * v->y + M[0][2] * v->z + M[0][3] * v->w;
out.y = M[1][0] * v->x + M[1][1] * v->y + M[1][2] * v->z + M[1][3] * v->w;
out.z = M[2][0] * v->x + M[2][1] * v->y + M[2][2] * v->z + M[2][3] * v->w;
out.w = M[3][0] * v->x + M[3][1] * v->y + M[3][2] * v->z + M[3][3] * v->w;
return out;
}