ppsspp/Core/Font/PGF.cpp

731 lines
22 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
// ============== NOTE!!!!
// Thanks to the JPCSP project! This sceFont implementation is basically a C++ take on JPCSP's font code.
// Some parts, especially in this file, were simply copied, so I guess this really makes this file GPL3.
#include <algorithm>
#include "Common/Serialize/Serializer.h"
#include "Common/Serialize/SerializeFuncs.h"
#include "Core/MemMap.h"
#include "Core/Reporting.h"
#include "Core/Font/PGF.h"
#include "Core/HLE/HLE.h"
#include "GPU/GPUInterface.h"
#include "GPU/GPUState.h"
// These fonts, created by ttf2pgf, don't have complete glyph info and need to be identified.
static bool isJPCSPFont(const char *fontName) {
return !strcmp(fontName, "Liberation Sans") || !strcmp(fontName, "Liberation Serif") || !strcmp(fontName, "Sazanami") || !strcmp(fontName, "UnDotum") || !strcmp(fontName, "Microsoft YaHei");
}
// Gets a number of bits from an offset.
static int getBits(int numBits, const u8 *buf, size_t pos) {
_dbg_assert_msg_(numBits <= 32, "Unable to return more than 32 bits, %d requested", numBits);
const size_t wordpos = pos >> 5;
const u32_le *wordbuf = (const u32_le *)buf;
const u8 bitoff = pos & 31;
// Might just be in one, has to be within two.
if (bitoff + numBits < 32) {
const u32 mask = (1 << numBits) - 1;
return (wordbuf[wordpos] >> bitoff) & mask;
} else {
int v = wordbuf[wordpos] >> bitoff;
const u8 done = 32 - bitoff;
const u8 remaining = numBits - done;
if (remaining > 0) {
const u32 mask = (1 << remaining) - 1;
v |= (wordbuf[wordpos + 1] & mask) << done;
}
return v;
}
}
static inline int consumeBits(int numBits, const u8 *buf, size_t &pos) {
int v = getBits(numBits, buf, pos);
pos += numBits;
return v;
}
static std::vector<int> getTable(const u8 *buf, int bpe, size_t length) {
std::vector<int> vec;
vec.resize(length);
for (size_t i = 0; i < length; i++) {
vec[i] = getBits(bpe, buf, bpe * i);
}
return vec;
}
PGF::PGF()
: fontData(0) {
}
PGF::~PGF() {
delete [] fontData;
}
struct GlyphFromPGF1State {
int x;
int y;
int w;
int h;
int left;
int top;
int flags;
int shadowID;
int advanceH;
int advanceV;
int dimensionWidth, dimensionHeight;
int xAdjustH, xAdjustV;
int yAdjustH, yAdjustV;
u32 ptr;
operator Glyph() {
Glyph ret;
ret.w = w;
ret.h = h;
ret.left = left;
ret.top = top;
ret.flags = flags;
// Wasn't read before.
ret.shadowFlags = 0;
ret.shadowID = shadowID;
ret.advanceH = advanceH;
ret.advanceV = advanceV;
ret.dimensionWidth = dimensionWidth;
ret.dimensionHeight = dimensionHeight;
ret.xAdjustH = xAdjustH;
ret.xAdjustV = xAdjustV;
ret.yAdjustH = yAdjustH;
ret.yAdjustV = yAdjustV;
ret.ptr = ptr;
return ret;
}
};
void PGF::DoState(PointerWrap &p) {
auto s = p.Section("PGF", 1, 2);
if (!s)
return;
Do(p, header);
Do(p, rev3extra);
// Don't savestate size_t directly, 32-bit and 64-bit are different.
u32 fontDataSizeTemp = (u32)fontDataSize;
Do(p, fontDataSizeTemp);
fontDataSize = (size_t)fontDataSizeTemp;
if (p.mode == p.MODE_READ) {
delete [] fontData;
if (fontDataSize) {
fontData = new u8[fontDataSize];
DoArray(p, fontData, (int)fontDataSize);
}
} else if (fontDataSize) {
DoArray(p, fontData, (int)fontDataSize);
}
Do(p, fileName);
DoArray(p, dimensionTable, ARRAY_SIZE(dimensionTable));
DoArray(p, xAdjustTable, ARRAY_SIZE(xAdjustTable));
DoArray(p, yAdjustTable, ARRAY_SIZE(yAdjustTable));
DoArray(p, advanceTable, ARRAY_SIZE(advanceTable));
DoArray(p, charmapCompressionTable1, ARRAY_SIZE(charmapCompressionTable1));
DoArray(p, charmapCompressionTable2, ARRAY_SIZE(charmapCompressionTable2));
Do(p, charmap_compr);
Do(p, charmap);
if (s == 1) {
std::vector<GlyphFromPGF1State> oldGlyphs;
Do(p, oldGlyphs);
glyphs.resize(oldGlyphs.size());
for (size_t i = 0; i < oldGlyphs.size(); ++i) {
glyphs[i] = oldGlyphs[i];
}
Do(p, oldGlyphs);
shadowGlyphs.resize(oldGlyphs.size());
for (size_t i = 0; i < oldGlyphs.size(); ++i) {
shadowGlyphs[i] = oldGlyphs[i];
}
} else {
Do(p, glyphs);
Do(p, shadowGlyphs);
}
Do(p, firstGlyph);
}
bool PGF::ReadPtr(const u8 *ptr, size_t dataSize) {
const u8 *const startPtr = ptr;
if (dataSize < sizeof(header)) {
return false;
}
DEBUG_LOG(Log::sceFont, "Reading %d bytes of PGF header", (int)sizeof(header));
memcpy(&header, ptr, sizeof(header));
ptr += sizeof(header);
fileName = header.fontName;
if (header.revision == 3) {
memcpy(&rev3extra, ptr, sizeof(rev3extra));
rev3extra.compCharMapLength1 &= 0xFFFF;
rev3extra.compCharMapLength2 &= 0xFFFF;
ptr += sizeof(rev3extra);
}
const u32_le *wptr = (const u32_le *)ptr;
dimensionTable[0].resize(header.dimTableLength);
dimensionTable[1].resize(header.dimTableLength);
for (int i = 0; i < header.dimTableLength; i++) {
dimensionTable[0][i] = *wptr++;
dimensionTable[1][i] = *wptr++;
}
xAdjustTable[0].resize(header.xAdjustTableLength);
xAdjustTable[1].resize(header.xAdjustTableLength);
for (int i = 0; i < header.xAdjustTableLength; i++) {
xAdjustTable[0][i] = *wptr++;
xAdjustTable[1][i] = *wptr++;
}
yAdjustTable[0].resize(header.yAdjustTableLength);
yAdjustTable[1].resize(header.yAdjustTableLength);
for (int i = 0; i < header.yAdjustTableLength; i++) {
yAdjustTable[0][i] = *wptr++;
yAdjustTable[1][i] = *wptr++;
}
advanceTable[0].resize(header.advanceTableLength);
advanceTable[1].resize(header.advanceTableLength);
for (int i = 0; i < header.advanceTableLength; i++) {
advanceTable[0][i] = *wptr++;
advanceTable[1][i] = *wptr++;
}
const u8 *uptr = (const u8 *)wptr;
int shadowCharMapSize = ((header.shadowMapLength * header.shadowMapBpe + 31) & ~31) / 8;
const u8 *shadowCharMap = uptr;
uptr += shadowCharMapSize;
if (uptr < startPtr || uptr >= startPtr + dataSize) {
return false;
}
const u16_le *sptr = (const u16_le *)uptr;
if (header.revision == 3) {
charmapCompressionTable1[0].resize(rev3extra.compCharMapLength1);
charmapCompressionTable1[1].resize(rev3extra.compCharMapLength1);
for (int i = 0; i < rev3extra.compCharMapLength1; i++) {
charmapCompressionTable1[0][i] = *sptr++;
charmapCompressionTable1[1][i] = *sptr++;
}
charmapCompressionTable2[0].resize(rev3extra.compCharMapLength2);
charmapCompressionTable2[1].resize(rev3extra.compCharMapLength2);
for (int i = 0; i < rev3extra.compCharMapLength2; i++) {
charmapCompressionTable2[0][i] = *sptr++;
charmapCompressionTable2[1][i] = *sptr++;
}
}
uptr = (const u8 *)sptr;
int charMapSize = ((header.charMapLength * header.charMapBpe + 31) & ~31) / 8;
const u8 *charMap = uptr;
uptr += charMapSize;
int charPointerSize = (((header.charPointerLength * header.charPointerBpe + 31) & ~31) / 8);
const u8 *charPointerTable = uptr;
uptr += charPointerSize;
if (uptr < startPtr || uptr >= startPtr + dataSize) {
return false;
}
// PGF Fontdata.
u32 fontDataOffset = (u32)(uptr - startPtr);
fontDataSize = dataSize - fontDataOffset;
fontData = new u8[fontDataSize];
memcpy(fontData, uptr, fontDataSize);
// charmap.resize();
charmap.resize(header.charMapLength);
int charmap_compr_len = header.revision == 3 ? 7 : 1;
charmap_compr.resize(charmap_compr_len * 4);
glyphs.resize(header.charPointerLength);
shadowGlyphs.resize(header.charPointerLength);
firstGlyph = header.firstGlyph;
// Parse out the char map (array where each entry is an irregular number of bits)
// BPE = bits per entry, I think.
for (int i = 0; i < header.charMapLength; i++) {
charmap[i] = getBits(header.charMapBpe, charMap, i * header.charMapBpe);
// This check seems a little odd.
if ((size_t)charmap[i] >= glyphs.size())
charmap[i] = 65535;
}
std::vector<int> charPointers = getTable(charPointerTable, header.charPointerBpe, glyphs.size());
std::vector<int> shadowMap = getTable(shadowCharMap, header.shadowMapBpe, (s32)header.shadowMapLength);
// Pregenerate glyphs.
for (size_t i = 0; i < glyphs.size(); i++) {
ReadCharGlyph(fontData, charPointers[i] * 4 * 8 /* ??? */, glyphs[i]);
}
// And shadow glyphs.
for (size_t i = 0; i < glyphs.size(); i++) {
size_t shadowId = glyphs[i].shadowID;
if (shadowId < shadowMap.size()) {
size_t charId = shadowMap[shadowId];
if (charId < shadowGlyphs.size()) {
// TODO: check for pre existing shadow glyph
ReadShadowGlyph(fontData, charPointers[charId] * 4 * 8 /* ??? */, shadowGlyphs[charId]);
}
}
}
return true;
}
int PGF::GetCharIndex(int charCode, const std::vector<int> &charmapCompressed) {
int charIndex = 0;
for (size_t i = 0; i < charmapCompressed.size(); i += 2) {
if (charCode >= charmapCompressed[i] && charCode < charmapCompressed[i] + charmapCompressed[i + 1]) {
charIndex += charCode - charmapCompressed[i];
return charIndex;
}
charIndex += charmapCompressed[i + 1];
}
return -1;
}
bool PGF::GetCharInfo(int charCode, PGFCharInfo *charInfo, int altCharCode, int glyphType) const {
Glyph glyph;
memset(charInfo, 0, sizeof(*charInfo));
if (!GetCharGlyph(charCode, glyphType, glyph)) {
if (charCode < firstGlyph) {
// Character not in font, return zeroed charInfo as on real PSP.
return false;
}
if (!GetCharGlyph(altCharCode, glyphType, glyph)) {
return false;
}
}
charInfo->bitmapWidth = glyph.w;
charInfo->bitmapHeight = glyph.h;
charInfo->bitmapLeft = glyph.left;
charInfo->bitmapTop = glyph.top;
charInfo->sfp26Width = glyph.dimensionWidth;
charInfo->sfp26Height = glyph.dimensionHeight;
charInfo->sfp26Ascender = glyph.yAdjustH;
// Font y goes upwards. If top is 10 and height is 11, the descender is approx. -1 (below 0.)
charInfo->sfp26Descender = charInfo->sfp26Ascender - (s32)charInfo->sfp26Height;
charInfo->sfp26BearingHX = glyph.xAdjustH;
charInfo->sfp26BearingHY = glyph.yAdjustH;
charInfo->sfp26BearingVX = glyph.xAdjustV;
charInfo->sfp26BearingVY = glyph.yAdjustV;
charInfo->sfp26AdvanceH = glyph.advanceH;
charInfo->sfp26AdvanceV = glyph.advanceV;
charInfo->shadowFlags = glyph.shadowFlags;
charInfo->shadowId = glyph.shadowID;
return true;
}
void PGF::GetFontInfo(PGFFontInfo *fi) const {
fi->maxGlyphWidthI = header.maxSize[0];
fi->maxGlyphHeightI = header.maxSize[1];
fi->maxGlyphAscenderI = header.maxAscender;
fi->maxGlyphDescenderI = header.maxDescender;
fi->maxGlyphLeftXI = header.maxLeftXAdjust;
fi->maxGlyphBaseYI = header.maxBaseYAdjust;
fi->minGlyphCenterXI = header.minCenterXAdjust;
fi->maxGlyphTopYI = header.maxTopYAdjust;
fi->maxGlyphAdvanceXI = header.maxAdvance[0];
fi->maxGlyphAdvanceYI = header.maxAdvance[1];
fi->maxGlyphWidthF = (float)header.maxSize[0] / 64.0f;
fi->maxGlyphHeightF = (float)header.maxSize[1] / 64.0f;
fi->maxGlyphAscenderF = (float)header.maxAscender / 64.0f;
fi->maxGlyphDescenderF = (float)header.maxDescender / 64.0f;
fi->maxGlyphLeftXF = (float)header.maxLeftXAdjust / 64.0f;
fi->maxGlyphBaseYF = (float)header.maxBaseYAdjust / 64.0f;
fi->minGlyphCenterXF = (float)header.minCenterXAdjust / 64.0f;
fi->maxGlyphTopYF = (float)header.maxTopYAdjust / 64.0f;
fi->maxGlyphAdvanceXF = (float)header.maxAdvance[0] / 64.0f;
fi->maxGlyphAdvanceYF = (float)header.maxAdvance[1] / 64.0f;
fi->maxGlyphWidth = header.maxGlyphWidth;
fi->maxGlyphHeight = header.maxGlyphHeight;
fi->numGlyphs = header.charPointerLength;
fi->shadowMapLength = 0; // header.shadowMapLength; TODO
fi->BPP = header.bpp;
}
bool PGF::ReadShadowGlyph(const u8 *fontdata, size_t charPtr, Glyph &glyph) {
// Most of the glyph info is from the char data.
if (!ReadCharGlyph(fontdata, charPtr, glyph))
return false;
// Skip over the char data.
if (charPtr + 96 > fontDataSize * 8)
return false;
charPtr += getBits(14, fontdata, charPtr) * 8;
if (charPtr + 96 > fontDataSize * 8)
return false;
// Skip size.
charPtr += 14;
glyph.w = consumeBits(7, fontdata, charPtr);
glyph.h = consumeBits(7, fontdata, charPtr);
glyph.left = consumeBits(7, fontdata, charPtr);
if (glyph.left >= 64) {
glyph.left -= 128;
}
glyph.top = consumeBits(7, fontdata, charPtr);
if (glyph.top >= 64) {
glyph.top -= 128;
}
glyph.ptr = (u32)(charPtr / 8);
return true;
}
bool PGF::ReadCharGlyph(const u8 *fontdata, size_t charPtr, Glyph &glyph) {
// Skip size.
charPtr += 14;
glyph.w = consumeBits(7, fontdata, charPtr);
glyph.h = consumeBits(7, fontdata, charPtr);
glyph.left = consumeBits(7, fontdata, charPtr);
if (glyph.left >= 64) {
glyph.left -= 128;
}
glyph.top = consumeBits(7, fontdata, charPtr);
if (glyph.top >= 64) {
glyph.top -= 128;
}
glyph.flags = consumeBits(6, fontdata, charPtr);
glyph.shadowFlags = consumeBits(2, fontdata, charPtr) << (2 + 3);
glyph.shadowFlags |= consumeBits(2, fontdata, charPtr) << 3;
glyph.shadowFlags |= consumeBits(3, fontdata, charPtr);
glyph.shadowID = consumeBits(9, fontdata, charPtr);
if ((glyph.flags & FONT_PGF_METRIC_DIMENSION_INDEX) == FONT_PGF_METRIC_DIMENSION_INDEX)
{
int dimensionIndex = consumeBits(8, fontdata, charPtr);
if (dimensionIndex < header.dimTableLength) {
glyph.dimensionWidth = dimensionTable[0][dimensionIndex];
glyph.dimensionHeight = dimensionTable[1][dimensionIndex];
}
if (dimensionIndex == 0 && isJPCSPFont(fileName.c_str())) {
// Fonts created by ttf2pgf do not contain complete Glyph information.
// Provide default values.
glyph.dimensionWidth = glyph.w << 6;
glyph.dimensionHeight = glyph.h << 6;
}
}
else
{
glyph.dimensionWidth = consumeBits(32, fontdata, charPtr);
glyph.dimensionHeight = consumeBits(32, fontdata, charPtr);
}
if ((glyph.flags & FONT_PGF_METRIC_BEARING_X_INDEX) == FONT_PGF_METRIC_BEARING_X_INDEX)
{
int xAdjustIndex = consumeBits(8, fontdata, charPtr);
if (xAdjustIndex < header.xAdjustTableLength) {
glyph.xAdjustH = xAdjustTable[0][xAdjustIndex];
glyph.xAdjustV = xAdjustTable[1][xAdjustIndex];
}
if (xAdjustIndex == 0 && isJPCSPFont(fileName.c_str()))
{
// Fonts created by ttf2pgf do not contain complete Glyph information.
// Provide default values.
glyph.xAdjustH = glyph.left << 6;
glyph.xAdjustV = glyph.left << 6;
}
}
else
{
glyph.xAdjustH = consumeBits(32, fontdata, charPtr);
glyph.xAdjustV = consumeBits(32, fontdata, charPtr);
}
if ((glyph.flags & FONT_PGF_METRIC_BEARING_Y_INDEX) == FONT_PGF_METRIC_BEARING_Y_INDEX)
{
int yAdjustIndex = consumeBits(8, fontdata, charPtr);
if (yAdjustIndex < header.yAdjustTableLength) {
glyph.yAdjustH = yAdjustTable[0][yAdjustIndex];
glyph.yAdjustV = yAdjustTable[1][yAdjustIndex];
}
if (yAdjustIndex == 0 && isJPCSPFont(fileName.c_str()))
{
// Fonts created by ttf2pgf do not contain complete Glyph information.
// Provide default values.
glyph.yAdjustH = glyph.top << 6;
glyph.yAdjustV = glyph.top << 6;
}
}
else
{
glyph.yAdjustH = consumeBits(32, fontdata, charPtr);
glyph.yAdjustV = consumeBits(32, fontdata, charPtr);
}
if ((glyph.flags & FONT_PGF_METRIC_ADVANCE_INDEX) == FONT_PGF_METRIC_ADVANCE_INDEX)
{
int advanceIndex = consumeBits(8, fontdata, charPtr);
if (advanceIndex < header.advanceTableLength) {
glyph.advanceH = advanceTable[0][advanceIndex];
glyph.advanceV = advanceTable[1][advanceIndex];
}
}
else
{
glyph.advanceH = consumeBits(32, fontdata, charPtr);
glyph.advanceV = consumeBits(32, fontdata, charPtr);
}
glyph.ptr = (u32)(charPtr / 8);
return true;
}
bool PGF::GetCharGlyph(int charCode, int glyphType, Glyph &glyph) const {
if (charCode < firstGlyph)
return false;
charCode -= firstGlyph;
if (charCode < (int)charmap.size()) {
charCode = charmap[charCode];
}
if (glyphType == FONT_PGF_CHARGLYPH) {
if (charCode >= (int)glyphs.size())
return false;
glyph = glyphs[charCode];
} else {
if (charCode >= (int)shadowGlyphs.size())
return false;
glyph = shadowGlyphs[charCode];
}
return true;
}
void PGF::DrawCharacter(const GlyphImage *image, int clipX, int clipY, int clipWidth, int clipHeight, int charCode, int altCharCode, int glyphType) const {
Glyph glyph;
if (!GetCharGlyph(charCode, glyphType, glyph)) {
if (charCode < firstGlyph) {
// Don't draw anything if the character is before the first available glyph.
return;
}
// No Glyph available for this charCode, try to use the alternate char.
charCode = altCharCode;
if (!GetCharGlyph(charCode, glyphType, glyph)) {
return;
}
}
if (glyph.w <= 0 || glyph.h <= 0) {
DEBUG_LOG(Log::sceFont, "Glyph with negative size, not rendering");
return;
}
if (((glyph.flags & FONT_PGF_BMP_OVERLAY) != FONT_PGF_BMP_H_ROWS) &&
((glyph.flags & FONT_PGF_BMP_OVERLAY) != FONT_PGF_BMP_V_ROWS)) {
ERROR_LOG_REPORT(Log::sceFont, "Nonsense glyph bitmap direction flag");
return;
}
size_t bitPtr = glyph.ptr * 8;
int numberPixels = glyph.w * glyph.h;
int pixelIndex = 0;
int x = image->xPos64 >> 6;
int y = image->yPos64 >> 6;
u8 xFrac = image->xPos64 & 0x3F;
u8 yFrac = image->yPos64 & 0x3F;
// Negative means don't clip on that side.
if (clipX < 0)
clipX = 0;
if (clipY < 0)
clipY = 0;
if (clipWidth < 0)
clipWidth = 8192;
if (clipHeight < 0)
clipHeight = 8192;
// Use a buffer so we can apply subpixel rendering.
// TODO: Cache this buffer per glyph? Maybe even transpose it first?
std::vector<u8> decodedPixels;
decodedPixels.resize(numberPixels);
while (pixelIndex < numberPixels && bitPtr + 8 < fontDataSize * 8) {
// This is some kind of nibble based RLE compression.
int nibble = consumeBits(4, fontData, bitPtr);
int count;
int value = 0;
if (nibble < 8) {
value = consumeBits(4, fontData, bitPtr);
count = nibble + 1;
} else {
count = 16 - nibble;
}
for (int i = 0; i < count && pixelIndex < numberPixels; i++) {
if (nibble >= 8) {
value = consumeBits(4, fontData, bitPtr);
}
decodedPixels[pixelIndex++] = value | (value << 4);
}
}
auto samplePixel = [&](int xx, int yy) -> u8 {
if (xx < 0 || yy < 0 || xx >= glyph.w || yy >= glyph.h) {
return 0;
}
int index;
if ((glyph.flags & FONT_PGF_BMP_OVERLAY) == FONT_PGF_BMP_H_ROWS) {
index = yy * glyph.w + xx;
} else {
index = xx * glyph.h + yy;
}
return decodedPixels[index];
};
int renderX1 = std::max(clipX, x) - x;
int renderY1 = std::max(clipY, y) - y;
// We can render up to frac beyond the glyph w/h, so add 1px if necessary.
int renderX2 = std::min(clipX + clipWidth - x, glyph.w + (xFrac > 0 ? 1 : 0));
int renderY2 = std::min(clipY + clipHeight - y, glyph.h + (yFrac > 0 ? 1 : 0));
if (xFrac == 0 && yFrac == 0) {
for (int yy = renderY1; yy < renderY2; ++yy) {
for (int xx = renderX1; xx < renderX2; ++xx) {
u8 pixelColor = samplePixel(xx, yy);
SetFontPixel(image->bufferPtr, image->bytesPerLine, image->bufWidth, image->bufHeight, x + xx, y + yy, pixelColor, (FontPixelFormat)(u32)image->pixelFormat);
}
}
} else {
for (int yy = renderY1; yy < renderY2; ++yy) {
for (int xx = renderX1; xx < renderX2; ++xx) {
// First, blend horizontally. Tests show we blend swizzled to 8 bit.
u32 horiz1 = samplePixel(xx - 1, yy - 1) * xFrac + samplePixel(xx, yy - 1) * (64 - xFrac);
u32 horiz2 = samplePixel(xx - 1, yy + 0) * xFrac + samplePixel(xx, yy + 0) * (64 - xFrac);
// Now blend those together vertically.
u32 blended = horiz1 * yFrac + horiz2 * (64 - yFrac);
// We multiplied an 8 bit value by 64 twice, so now we have a 20 bit value.
u8 pixelColor = blended >> 12;
SetFontPixel(image->bufferPtr, image->bytesPerLine, image->bufWidth, image->bufHeight, x + xx, y + yy, pixelColor, (FontPixelFormat)(u32)image->pixelFormat);
}
}
}
gpu->InvalidateCache(image->bufferPtr, image->bytesPerLine * image->bufHeight, GPU_INVALIDATE_SAFE);
}
void PGF::SetFontPixel(u32 base, int bpl, int bufWidth, int bufHeight, int x, int y, u8 pixelColor, FontPixelFormat pixelformat) const {
if (x < 0 || x >= bufWidth || y < 0 || y >= bufHeight) {
return;
}
static const u8 fontPixelSizeInBytes[] = { 0, 0, 1, 3, 4 }; // 0 means 2 pixels per byte
if (pixelformat < 0 || pixelformat > PSP_FONT_PIXELFORMAT_32) {
ERROR_LOG_REPORT_ONCE(pfgbadformat, Log::sceFont, "Invalid image format in image: %d", (int)pixelformat);
return;
}
int pixelBytes = fontPixelSizeInBytes[pixelformat];
int bufMaxWidth = (pixelBytes == 0 ? bpl * 2 : bpl / pixelBytes);
if (x >= bufMaxWidth) {
return;
}
int framebufferAddr = base + (y * bpl) + (pixelBytes == 0 ? x / 2 : x * pixelBytes);
switch (pixelformat) {
case PSP_FONT_PIXELFORMAT_4:
case PSP_FONT_PIXELFORMAT_4_REV:
{
// We always get a 8-bit value, so take only the top 4 bits.
const u8 pix4 = pixelColor >> 4;
int oldColor = Memory::Read_U8(framebufferAddr);
int newColor;
if ((x & 1) != pixelformat) {
newColor = (pix4 << 4) | (oldColor & 0xF);
} else {
newColor = (oldColor & 0xF0) | pix4;
}
Memory::Write_U8(newColor, framebufferAddr);
break;
}
case PSP_FONT_PIXELFORMAT_8:
{
Memory::Write_U8(pixelColor, framebufferAddr);
break;
}
case PSP_FONT_PIXELFORMAT_24:
{
// Each channel has the same value.
Memory::Write_U8(pixelColor, framebufferAddr + 0);
Memory::Write_U8(pixelColor, framebufferAddr + 1);
Memory::Write_U8(pixelColor, framebufferAddr + 2);
break;
}
case PSP_FONT_PIXELFORMAT_32:
{
// Spread the 8 bits out into one write of 32 bits.
u32 pix32 = pixelColor;
pix32 |= pix32 << 8;
pix32 |= pix32 << 16;
Memory::Write_U32(pix32, framebufferAddr);
break;
}
}
}