ppsspp/GPU/Software/Rasterizer.cpp
Henrik Rydgård 54823a87cc Oops
2019-10-28 13:13:52 +01:00

1738 lines
54 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include <cmath>
#include "base/basictypes.h"
#include "profiler/profiler.h"
#include "Common/ThreadPools.h"
#include "Common/ColorConv.h"
#include "Core/Config.h"
#include "Core/MemMap.h"
#include "Core/Reporting.h"
#include "GPU/GPUState.h"
#include "GPU/Common/TextureCacheCommon.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Software/SoftGpu.h"
#include "GPU/Software/Rasterizer.h"
#include "GPU/Software/Sampler.h"
#if defined(_M_SSE)
#include <emmintrin.h>
#endif
namespace Rasterizer {
// Only OK on x64 where our stack is aligned
#if defined(_M_SSE) && !defined(_M_IX86)
static inline __m128 Interpolate(const __m128 &c0, const __m128 &c1, const __m128 &c2, int w0, int w1, int w2, float wsum) {
__m128 v = _mm_mul_ps(c0, _mm_cvtepi32_ps(_mm_set1_epi32(w0)));
v = _mm_add_ps(v, _mm_mul_ps(c1, _mm_cvtepi32_ps(_mm_set1_epi32(w1))));
v = _mm_add_ps(v, _mm_mul_ps(c2, _mm_cvtepi32_ps(_mm_set1_epi32(w2))));
return _mm_mul_ps(v, _mm_set_ps1(wsum));
}
static inline __m128i Interpolate(const __m128i &c0, const __m128i &c1, const __m128i &c2, int w0, int w1, int w2, float wsum) {
return _mm_cvtps_epi32(Interpolate(_mm_cvtepi32_ps(c0), _mm_cvtepi32_ps(c1), _mm_cvtepi32_ps(c2), w0, w1, w2, wsum));
}
#endif
// NOTE: When not casting color0 and color1 to float vectors, this code suffers from severe overflow issues.
// Not sure if that should be regarded as a bug or if casting to float is a valid fix.
static inline Vec4<int> Interpolate(const Vec4<int> &c0, const Vec4<int> &c1, const Vec4<int> &c2, int w0, int w1, int w2, float wsum) {
#if defined(_M_SSE) && !defined(_M_IX86)
return Vec4<int>(Interpolate(c0.ivec, c1.ivec, c2.ivec, w0, w1, w2, wsum));
#else
return ((c0.Cast<float>() * w0 + c1.Cast<float>() * w1 + c2.Cast<float>() * w2) * wsum).Cast<int>();
#endif
}
static inline Vec3<int> Interpolate(const Vec3<int> &c0, const Vec3<int> &c1, const Vec3<int> &c2, int w0, int w1, int w2, float wsum) {
#if defined(_M_SSE) && !defined(_M_IX86)
return Vec3<int>(Interpolate(c0.ivec, c1.ivec, c2.ivec, w0, w1, w2, wsum));
#else
return ((c0.Cast<float>() * w0 + c1.Cast<float>() * w1 + c2.Cast<float>() * w2) * wsum).Cast<int>();
#endif
}
static inline Vec2<float> Interpolate(const Vec2<float> &c0, const Vec2<float> &c1, const Vec2<float> &c2, int w0, int w1, int w2, float wsum) {
#if defined(_M_SSE) && !defined(_M_IX86)
return Vec2<float>(Interpolate(c0.vec, c1.vec, c2.vec, w0, w1, w2, wsum));
#else
return (c0 * w0 + c1 * w1 + c2 * w2) * wsum;
#endif
}
static inline Vec4<float> Interpolate(const float &c0, const float &c1, const float &c2, const Vec4<float> &w0, const Vec4<float> &w1, const Vec4<float> &w2, const Vec4<float> &wsum_recip) {
#if defined(_M_SSE) && !defined(_M_IX86)
__m128 v = _mm_mul_ps(w0.vec, _mm_set1_ps(c0));
v = _mm_add_ps(v, _mm_mul_ps(w1.vec, _mm_set1_ps(c1)));
v = _mm_add_ps(v, _mm_mul_ps(w2.vec, _mm_set1_ps(c2)));
return _mm_mul_ps(v, wsum_recip.vec);
#else
return (w0 * c0 + w1 * c1 + w2 * c2) * wsum_recip;
#endif
}
static inline Vec4<float> Interpolate(const float &c0, const float &c1, const float &c2, const Vec4<int> &w0, const Vec4<int> &w1, const Vec4<int> &w2, const Vec4<float> &wsum_recip) {
return Interpolate(c0, c1, c2, w0.Cast<float>(), w1.Cast<float>(), w2.Cast<float>(), wsum_recip);
}
static inline u8 ClampFogDepth(float fogdepth) {
if (fogdepth <= 0.0f)
return 0;
else if (fogdepth >= 1.0f)
return 255;
else
return (u8)(u32)(fogdepth * 255.0f);
}
static inline int ClampUV(int v, int height) {
if (v >= height - 1)
return height - 1;
else if (v < 0)
return 0;
return v;
}
static inline int WrapUV(int v, int height) {
return v & (height - 1);
}
template <int N>
static inline void ApplyTexelClamp(int out_u[N], int out_v[N], const int u[N], const int v[N], int width, int height) {
if (gstate.isTexCoordClampedS()) {
for (int i = 0; i < N; ++i) {
out_u[i] = ClampUV(u[i], width);
}
} else {
for (int i = 0; i < N; ++i) {
out_u[i] = WrapUV(u[i], width);
}
}
if (gstate.isTexCoordClampedT()) {
for (int i = 0; i < N; ++i) {
out_v[i] = ClampUV(v[i], height);
}
} else {
for (int i = 0; i < N; ++i) {
out_v[i] = WrapUV(v[i], height);
}
}
}
template <int N>
static inline void ApplyTexelClampQuad(int out_u[N * 4], int out_v[N * 4], const int u[N], const int v[N], int width, int height) {
if (gstate.isTexCoordClampedS()) {
for (int i = 0; i < N * 4; ++i) {
out_u[i] = ClampUV(u[i >> 2] + (i & 1), width);
}
} else {
for (int i = 0; i < N * 4; ++i) {
out_u[i] = WrapUV(u[i >> 2] + (i & 1), width);
}
}
if (gstate.isTexCoordClampedT()) {
for (int i = 0; i < N * 4; ++i) {
out_v[i] = ClampUV(v[i >> 2] + ((i >> 1) & 1), height);
}
} else {
for (int i = 0; i < N * 4; ++i) {
out_v[i] = WrapUV(v[i >> 2] + ((i >> 1) & 1), height);
}
}
}
static inline void GetTexelCoordinates(int level, float s, float t, int& out_u, int& out_v)
{
int width = gstate.getTextureWidth(level);
int height = gstate.getTextureHeight(level);
int base_u = (int)(s * width * 256.0f + 0.375f);
int base_v = (int)(t * height * 256.0f + 0.375f);
base_u >>= 8;
base_v >>= 8;
ApplyTexelClamp<1>(&out_u, &out_v, &base_u, &base_v, width, height);
}
static inline void GetTexelCoordinatesQuad(int level, float in_s, float in_t, int u[4], int v[4], int &frac_u, int &frac_v)
{
// 8 bits of fractional UV
int width = gstate.getTextureWidth(level);
int height = gstate.getTextureHeight(level);
int base_u = (int)(in_s * width * 256.0f + 0.375f) - 128;
int base_v = (int)(in_t * height * 256.0f + 0.375f) - 128;
frac_u = (int)(base_u) & 0xff;
frac_v = (int)(base_v) & 0xff;
base_u >>= 8;
base_v >>= 8;
// Need to generate and individually wrap/clamp the four sample coordinates. Ugh.
ApplyTexelClampQuad<1>(u, v, &base_u, &base_v, width, height);
}
static inline void GetTextureCoordinates(const VertexData& v0, const VertexData& v1, const float p, float &s, float &t) {
switch (gstate.getUVGenMode()) {
case GE_TEXMAP_TEXTURE_COORDS:
case GE_TEXMAP_UNKNOWN:
case GE_TEXMAP_ENVIRONMENT_MAP:
case GE_TEXMAP_TEXTURE_MATRIX:
{
// TODO: What happens if vertex has no texture coordinates?
// Note that for environment mapping, texture coordinates have been calculated during lighting
float q0 = 1.f / v0.clippos.w;
float q1 = 1.f / v1.clippos.w;
float wq0 = p * q0;
float wq1 = (1.0f - p) * q1;
float q_recip = 1.0f / (wq0 + wq1);
s = (v0.texturecoords.s() * wq0 + v1.texturecoords.s() * wq1) * q_recip;
t = (v0.texturecoords.t() * wq0 + v1.texturecoords.t() * wq1) * q_recip;
}
break;
default:
ERROR_LOG_REPORT(G3D, "Software: Unsupported texture mapping mode %x!", gstate.getUVGenMode());
s = 0.0f;
t = 0.0f;
break;
}
}
static inline void GetTextureCoordinates(const VertexData& v0, const VertexData& v1, const VertexData& v2, const Vec4<int> &w0, const Vec4<int> &w1, const Vec4<int> &w2, const Vec4<float> &wsum_recip, Vec4<float> &s, Vec4<float> &t)
{
switch (gstate.getUVGenMode()) {
case GE_TEXMAP_TEXTURE_COORDS:
case GE_TEXMAP_UNKNOWN:
case GE_TEXMAP_ENVIRONMENT_MAP:
case GE_TEXMAP_TEXTURE_MATRIX:
{
// TODO: What happens if vertex has no texture coordinates?
// Note that for environment mapping, texture coordinates have been calculated during lighting
float q0 = 1.f / v0.clippos.w;
float q1 = 1.f / v1.clippos.w;
float q2 = 1.f / v2.clippos.w;
Vec4<float> wq0 = w0.Cast<float>() * q0;
Vec4<float> wq1 = w1.Cast<float>() * q1;
Vec4<float> wq2 = w2.Cast<float>() * q2;
Vec4<float> q_recip = (wq0 + wq1 + wq2).Reciprocal();
s = Interpolate(v0.texturecoords.s(), v1.texturecoords.s(), v2.texturecoords.s(), wq0, wq1, wq2, q_recip);
t = Interpolate(v0.texturecoords.t(), v1.texturecoords.t(), v2.texturecoords.t(), wq0, wq1, wq2, q_recip);
}
break;
default:
ERROR_LOG_REPORT(G3D, "Software: Unsupported texture mapping mode %x!", gstate.getUVGenMode());
s = Vec4<float>::AssignToAll(0.0f);
t = Vec4<float>::AssignToAll(0.0f);
break;
}
}
// NOTE: These likely aren't endian safe
static inline u32 GetPixelColor(int x, int y)
{
switch (gstate.FrameBufFormat()) {
case GE_FORMAT_565:
return RGB565ToRGBA8888(fb.Get16(x, y, gstate.FrameBufStride()));
case GE_FORMAT_5551:
return RGBA5551ToRGBA8888(fb.Get16(x, y, gstate.FrameBufStride()));
case GE_FORMAT_4444:
return RGBA4444ToRGBA8888(fb.Get16(x, y, gstate.FrameBufStride()));
case GE_FORMAT_8888:
return fb.Get32(x, y, gstate.FrameBufStride());
case GE_FORMAT_INVALID:
_dbg_assert_msg_(G3D, false, "Software: invalid framebuf format.");
}
return 0;
}
static inline void SetPixelColor(int x, int y, u32 value)
{
switch (gstate.FrameBufFormat()) {
case GE_FORMAT_565:
fb.Set16(x, y, gstate.FrameBufStride(), RGBA8888ToRGB565(value));
break;
case GE_FORMAT_5551:
fb.Set16(x, y, gstate.FrameBufStride(), RGBA8888ToRGBA5551(value));
break;
case GE_FORMAT_4444:
fb.Set16(x, y, gstate.FrameBufStride(), RGBA8888ToRGBA4444(value));
break;
case GE_FORMAT_8888:
fb.Set32(x, y, gstate.FrameBufStride(), value);
break;
case GE_FORMAT_INVALID:
_dbg_assert_msg_(G3D, false, "Software: invalid framebuf format.");
}
}
static inline u16 GetPixelDepth(int x, int y)
{
return depthbuf.Get16(x, y, gstate.DepthBufStride());
}
static inline void SetPixelDepth(int x, int y, u16 value)
{
depthbuf.Set16(x, y, gstate.DepthBufStride(), value);
}
static inline u8 GetPixelStencil(int x, int y)
{
if (gstate.FrameBufFormat() == GE_FORMAT_565) {
// Always treated as 0 for comparison purposes.
return 0;
} else if (gstate.FrameBufFormat() == GE_FORMAT_5551) {
return ((fb.Get16(x, y, gstate.FrameBufStride()) & 0x8000) != 0) ? 0xFF : 0;
} else if (gstate.FrameBufFormat() == GE_FORMAT_4444) {
return Convert4To8(fb.Get16(x, y, gstate.FrameBufStride()) >> 12);
} else {
return fb.Get32(x, y, gstate.FrameBufStride()) >> 24;
}
}
static inline void SetPixelStencil(int x, int y, u8 value)
{
// TODO: This seems like it maybe respects the alpha mask (at least in some scenarios?)
if (gstate.FrameBufFormat() == GE_FORMAT_565) {
// Do nothing
} else if (gstate.FrameBufFormat() == GE_FORMAT_5551) {
u16 pixel = fb.Get16(x, y, gstate.FrameBufStride()) & ~0x8000;
pixel |= value != 0 ? 0x8000 : 0;
fb.Set16(x, y, gstate.FrameBufStride(), pixel);
} else if (gstate.FrameBufFormat() == GE_FORMAT_4444) {
u16 pixel = fb.Get16(x, y, gstate.FrameBufStride()) & ~0xF000;
pixel |= (u16)value << 12;
fb.Set16(x, y, gstate.FrameBufStride(), pixel);
} else {
u32 pixel = fb.Get32(x, y, gstate.FrameBufStride()) & ~0xFF000000;
pixel |= (u32)value << 24;
fb.Set32(x, y, gstate.FrameBufStride(), pixel);
}
}
static inline bool DepthTestPassed(int x, int y, u16 z)
{
u16 reference_z = GetPixelDepth(x, y);
switch (gstate.getDepthTestFunction()) {
case GE_COMP_NEVER:
return false;
case GE_COMP_ALWAYS:
return true;
case GE_COMP_EQUAL:
return (z == reference_z);
case GE_COMP_NOTEQUAL:
return (z != reference_z);
case GE_COMP_LESS:
return (z < reference_z);
case GE_COMP_LEQUAL:
return (z <= reference_z);
case GE_COMP_GREATER:
return (z > reference_z);
case GE_COMP_GEQUAL:
return (z >= reference_z);
default:
return 0;
}
}
static inline bool IsRightSideOrFlatBottomLine(const Vec2<int>& vertex, const Vec2<int>& line1, const Vec2<int>& line2)
{
if (line1.y == line2.y) {
// just check if vertex is above us => bottom line parallel to x-axis
return vertex.y < line1.y;
} else {
// check if vertex is on our left => right side
return vertex.x < line1.x + (line2.x - line1.x) * (vertex.y - line1.y) / (line2.y - line1.y);
}
}
static inline bool StencilTestPassed(u8 stencil)
{
// TODO: Does the masking logic make any sense?
stencil &= gstate.getStencilTestMask();
u8 ref = gstate.getStencilTestRef() & gstate.getStencilTestMask();
switch (gstate.getStencilTestFunction()) {
case GE_COMP_NEVER:
return false;
case GE_COMP_ALWAYS:
return true;
case GE_COMP_EQUAL:
return ref == stencil;
case GE_COMP_NOTEQUAL:
return ref != stencil;
case GE_COMP_LESS:
return ref < stencil;
case GE_COMP_LEQUAL:
return ref <= stencil;
case GE_COMP_GREATER:
return ref > stencil;
case GE_COMP_GEQUAL:
return ref >= stencil;
}
return true;
}
static inline u8 ApplyStencilOp(int op, u8 old_stencil) {
// TODO: Apply mask to reference or old stencil?
u8 reference_stencil = gstate.getStencilTestRef(); // TODO: Apply mask?
const u8 write_mask = gstate.getStencilWriteMask();
switch (op) {
case GE_STENCILOP_KEEP:
return old_stencil;
case GE_STENCILOP_ZERO:
return old_stencil & write_mask;
case GE_STENCILOP_REPLACE:
return (reference_stencil & ~write_mask) | (old_stencil & write_mask);
case GE_STENCILOP_INVERT:
return (~old_stencil & ~write_mask) | (old_stencil & write_mask);
case GE_STENCILOP_INCR:
switch (gstate.FrameBufFormat()) {
case GE_FORMAT_8888:
if (old_stencil != 0xFF) {
return ((old_stencil + 1) & ~write_mask) | (old_stencil & write_mask);
}
return old_stencil;
case GE_FORMAT_5551:
return ~write_mask | (old_stencil & write_mask);
case GE_FORMAT_4444:
if (old_stencil < 0xF0) {
return ((old_stencil + 0x10) & ~write_mask) | (old_stencil & write_mask);
}
return old_stencil;
default:
return old_stencil;
}
break;
case GE_STENCILOP_DECR:
switch (gstate.FrameBufFormat()) {
case GE_FORMAT_4444:
if (old_stencil >= 0x10)
return ((old_stencil - 0x10) & ~write_mask) | (old_stencil & write_mask);
break;
default:
if (old_stencil != 0)
return ((old_stencil - 1) & ~write_mask) | (old_stencil & write_mask);
return old_stencil;
}
break;
}
return old_stencil;
}
static inline u32 ApplyLogicOp(GELogicOp op, u32 old_color, u32 new_color) {
// All of the operations here intentionally preserve alpha/stencil.
switch (op) {
case GE_LOGIC_CLEAR:
new_color &= 0xFF000000;
break;
case GE_LOGIC_AND:
new_color = new_color & (old_color | 0xFF000000);
break;
case GE_LOGIC_AND_REVERSE:
new_color = new_color & (~old_color | 0xFF000000);
break;
case GE_LOGIC_COPY:
// No change to new_color.
break;
case GE_LOGIC_AND_INVERTED:
new_color = (~new_color & (old_color & 0x00FFFFFF)) | (new_color & 0xFF000000);
break;
case GE_LOGIC_NOOP:
new_color = (old_color & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_XOR:
new_color = new_color ^ (old_color & 0x00FFFFFF);
break;
case GE_LOGIC_OR:
new_color = new_color | (old_color & 0x00FFFFFF);
break;
case GE_LOGIC_NOR:
new_color = (~(new_color | old_color) & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_EQUIV:
new_color = (~(new_color ^ old_color) & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_INVERTED:
new_color = (~old_color & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_OR_REVERSE:
new_color = new_color | (~old_color & 0x00FFFFFF);
break;
case GE_LOGIC_COPY_INVERTED:
new_color = (~new_color & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_OR_INVERTED:
new_color = ((~new_color | old_color) & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_NAND:
new_color = (~(new_color & old_color) & 0x00FFFFFF) | (new_color & 0xFF000000);
break;
case GE_LOGIC_SET:
new_color |= 0x00FFFFFF;
break;
}
return new_color;
}
Vec4<int> GetTextureFunctionOutput(const Vec4<int>& prim_color, const Vec4<int>& texcolor)
{
Vec3<int> out_rgb;
int out_a;
bool rgba = gstate.isTextureAlphaUsed();
switch (gstate.getTextureFunction()) {
case GE_TEXFUNC_MODULATE:
{
#if defined(_M_SSE)
// We can be accurate up to 24 bit integers, should be enough.
const __m128 p = _mm_cvtepi32_ps(prim_color.ivec);
const __m128 t = _mm_cvtepi32_ps(texcolor.ivec);
const __m128 b = _mm_mul_ps(p, t);
if (gstate.isColorDoublingEnabled()) {
// We double right here, only for modulate. Other tex funcs do not color double.
const __m128 doubleColor = _mm_setr_ps(2.0f / 255.0f, 2.0f / 255.0f, 2.0f / 255.0f, 1.0f / 255.0f);
out_rgb.ivec = _mm_cvtps_epi32(_mm_mul_ps(b, doubleColor));
} else {
out_rgb.ivec = _mm_cvtps_epi32(_mm_mul_ps(b, _mm_set_ps1(1.0f / 255.0f)));
}
if (rgba) {
return Vec4<int>(out_rgb.ivec);
} else {
out_a = prim_color.a();
}
#else
if (gstate.isColorDoublingEnabled()) {
out_rgb = (prim_color.rgb() * texcolor.rgb() * 2) / 255;
} else {
out_rgb = prim_color.rgb() * texcolor.rgb() / 255;
}
out_a = (rgba) ? (prim_color.a() * texcolor.a() / 255) : prim_color.a();
#endif
break;
}
case GE_TEXFUNC_DECAL:
{
int t = (rgba) ? texcolor.a() : 255;
int invt = (rgba) ? 255 - t : 0;
out_rgb = (prim_color.rgb() * invt + texcolor.rgb() * t) / 255;
out_a = prim_color.a();
break;
}
case GE_TEXFUNC_BLEND:
{
const Vec3<int> const255(255, 255, 255);
const Vec3<int> texenv(gstate.getTextureEnvColR(), gstate.getTextureEnvColG(), gstate.getTextureEnvColB());
out_rgb = ((const255 - texcolor.rgb()) * prim_color.rgb() + texcolor.rgb() * texenv) / 255;
out_a = prim_color.a() * ((rgba) ? texcolor.a() : 255) / 255;
break;
}
case GE_TEXFUNC_REPLACE:
out_rgb = texcolor.rgb();
out_a = (rgba) ? texcolor.a() : prim_color.a();
break;
case GE_TEXFUNC_ADD:
out_rgb = prim_color.rgb() + texcolor.rgb();
if (out_rgb.r() > 255) out_rgb.r() = 255;
if (out_rgb.g() > 255) out_rgb.g() = 255;
if (out_rgb.b() > 255) out_rgb.b() = 255;
out_a = prim_color.a() * ((rgba) ? texcolor.a() : 255) / 255;
break;
default:
ERROR_LOG_REPORT(G3D, "Software: Unknown texture function %x", gstate.getTextureFunction());
out_rgb = Vec3<int>::AssignToAll(0);
out_a = 0;
}
return Vec4<int>(out_rgb.r(), out_rgb.g(), out_rgb.b(), out_a);
}
static inline bool ColorTestPassed(const Vec3<int> &color)
{
const u32 mask = gstate.getColorTestMask();
const u32 c = color.ToRGB() & mask;
const u32 ref = gstate.getColorTestRef() & mask;
switch (gstate.getColorTestFunction()) {
case GE_COMP_NEVER:
return false;
case GE_COMP_ALWAYS:
return true;
case GE_COMP_EQUAL:
return c == ref;
case GE_COMP_NOTEQUAL:
return c != ref;
default:
ERROR_LOG_REPORT(G3D, "Software: Invalid colortest function: %d", gstate.getColorTestFunction());
break;
}
return true;
}
static inline bool AlphaTestPassed(int alpha)
{
const u8 mask = gstate.getAlphaTestMask() & 0xFF;
const u8 ref = gstate.getAlphaTestRef() & mask;
alpha &= mask;
switch (gstate.getAlphaTestFunction()) {
case GE_COMP_NEVER:
return false;
case GE_COMP_ALWAYS:
return true;
case GE_COMP_EQUAL:
return (alpha == ref);
case GE_COMP_NOTEQUAL:
return (alpha != ref);
case GE_COMP_LESS:
return (alpha < ref);
case GE_COMP_LEQUAL:
return (alpha <= ref);
case GE_COMP_GREATER:
return (alpha > ref);
case GE_COMP_GEQUAL:
return (alpha >= ref);
}
return true;
}
static inline Vec3<int> GetSourceFactor(const Vec4<int>& source, const Vec4<int>& dst)
{
switch (gstate.getBlendFuncA()) {
case GE_SRCBLEND_DSTCOLOR:
return dst.rgb();
case GE_SRCBLEND_INVDSTCOLOR:
return Vec3<int>::AssignToAll(255) - dst.rgb();
case GE_SRCBLEND_SRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3)));
#else
return Vec3<int>::AssignToAll(source.a());
#endif
case GE_SRCBLEND_INVSRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_sub_epi32(_mm_set1_epi32(255), _mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3))));
#else
return Vec3<int>::AssignToAll(255 - source.a());
#endif
case GE_SRCBLEND_DSTALPHA:
return Vec3<int>::AssignToAll(dst.a());
case GE_SRCBLEND_INVDSTALPHA:
return Vec3<int>::AssignToAll(255 - dst.a());
case GE_SRCBLEND_DOUBLESRCALPHA:
return Vec3<int>::AssignToAll(2 * source.a());
case GE_SRCBLEND_DOUBLEINVSRCALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * source.a(), 255));
case GE_SRCBLEND_DOUBLEDSTALPHA:
return Vec3<int>::AssignToAll(2 * dst.a());
case GE_SRCBLEND_DOUBLEINVDSTALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * dst.a(), 255));
case GE_SRCBLEND_FIXA:
default:
// All other dest factors (> 10) are treated as FIXA.
return Vec3<int>::FromRGB(gstate.getFixA());
}
}
static inline Vec3<int> GetDestFactor(const Vec4<int>& source, const Vec4<int>& dst)
{
switch (gstate.getBlendFuncB()) {
case GE_DSTBLEND_SRCCOLOR:
return source.rgb();
case GE_DSTBLEND_INVSRCCOLOR:
return Vec3<int>::AssignToAll(255) - source.rgb();
case GE_DSTBLEND_SRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3)));
#else
return Vec3<int>::AssignToAll(source.a());
#endif
case GE_DSTBLEND_INVSRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_sub_epi32(_mm_set1_epi32(255), _mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3))));
#else
return Vec3<int>::AssignToAll(255 - source.a());
#endif
case GE_DSTBLEND_DSTALPHA:
return Vec3<int>::AssignToAll(dst.a());
case GE_DSTBLEND_INVDSTALPHA:
return Vec3<int>::AssignToAll(255 - dst.a());
case GE_DSTBLEND_DOUBLESRCALPHA:
return Vec3<int>::AssignToAll(2 * source.a());
case GE_DSTBLEND_DOUBLEINVSRCALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * source.a(), 255));
case GE_DSTBLEND_DOUBLEDSTALPHA:
return Vec3<int>::AssignToAll(2 * dst.a());
case GE_DSTBLEND_DOUBLEINVDSTALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * dst.a(), 255));
case GE_DSTBLEND_FIXB:
default:
// All other dest factors (> 10) are treated as FIXB.
return Vec3<int>::FromRGB(gstate.getFixB());
}
}
// Removed inline here - it was never chosen to be inlined by the compiler anyway, too complex.
Vec3<int> AlphaBlendingResult(const Vec4<int> &source, const Vec4<int> &dst)
{
// Note: These factors cannot go below 0, but they can go above 255 when doubling.
Vec3<int> srcfactor = GetSourceFactor(source, dst);
Vec3<int> dstfactor = GetDestFactor(source, dst);
switch (gstate.getBlendEq()) {
case GE_BLENDMODE_MUL_AND_ADD:
{
#if defined(_M_SSE)
const __m128 s = _mm_mul_ps(_mm_cvtepi32_ps(source.ivec), _mm_cvtepi32_ps(srcfactor.ivec));
const __m128 d = _mm_mul_ps(_mm_cvtepi32_ps(dst.ivec), _mm_cvtepi32_ps(dstfactor.ivec));
return Vec3<int>(_mm_cvtps_epi32(_mm_mul_ps(_mm_add_ps(s, d), _mm_set_ps1(1.0f / 255.0f))));
#else
return (source.rgb() * srcfactor + dst.rgb() * dstfactor) / 255;
#endif
}
case GE_BLENDMODE_MUL_AND_SUBTRACT:
{
#if defined(_M_SSE)
const __m128 s = _mm_mul_ps(_mm_cvtepi32_ps(source.ivec), _mm_cvtepi32_ps(srcfactor.ivec));
const __m128 d = _mm_mul_ps(_mm_cvtepi32_ps(dst.ivec), _mm_cvtepi32_ps(dstfactor.ivec));
return Vec3<int>(_mm_cvtps_epi32(_mm_mul_ps(_mm_sub_ps(s, d), _mm_set_ps1(1.0f / 255.0f))));
#else
return (source.rgb() * srcfactor - dst.rgb() * dstfactor) / 255;
#endif
}
case GE_BLENDMODE_MUL_AND_SUBTRACT_REVERSE:
{
#if defined(_M_SSE)
const __m128 s = _mm_mul_ps(_mm_cvtepi32_ps(source.ivec), _mm_cvtepi32_ps(srcfactor.ivec));
const __m128 d = _mm_mul_ps(_mm_cvtepi32_ps(dst.ivec), _mm_cvtepi32_ps(dstfactor.ivec));
return Vec3<int>(_mm_cvtps_epi32(_mm_mul_ps(_mm_sub_ps(d, s), _mm_set_ps1(1.0f / 255.0f))));
#else
return (dst.rgb() * dstfactor - source.rgb() * srcfactor) / 255;
#endif
}
case GE_BLENDMODE_MIN:
return Vec3<int>(std::min(source.r(), dst.r()),
std::min(source.g(), dst.g()),
std::min(source.b(), dst.b()));
case GE_BLENDMODE_MAX:
return Vec3<int>(std::max(source.r(), dst.r()),
std::max(source.g(), dst.g()),
std::max(source.b(), dst.b()));
case GE_BLENDMODE_ABSDIFF:
return Vec3<int>(::abs(source.r() - dst.r()),
::abs(source.g() - dst.g()),
::abs(source.b() - dst.b()));
default:
ERROR_LOG_REPORT(G3D, "Software: Unknown blend function %x", gstate.getBlendEq());
return Vec3<int>();
}
}
template <bool clearMode>
inline void DrawSinglePixel(const DrawingCoords &p, u16 z, u8 fog, const Vec4<int> &color_in) {
Vec4<int> prim_color = color_in.Clamp(0, 255);
// Depth range test - applied in clear mode, if not through mode.
if (!gstate.isModeThrough())
if (z < gstate.getDepthRangeMin() || z > gstate.getDepthRangeMax())
return;
if (gstate.isAlphaTestEnabled() && !clearMode)
if (!AlphaTestPassed(prim_color.a()))
return;
// Fog is applied prior to color test.
if (gstate.isFogEnabled() && !gstate.isModeThrough() && !clearMode) {
Vec3<int> fogColor = Vec3<int>::FromRGB(gstate.fogcolor);
fogColor = (prim_color.rgb() * (int)fog + fogColor * (255 - (int)fog)) / 255;
prim_color.r() = fogColor.r();
prim_color.g() = fogColor.g();
prim_color.b() = fogColor.b();
}
if (gstate.isColorTestEnabled() && !clearMode)
if (!ColorTestPassed(prim_color.rgb()))
return;
// In clear mode, it uses the alpha color as stencil.
u8 stencil = clearMode ? prim_color.a() : GetPixelStencil(p.x, p.y);
if (!clearMode && (gstate.isStencilTestEnabled() || gstate.isDepthTestEnabled())) {
if (gstate.isStencilTestEnabled() && !StencilTestPassed(stencil)) {
stencil = ApplyStencilOp(gstate.getStencilOpSFail(), stencil);
SetPixelStencil(p.x, p.y, stencil);
return;
}
// Also apply depth at the same time. If disabled, same as passing.
if (gstate.isDepthTestEnabled() && !DepthTestPassed(p.x, p.y, z)) {
if (gstate.isStencilTestEnabled()) {
stencil = ApplyStencilOp(gstate.getStencilOpZFail(), stencil);
SetPixelStencil(p.x, p.y, stencil);
}
return;
} else if (gstate.isStencilTestEnabled()) {
stencil = ApplyStencilOp(gstate.getStencilOpZPass(), stencil);
}
if (gstate.isDepthTestEnabled() && gstate.isDepthWriteEnabled()) {
SetPixelDepth(p.x, p.y, z);
}
} else if (clearMode && gstate.isClearModeDepthMask()) {
SetPixelDepth(p.x, p.y, z);
}
const u32 old_color = GetPixelColor(p.x, p.y);
u32 new_color;
// Dithering happens before the logic op and regardless of framebuffer format or clear mode.
// We do it while alpha blending because it happens before clamping.
if (gstate.isAlphaBlendEnabled() && !clearMode) {
const Vec4<int> dst = Vec4<int>::FromRGBA(old_color);
Vec3<int> blended = AlphaBlendingResult(prim_color, dst);
if (gstate.isDitherEnabled()) {
blended += Vec3<int>::AssignToAll(gstate.getDitherValue(p.x, p.y));
}
// ToRGB() always automatically clamps.
new_color = blended.ToRGB();
new_color |= stencil << 24;
} else {
if (gstate.isDitherEnabled()) {
// We'll discard alpha anyway.
prim_color += Vec4<int>::AssignToAll(gstate.getDitherValue(p.x, p.y));
}
#if defined(_M_SSE)
new_color = Vec3<int>(prim_color.ivec).ToRGB();
new_color |= stencil << 24;
#else
new_color = Vec4<int>(prim_color.r(), prim_color.g(), prim_color.b(), stencil).ToRGBA();
#endif
}
// Logic ops are applied after blending (if blending is enabled.)
if (gstate.isLogicOpEnabled() && !clearMode) {
// Logic ops don't affect stencil, which happens inside ApplyLogicOp.
new_color = ApplyLogicOp(gstate.getLogicOp(), old_color, new_color);
}
if (clearMode) {
new_color = (new_color & ~gstate.getClearModeColorMask()) | (old_color & gstate.getClearModeColorMask());
}
new_color = (new_color & ~gstate.getColorMask()) | (old_color & gstate.getColorMask());
SetPixelColor(p.x, p.y, new_color);
}
void DrawSinglePixelNonClear(const DrawingCoords &p, u16 z, u8 fog, const Vec4<int> &color_in) {
DrawSinglePixel<false>(p, z, fog, color_in);
}
static inline void ApplyTexturing(Sampler::Funcs sampler, Vec4<int> &prim_color, float s, float t, int texlevel, int frac_texlevel, bool bilinear, u8 *texptr[], int texbufw[]) {
int u[8] = {0}, v[8] = {0}; // 1.23.8 fixed point
int frac_u[2], frac_v[2];
Vec4<int> texcolor0;
Vec4<int> texcolor1;
const u8 *tptr0 = texptr[texlevel];
int bufw0 = texbufw[texlevel];
const u8 *tptr1 = texptr[texlevel + 1];
int bufw1 = texbufw[texlevel + 1];
if (!bilinear) {
// Nearest filtering only. Round texcoords.
GetTexelCoordinates(texlevel, s, t, u[0], v[0]);
if (frac_texlevel) {
GetTexelCoordinates(texlevel + 1, s, t, u[1], v[1]);
}
texcolor0 = Vec4<int>::FromRGBA(sampler.nearest(u[0], v[0], tptr0, bufw0, texlevel));
if (frac_texlevel) {
texcolor1 = Vec4<int>::FromRGBA(sampler.nearest(u[1], v[1], tptr1, bufw1, texlevel + 1));
}
} else {
GetTexelCoordinatesQuad(texlevel, s, t, u, v, frac_u[0], frac_v[0]);
if (frac_texlevel) {
GetTexelCoordinatesQuad(texlevel + 1, s, t, u + 4, v + 4, frac_u[1], frac_v[1]);
}
texcolor0 = Vec4<int>::FromRGBA(sampler.linear(u, v, frac_u[0], frac_v[0], tptr0, bufw0, texlevel));
if (frac_texlevel) {
texcolor1 = Vec4<int>::FromRGBA(sampler.linear(u + 4, v + 4, frac_u[1], frac_v[1], tptr1, bufw1, texlevel + 1));
}
}
if (frac_texlevel) {
texcolor0 = (texcolor1 * frac_texlevel + texcolor0 * (256 - frac_texlevel)) / 256;
}
prim_color = GetTextureFunctionOutput(prim_color, texcolor0);
}
// Produces a signed 1.23.8 value.
static int TexLog2(float delta) {
union FloatBits {
float f;
u32 u;
};
FloatBits f;
f.f = delta;
// Use the exponent as the tex level, and the top mantissa bits for a frac.
// We can't support more than 8 bits of frac, so truncate.
int useful = (f.u >> 15) & 0xFFFF;
// Now offset so the exponent aligns with log2f (exp=127 is 0.)
return useful - 127 * 256;
}
static inline void CalculateSamplingParams(const float ds, const float dt, const int maxTexLevel, int &level, int &levelFrac, bool &filt) {
const int width = gstate.getTextureWidth(0);
const int height = gstate.getTextureHeight(0);
// With 8 bits of fraction (because texslope can be fairly precise.)
int detail;
switch (gstate.getTexLevelMode()) {
case GE_TEXLEVEL_MODE_AUTO:
detail = TexLog2(std::max(ds * width, dt * height));
break;
case GE_TEXLEVEL_MODE_SLOPE:
// This is always offset by an extra texlevel.
detail = 1 * 256 + TexLog2(gstate.getTextureLodSlope());
break;
case GE_TEXLEVEL_MODE_CONST:
default:
// Unused value 3 operates the same as CONST.
detail = 0;
break;
}
// Add in the bias (used in all modes), expanding to 8 bits of fraction.
detail += gstate.getTexLevelOffset16() << 4;
if (detail > 0 && maxTexLevel > 0) {
bool mipFilt = gstate.isMipmapFilteringEnabled();
int level8 = std::min(detail, maxTexLevel * 256);
if (!mipFilt) {
// Round up at 1.5.
level8 += 128;
}
level = level8 >> 8;
levelFrac = mipFilt ? level8 & 0xFF : 0;
} else {
level = 0;
levelFrac = 0;
}
if (g_Config.iTexFiltering == TEX_FILTER_LINEAR) {
filt = true;
} else if (g_Config.iTexFiltering == TEX_FILTER_NEAREST) {
filt = false;
} else {
filt = detail > 0 ? gstate.isMinifyFilteringEnabled() : gstate.isMagnifyFilteringEnabled();
}
}
static inline void ApplyTexturing(Sampler::Funcs sampler, Vec4<int> *prim_color, const Vec4<float> &s, const Vec4<float> &t, int maxTexLevel, u8 *texptr[], int texbufw[]) {
float ds = s[1] - s[0];
float dt = t[2] - t[0];
int level;
int levelFrac;
bool bilinear;
CalculateSamplingParams(ds, dt, maxTexLevel, level, levelFrac, bilinear);
for (int i = 0; i < 4; ++i) {
ApplyTexturing(sampler, prim_color[i], s[i], t[i], level, levelFrac, bilinear, texptr, texbufw);
}
}
struct TriangleEdge {
Vec4<int> Start(const ScreenCoords &v0, const ScreenCoords &v1, const ScreenCoords &origin);
inline Vec4<int> StepX(const Vec4<int> &w);
inline Vec4<int> StepY(const Vec4<int> &w);
Vec4<int> stepX;
Vec4<int> stepY;
};
Vec4<int> TriangleEdge::Start(const ScreenCoords &v0, const ScreenCoords &v1, const ScreenCoords &origin) {
// Start at pixel centers.
Vec4<int> initX = Vec4<int>::AssignToAll(origin.x) + Vec4<int>(7, 23, 7, 23);
Vec4<int> initY = Vec4<int>::AssignToAll(origin.y) + Vec4<int>(7, 7, 23, 23);
// orient2d refactored.
int xf = v0.y - v1.y;
int yf = v1.x - v0.x;
int c = v1.y * v0.x - v1.x * v0.y;
stepX = Vec4<int>::AssignToAll(xf * 16 * 2);
stepY = Vec4<int>::AssignToAll(yf * 16 * 2);
return Vec4<int>::AssignToAll(xf) * initX + Vec4<int>::AssignToAll(yf) * initY + Vec4<int>::AssignToAll(c);
}
inline Vec4<int> TriangleEdge::StepX(const Vec4<int> &w) {
#if defined(_M_SSE) && !defined(_M_IX86)
return _mm_add_epi32(w.ivec, stepX.ivec);
#else
return w + stepX;
#endif
}
inline Vec4<int> TriangleEdge::StepY(const Vec4<int> &w) {
#if defined(_M_SSE) && !defined(_M_IX86)
return _mm_add_epi32(w.ivec, stepY.ivec);
#else
return w + stepY;
#endif
}
static inline Vec4<int> MakeMask(const Vec4<int> &w0, const Vec4<int> &w1, const Vec4<int> &w2, const Vec4<int> &bias0, const Vec4<int> &bias1, const Vec4<int> &bias2, const Vec4<int> &scissor) {
#if defined(_M_SSE) && !defined(_M_IX86)
__m128i biased0 = _mm_add_epi32(w0.ivec, bias0.ivec);
__m128i biased1 = _mm_add_epi32(w1.ivec, bias1.ivec);
__m128i biased2 = _mm_add_epi32(w2.ivec, bias2.ivec);
return _mm_or_si128(_mm_or_si128(biased0, _mm_or_si128(biased1, biased2)), scissor.ivec);
#else
return (w0 + bias0) | (w1 + bias1) | (w2 + bias2) | scissor;
#endif
}
static inline bool AnyMask(const Vec4<int> &mask) {
#if defined(_M_SSE) && !defined(_M_IX86)
// In other words: !(mask.x < 0 && mask.y < 0 && mask.z < 0 && mask.w < 0)
__m128i low2 = _mm_and_si128(mask.ivec, _mm_shuffle_epi32(mask.ivec, _MM_SHUFFLE(3, 2, 3, 2)));
__m128i low1 = _mm_and_si128(low2, _mm_shuffle_epi32(low2, _MM_SHUFFLE(1, 1, 1, 1)));
// Now we only need to check one sign bit.
return _mm_cvtsi128_si32(low1) >= 0;
#else
return mask.x >= 0 || mask.y >= 0 || mask.z >= 0 || mask.w >= 0;
#endif
}
static inline Vec4<float> EdgeRecip(const Vec4<int> &w0, const Vec4<int> &w1, const Vec4<int> &w2) {
#if defined(_M_SSE) && !defined(_M_IX86)
__m128i wsum = _mm_add_epi32(w0.ivec, _mm_add_epi32(w1.ivec, w2.ivec));
// _mm_rcp_ps loses too much precision.
return _mm_div_ps(_mm_set1_ps(1.0f), _mm_cvtepi32_ps(wsum));
#else
return (w0 + w1 + w2).Cast<float>().Reciprocal();
#endif
}
template <bool clearMode>
void DrawTriangleSlice(
const VertexData& v0, const VertexData& v1, const VertexData& v2,
int minX, int minY, int maxX, int maxY,
bool byY, int h1, int h2)
{
Vec4<int> bias0 = Vec4<int>::AssignToAll(IsRightSideOrFlatBottomLine(v0.screenpos.xy(), v1.screenpos.xy(), v2.screenpos.xy()) ? -1 : 0);
Vec4<int> bias1 = Vec4<int>::AssignToAll(IsRightSideOrFlatBottomLine(v1.screenpos.xy(), v2.screenpos.xy(), v0.screenpos.xy()) ? -1 : 0);
Vec4<int> bias2 = Vec4<int>::AssignToAll(IsRightSideOrFlatBottomLine(v2.screenpos.xy(), v0.screenpos.xy(), v1.screenpos.xy()) ? -1 : 0);
int texbufw[8] = {0};
int maxTexLevel = gstate.getTextureMaxLevel();
u8 *texptr[8] = {NULL};
if (!gstate.isMipmapEnabled()) {
// No mipmapping enabled
maxTexLevel = 0;
}
if (gstate.isTextureMapEnabled() && !clearMode) {
GETextureFormat texfmt = gstate.getTextureFormat();
for (int i = 0; i <= maxTexLevel; i++) {
u32 texaddr = gstate.getTextureAddress(i);
texbufw[i] = GetTextureBufw(i, texaddr, texfmt);
if (Memory::IsValidAddress(texaddr))
texptr[i] = Memory::GetPointerUnchecked(texaddr);
else
texptr[i] = 0;
}
}
TriangleEdge e0;
TriangleEdge e1;
TriangleEdge e2;
if (byY) {
maxY = std::min(maxY, minY + h2 * 16 * 2);
minY += h1 * 16 * 2;
} else {
maxX = std::min(maxX, minX + h2 * 16 * 2);
minX += h1 * 16 * 2;
}
ScreenCoords pprime(minX, minY, 0);
Vec4<int> w0_base = e0.Start(v1.screenpos, v2.screenpos, pprime);
Vec4<int> w1_base = e1.Start(v2.screenpos, v0.screenpos, pprime);
Vec4<int> w2_base = e2.Start(v0.screenpos, v1.screenpos, pprime);
// All the z values are the same, no interpolation required.
// This is common, and when we interpolate, we lose accuracy.
const bool flatZ = v0.screenpos.z == v1.screenpos.z && v0.screenpos.z == v2.screenpos.z;
Sampler::Funcs sampler = Sampler::GetFuncs();
for (pprime.y = minY; pprime.y < maxY; pprime.y += 32,
w0_base = e0.StepY(w0_base),
w1_base = e1.StepY(w1_base),
w2_base = e2.StepY(w2_base)) {
Vec4<int> w0 = w0_base;
Vec4<int> w1 = w1_base;
Vec4<int> w2 = w2_base;
// TODO: Maybe we can clip the edges instead?
int scissorYPlus1 = pprime.y + 16 > maxY ? -1 : 0;
Vec4<int> scissor_mask = Vec4<int>(0, maxX - minX - 1, scissorYPlus1, (maxX - minX - 1) | scissorYPlus1);
Vec4<int> scissor_step = Vec4<int>(0, -32, 0, -32);
pprime.x = minX;
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
for (; pprime.x <= maxX; pprime.x += 32,
w0 = e0.StepX(w0),
w1 = e1.StepX(w1),
w2 = e2.StepX(w2),
scissor_mask = scissor_mask + scissor_step,
p.x = (p.x + 2) & 0x3FF) {
// If p is on or inside all edges, render pixel
Vec4<int> mask = MakeMask(w0, w1, w2, bias0, bias1, bias2, scissor_mask);
if (AnyMask(mask)) {
Vec4<float> wsum_recip = EdgeRecip(w0, w1, w2);
Vec4<int> prim_color[4];
Vec3<int> sec_color[4];
if (gstate.getShadeMode() == GE_SHADE_GOURAUD && !clearMode) {
// Does the PSP do perspective-correct color interpolation? The GC doesn't.
for (int i = 0; i < 4; ++i) {
prim_color[i] = Interpolate(v0.color0, v1.color0, v2.color0, w0[i], w1[i], w2[i], wsum_recip[i]);
sec_color[i] = Interpolate(v0.color1, v1.color1, v2.color1, w0[i], w1[i], w2[i], wsum_recip[i]);
}
} else {
for (int i = 0; i < 4; ++i) {
prim_color[i] = v2.color0;
sec_color[i] = v2.color1;
}
}
if (gstate.isTextureMapEnabled() && !clearMode) {
Vec4<float> s, t;
if (gstate.isModeThrough()) {
s = Interpolate(v0.texturecoords.s(), v1.texturecoords.s(), v2.texturecoords.s(), w0, w1, w2, wsum_recip);
t = Interpolate(v0.texturecoords.t(), v1.texturecoords.t(), v2.texturecoords.t(), w0, w1, w2, wsum_recip);
// For levels > 0, mipmapping is always based on level 0. Simpler to scale first.
s *= 1.0f / (float)gstate.getTextureWidth(0);
t *= 1.0f / (float)gstate.getTextureHeight(0);
} else {
// Texture coordinate interpolation must definitely be perspective-correct.
GetTextureCoordinates(v0, v1, v2, w0, w1, w2, wsum_recip, s, t);
}
ApplyTexturing(sampler, prim_color, s, t, maxTexLevel, texptr, texbufw);
}
if (!clearMode) {
for (int i = 0; i < 4; ++i) {
#if defined(_M_SSE)
// TODO: Tried making Vec4 do this, but things got slower.
const __m128i sec = _mm_and_si128(sec_color[i].ivec, _mm_set_epi32(0, -1, -1, -1));
prim_color[i].ivec = _mm_add_epi32(prim_color[i].ivec, sec);
#else
prim_color[i] += Vec4<int>(sec_color[i], 0);
#endif
}
}
Vec4<int> fog = Vec4<int>::AssignToAll(255);
if (gstate.isFogEnabled() && !clearMode) {
Vec4<float> fogdepths = w0.Cast<float>() * v0.fogdepth + w1.Cast<float>() * v1.fogdepth + w2.Cast<float>() * v2.fogdepth;
fogdepths = fogdepths * wsum_recip;
for (int i = 0; i < 4; ++i) {
fog[i] = ClampFogDepth(fogdepths[i]);
}
}
Vec4<int> z;
if (flatZ) {
z = Vec4<int>::AssignToAll(v2.screenpos.z);
} else {
// TODO: Is that the correct way to interpolate?
Vec4<float> zfloats = w0.Cast<float>() * v0.screenpos.z + w1.Cast<float>() * v1.screenpos.z + w2.Cast<float>() * v2.screenpos.z;
z = (zfloats * wsum_recip).Cast<int>();
}
DrawingCoords subp = p;
for (int i = 0; i < 4; ++i) {
if (mask[i] < 0) {
continue;
}
subp.x = p.x + (i & 1);
subp.y = p.y + (i / 2);
DrawSinglePixel<clearMode>(subp, (u16)z[i], fog[i], prim_color[i]);
}
}
}
}
}
// Draws triangle, vertices specified in counter-clockwise direction
void DrawTriangle(const VertexData& v0, const VertexData& v1, const VertexData& v2)
{
PROFILE_THIS_SCOPE("draw_tri");
Vec2<int> d01((int)v0.screenpos.x - (int)v1.screenpos.x, (int)v0.screenpos.y - (int)v1.screenpos.y);
Vec2<int> d02((int)v0.screenpos.x - (int)v2.screenpos.x, (int)v0.screenpos.y - (int)v2.screenpos.y);
Vec2<int> d12((int)v1.screenpos.x - (int)v2.screenpos.x, (int)v1.screenpos.y - (int)v2.screenpos.y);
// Drop primitives which are not in CCW order by checking the cross product
if (d01.x * d02.y - d01.y * d02.x < 0)
return;
int minX = std::min(std::min(v0.screenpos.x, v1.screenpos.x), v2.screenpos.x) & ~0xF;
int minY = std::min(std::min(v0.screenpos.y, v1.screenpos.y), v2.screenpos.y) & ~0xF;
int maxX = (std::max(std::max(v0.screenpos.x, v1.screenpos.x), v2.screenpos.x) + 0xF) & ~0xF;
int maxY = (std::max(std::max(v0.screenpos.y, v1.screenpos.y), v2.screenpos.y) + 0xF) & ~0xF;
DrawingCoords scissorTL(gstate.getScissorX1(), gstate.getScissorY1(), 0);
DrawingCoords scissorBR(gstate.getScissorX2(), gstate.getScissorY2(), 0);
minX = std::max(minX, (int)TransformUnit::DrawingToScreen(scissorTL).x);
maxX = std::min(maxX, (int)TransformUnit::DrawingToScreen(scissorBR).x);
minY = std::max(minY, (int)TransformUnit::DrawingToScreen(scissorTL).y);
maxY = std::min(maxY, (int)TransformUnit::DrawingToScreen(scissorBR).y);
// 32 because we do two pixels at once, and we don't want overlap.
int rangeY = (maxY - minY) / 32 + 1;
int rangeX = (maxX - minX) / 32 + 1;
if (rangeY >= 12 && rangeX >= rangeY * 4) {
if (gstate.isModeClear()) {
auto bound = [&](int a, int b) -> void {
DrawTriangleSlice<true>(v0, v1, v2, minX, minY, maxX, maxY, false, a, b);
};
GlobalThreadPool::Loop(bound, 0, rangeX);
} else {
auto bound = [&](int a, int b) -> void {
DrawTriangleSlice<false>(v0, v1, v2, minX, minY, maxX, maxY, false, a, b);
};
GlobalThreadPool::Loop(bound, 0, rangeX);
}
} else if (rangeY >= 12 && rangeX >= 12) {
if (gstate.isModeClear()) {
auto bound = [&](int a, int b) -> void {
DrawTriangleSlice<true>(v0, v1, v2, minX, minY, maxX, maxY, true, a, b);
};
GlobalThreadPool::Loop(bound, 0, rangeY);
} else {
auto bound = [&](int a, int b) -> void {
DrawTriangleSlice<false>(v0, v1, v2, minX, minY, maxX, maxY, true, a, b);
};
GlobalThreadPool::Loop(bound, 0, rangeY);
}
} else {
if (gstate.isModeClear()) {
DrawTriangleSlice<true>(v0, v1, v2, minX, minY, maxX, maxY, true, 0, rangeY);
} else {
DrawTriangleSlice<false>(v0, v1, v2, minX, minY, maxX, maxY, true, 0, rangeY);
}
}
}
void DrawPoint(const VertexData &v0)
{
ScreenCoords pos = v0.screenpos;
Vec4<int> prim_color = v0.color0;
Vec3<int> sec_color = v0.color1;
ScreenCoords scissorTL(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX1(), gstate.getScissorY1(), 0)));
ScreenCoords scissorBR(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX2(), gstate.getScissorY2(), 0)));
if (pos.x < scissorTL.x || pos.y < scissorTL.y || pos.x > scissorBR.x || pos.y > scissorBR.y)
return;
bool clearMode = gstate.isModeClear();
Sampler::Funcs sampler = Sampler::GetFuncs();
if (gstate.isTextureMapEnabled() && !clearMode) {
int texbufw[8] = {0};
int maxTexLevel = gstate.getTextureMaxLevel();
u8 *texptr[8] = {NULL};
if (!gstate.isMipmapEnabled()) {
// No mipmapping enabled
maxTexLevel = 0;
}
if (gstate.isTextureMapEnabled() && !clearMode) {
GETextureFormat texfmt = gstate.getTextureFormat();
for (int i = 0; i <= maxTexLevel; i++) {
u32 texaddr = gstate.getTextureAddress(i);
texbufw[i] = GetTextureBufw(i, texaddr, texfmt);
if (Memory::IsValidAddress(texaddr))
texptr[i] = Memory::GetPointerUnchecked(texaddr);
else
texptr[i] = 0;
}
}
float s = v0.texturecoords.s();
float t = v0.texturecoords.t();
if (gstate.isModeThrough()) {
s *= 1.0f / (float)gstate.getTextureWidth(0);
t *= 1.0f / (float)gstate.getTextureHeight(0);
} else {
// Texture coordinate interpolation must definitely be perspective-correct.
GetTextureCoordinates(v0, v0, 0.0f, s, t);
}
int texLevel;
int texLevelFrac;
bool bilinear;
CalculateSamplingParams(0.0f, 0.0f, maxTexLevel, texLevel, texLevelFrac, bilinear);
ApplyTexturing(sampler, prim_color, s, t, texLevel, texLevelFrac, bilinear, texptr, texbufw);
}
if (!clearMode)
prim_color += Vec4<int>(sec_color, 0);
ScreenCoords pprime = pos;
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
u16 z = pos.z;
u8 fog = 255;
if (gstate.isFogEnabled() && !clearMode) {
fog = ClampFogDepth(v0.fogdepth);
}
if (clearMode) {
DrawSinglePixel<true>(p, z, fog, prim_color);
} else {
DrawSinglePixel<false>(p, z, fog, prim_color);
}
}
void ClearRectangle(const VertexData &v0, const VertexData &v1)
{
int minX = std::min(v0.screenpos.x, v1.screenpos.x) & ~0xF;
int minY = std::min(v0.screenpos.y, v1.screenpos.y) & ~0xF;
int maxX = (std::max(v0.screenpos.x, v1.screenpos.x) + 0xF) & ~0xF;
int maxY = (std::max(v0.screenpos.y, v1.screenpos.y) + 0xF) & ~0xF;
DrawingCoords scissorTL(gstate.getScissorX1(), gstate.getScissorY1(), 0);
DrawingCoords scissorBR(gstate.getScissorX2(), gstate.getScissorY2(), 0);
minX = std::max(minX, (int)TransformUnit::DrawingToScreen(scissorTL).x);
maxX = std::max(0, std::min(maxX, (int)TransformUnit::DrawingToScreen(scissorBR).x));
minY = std::max(minY, (int)TransformUnit::DrawingToScreen(scissorTL).y);
maxY = std::max(0, std::min(maxY, (int)TransformUnit::DrawingToScreen(scissorBR).y));
const int w = (maxX - minX) / 16;
if (w <= 0)
return;
if (gstate.isClearModeDepthMask()) {
ScreenCoords pprime(minX, minY, 0);
const u16 z = v1.screenpos.z;
const int stride = gstate.DepthBufStride();
for (pprime.y = minY; pprime.y < maxY; pprime.y += 16) {
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
if ((z & 0xFF) == (z >> 8)) {
u16 *row = &depthbuf.as16[p.x + p.y * stride];
memset(row, z, w * 2);
} else {
for (int x = 0; x < w; ++x) {
SetPixelDepth(p.x + x, p.y, z);
}
}
}
}
// Note: this stays 0xFFFFFFFF if keeping color and alpha, even for 16-bit.
u32 keepOldMask = 0xFFFFFFFF;
if (gstate.isClearModeColorMask())
keepOldMask &= 0xFF000000;
if (gstate.isClearModeAlphaMask())
keepOldMask &= 0x00FFFFFF;
// The pixel write masks are respected in clear mode.
keepOldMask |= gstate.getColorMask();
const u32 new_color = v1.color0.ToRGBA();
u16 new_color16;
switch (gstate.FrameBufFormat()) {
case GE_FORMAT_565:
new_color16 = RGBA8888ToRGB565(new_color);
keepOldMask = keepOldMask == 0 ? 0 : (0xFFFF0000 | RGBA8888ToRGB565(keepOldMask));
break;
case GE_FORMAT_5551:
new_color16 = RGBA8888ToRGBA5551(new_color);
keepOldMask = keepOldMask == 0 ? 0 : (0xFFFF0000 | RGBA8888ToRGBA5551(keepOldMask));
break;
case GE_FORMAT_4444:
new_color16 = RGBA8888ToRGBA4444(new_color);
keepOldMask = keepOldMask == 0 ? 0 : (0xFFFF0000 | RGBA8888ToRGBA4444(keepOldMask));
break;
case GE_FORMAT_8888:
break;
case GE_FORMAT_INVALID:
_dbg_assert_msg_(G3D, false, "Software: invalid framebuf format.");
break;
}
if (keepOldMask == 0) {
ScreenCoords pprime(minX, minY, 0);
const int stride = gstate.FrameBufStride();
if (gstate.FrameBufFormat() == GE_FORMAT_8888) {
for (pprime.y = minY; pprime.y < maxY; pprime.y += 16) {
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
if ((new_color & 0xFF) == (new_color >> 8) && (new_color & 0xFFFF) == (new_color >> 16)) {
u32 *row = &fb.as32[p.x + p.y * stride];
memset(row, new_color, w * 4);
} else {
for (int x = 0; x < w; ++x) {
fb.Set32(p.x + x, p.y, stride, new_color);
}
}
}
} else {
for (pprime.y = minY; pprime.y < maxY; pprime.y += 16) {
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
if ((new_color16 & 0xFF) == (new_color16 >> 8)) {
u16 *row = &fb.as16[p.x + p.y * stride];
memset(row, new_color16, w * 2);
} else {
for (int x = 0; x < w; ++x) {
fb.Set16(p.x + x, p.y, stride, new_color16);
}
}
}
}
} else if (keepOldMask != 0xFFFFFFFF) {
ScreenCoords pprime(minX, minY, 0);
const int stride = gstate.FrameBufStride();
if (gstate.FrameBufFormat() == GE_FORMAT_8888) {
for (pprime.y = minY; pprime.y < maxY; pprime.y += 16) {
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
for (int x = 0; x < w; ++x) {
const u32 old_color = fb.Get32(p.x + x, p.y, stride);
const u32 c = (old_color & keepOldMask) | (new_color & ~keepOldMask);
fb.Set32(p.x + x, p.y, stride, c);
}
}
} else {
for (pprime.y = minY; pprime.y < maxY; pprime.y += 16) {
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
for (int x = 0; x < w; ++x) {
const u16 old_color = fb.Get16(p.x + x, p.y, stride);
const u16 c = (old_color & keepOldMask) | (new_color16 & ~keepOldMask);
fb.Set16(p.x + x, p.y, stride, c);
}
}
}
}
}
void DrawLine(const VertexData &v0, const VertexData &v1)
{
// TODO: Use a proper line drawing algorithm that handles fractional endpoints correctly.
Vec3<int> a(v0.screenpos.x, v0.screenpos.y, v0.screenpos.z);
Vec3<int> b(v1.screenpos.x, v1.screenpos.y, v0.screenpos.z);
int dx = b.x - a.x;
int dy = b.y - a.y;
int dz = b.z - a.z;
int steps;
if (abs(dx) < abs(dy))
steps = abs(dy) / 16;
else
steps = abs(dx) / 16;
float xinc = (float)dx / steps;
float yinc = (float)dy / steps;
float zinc = (float)dz / steps;
ScreenCoords scissorTL(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX1(), gstate.getScissorY1(), 0)));
ScreenCoords scissorBR(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX2(), gstate.getScissorY2(), 0)));
bool clearMode = gstate.isModeClear();
int texbufw[8] = {0};
int maxTexLevel = gstate.getTextureMaxLevel();
u8 *texptr[8] = {NULL};
if (!gstate.isMipmapEnabled()) {
// No mipmapping enabled
maxTexLevel = 0;
}
if (gstate.isTextureMapEnabled() && !clearMode) {
GETextureFormat texfmt = gstate.getTextureFormat();
for (int i = 0; i <= maxTexLevel; i++) {
u32 texaddr = gstate.getTextureAddress(i);
texbufw[i] = GetTextureBufw(i, texaddr, texfmt);
texptr[i] = Memory::GetPointer(texaddr);
}
}
Sampler::Funcs sampler = Sampler::GetFuncs();
float x = a.x > b.x ? a.x - 1 : a.x;
float y = a.y > b.y ? a.y - 1 : a.y;
float z = a.z;
const int steps1 = steps == 0 ? 1 : steps;
for (int i = 0; i < steps; i++) {
if (x >= scissorTL.x && y >= scissorTL.y && x <= scissorBR.x && y <= scissorBR.y) {
// Interpolate between the two points.
Vec4<int> prim_color;
Vec3<int> sec_color;
if (gstate.getShadeMode() == GE_SHADE_GOURAUD) {
prim_color = (v0.color0 * (steps - i) + v1.color0 * i) / steps1;
sec_color = (v0.color1 * (steps - i) + v1.color1 * i) / steps1;
} else {
prim_color = v1.color0;
sec_color = v1.color1;
}
u8 fog = 255;
if (gstate.isFogEnabled() && !clearMode) {
fog = ClampFogDepth((v0.fogdepth * (float)(steps - i) + v1.fogdepth * (float)i) / steps1);
}
if (gstate.isAntiAliasEnabled()) {
// TODO: Clearmode?
// TODO: Calculate.
prim_color.a() = 0x7F;
}
if (gstate.isTextureMapEnabled() && !clearMode) {
float s, s1;
float t, t1;
if (gstate.isModeThrough()) {
Vec2<float> tc = (v0.texturecoords * (float)(steps - i) + v1.texturecoords * (float)i) / steps1;
Vec2<float> tc1 = (v0.texturecoords * (float)(steps - i - 1) + v1.texturecoords * (float)(i + 1)) / steps1;
s = tc.s() * (1.0f / (float)gstate.getTextureWidth(0));
s1 = tc1.s() * (1.0f / (float)gstate.getTextureWidth(0));
t = tc.t() * (1.0f / (float)gstate.getTextureHeight(0));
t1 = tc1.t() * (1.0f / (float)gstate.getTextureHeight(0));
} else {
// Texture coordinate interpolation must definitely be perspective-correct.
GetTextureCoordinates(v0, v1, (float)(steps - i) / steps1, s, t);
GetTextureCoordinates(v0, v1, (float)(steps - i - 1) / steps1, s1, t1);
}
// If inc is 0, force the delta to zero.
float ds = xinc == 0.0f ? 0.0f : (s1 - s) * 16.0f * (1.0f / xinc);
float dt = yinc == 0.0f ? 0.0f : (t1 - t) * 16.0f * (1.0f / yinc);
int texLevel;
int texLevelFrac;
bool texBilinear;
CalculateSamplingParams(ds, dt, maxTexLevel, texLevel, texLevelFrac, texBilinear);
if (gstate.isAntiAliasEnabled()) {
// TODO: This is a niave and wrong implementation.
DrawingCoords p0 = TransformUnit::ScreenToDrawing(ScreenCoords((int)x, (int)y, (int)z));
DrawingCoords p1 = TransformUnit::ScreenToDrawing(ScreenCoords((int)(x + xinc), (int)(y + yinc), (int)(z + zinc)));
s = ((float)p0.x + xinc / 32.0f) / 512.0f;
t = ((float)p0.y + yinc / 32.0f) / 512.0f;
texBilinear = true;
}
ApplyTexturing(sampler, prim_color, s, t, texLevel, texLevelFrac, texBilinear, texptr, texbufw);
}
if (!clearMode)
prim_color += Vec4<int>(sec_color, 0);
ScreenCoords pprime = ScreenCoords((int)x, (int)y, (int)z);
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
if (clearMode) {
DrawSinglePixel<true>(p, z, fog, prim_color);
} else {
DrawSinglePixel<false>(p, z, fog, prim_color);
}
}
x += xinc;
y += yinc;
z += zinc;
}
}
bool GetCurrentStencilbuffer(GPUDebugBuffer &buffer)
{
int w = gstate.getRegionX2() - gstate.getRegionX1() + 1;
int h = gstate.getRegionY2() - gstate.getRegionY1() + 1;
buffer.Allocate(w, h, GPU_DBG_FORMAT_8BIT);
u8 *row = buffer.GetData();
for (int y = gstate.getRegionY1(); y <= gstate.getRegionY2(); ++y) {
for (int x = gstate.getRegionX1(); x <= gstate.getRegionX2(); ++x) {
row[x - gstate.getRegionX1()] = GetPixelStencil(x, y);
}
row += w;
}
return true;
}
bool GetCurrentTexture(GPUDebugBuffer &buffer, int level)
{
if (!gstate.isTextureMapEnabled()) {
return false;
}
GETextureFormat texfmt = gstate.getTextureFormat();
u32 texaddr = gstate.getTextureAddress(level);
int texbufw = GetTextureBufw(level, texaddr, texfmt);
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
if (!texaddr || !Memory::IsValidRange(texaddr, (textureBitsPerPixel[texfmt] * texbufw * h) / 8))
return false;
buffer.Allocate(w, h, GE_FORMAT_8888, false);
Sampler::Funcs sampler = Sampler::GetFuncs();
u8 *texptr = Memory::GetPointer(texaddr);
u32 *row = (u32 *)buffer.GetData();
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
row[x] = sampler.nearest(x, y, texptr, texbufw, level);
}
row += w;
}
return true;
}
} // namespace