ppsspp/GPU/Software/TransformUnit.cpp
2022-02-12 12:03:55 -08:00

924 lines
29 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cmath>
#include <algorithm>
#include "Common/Common.h"
#include "Common/CPUDetect.h"
#include "Common/Math/math_util.h"
#include "Common/MemoryUtil.h"
#include "Common/Profiler/Profiler.h"
#include "Core/Config.h"
#include "GPU/GPUState.h"
#include "GPU/Common/DrawEngineCommon.h"
#include "GPU/Common/VertexDecoderCommon.h"
#include "GPU/Common/SplineCommon.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Debugger/Debugger.h"
#include "GPU/Software/BinManager.h"
#include "GPU/Software/Clipper.h"
#include "GPU/Software/FuncId.h"
#include "GPU/Software/Lighting.h"
#include "GPU/Software/Rasterizer.h"
#include "GPU/Software/RasterizerRectangle.h"
#include "GPU/Software/TransformUnit.h"
#define TRANSFORM_BUF_SIZE (65536 * 48)
TransformUnit::TransformUnit() {
decoded_ = (u8 *)AllocateMemoryPages(TRANSFORM_BUF_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
binner_ = new BinManager();
}
TransformUnit::~TransformUnit() {
FreeMemoryPages(decoded_, DECODED_VERTEX_BUFFER_SIZE);
delete binner_;
}
SoftwareDrawEngine::SoftwareDrawEngine() {
// All this is a LOT of memory, need to see if we can cut down somehow. Used for splines.
decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
}
SoftwareDrawEngine::~SoftwareDrawEngine() {
FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE);
FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE);
}
void SoftwareDrawEngine::DispatchFlush() {
transformUnit.Flush("debug");
}
void SoftwareDrawEngine::DispatchSubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertTypeID, int cullMode, int *bytesRead) {
_assert_msg_(cullMode == gstate.getCullMode(), "Mixed cull mode not supported.");
transformUnit.SubmitPrimitive(verts, inds, prim, vertexCount, vertTypeID, bytesRead, this);
}
void SoftwareDrawEngine::DispatchSubmitImm(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertTypeID, int cullMode, int *bytesRead) {
_assert_msg_(cullMode == gstate.getCullMode(), "Mixed cull mode not supported.");
// TODO: For now, just setting all dirty.
transformUnit.SetDirty(SoftDirty(-1));
transformUnit.SubmitPrimitive(verts, inds, prim, vertexCount, vertTypeID, bytesRead, this);
// TODO: Should really clear, but the vertex type is faked so things might need resetting...
transformUnit.SetDirty(SoftDirty(-1));
}
VertexDecoder *SoftwareDrawEngine::FindVertexDecoder(u32 vtype) {
const u32 vertTypeID = (vtype & 0xFFFFFF) | (gstate.getUVGenMode() << 24);
return DrawEngineCommon::GetVertexDecoder(vertTypeID);
}
WorldCoords TransformUnit::ModelToWorld(const ModelCoords &coords) {
return Vec3ByMatrix43(coords, gstate.worldMatrix);
}
WorldCoords TransformUnit::ModelToWorldNormal(const ModelCoords &coords) {
return Norm3ByMatrix43(coords, gstate.worldMatrix);
}
ViewCoords TransformUnit::WorldToView(const WorldCoords &coords) {
return Vec3ByMatrix43(coords, gstate.viewMatrix);
}
ClipCoords TransformUnit::ViewToClip(const ViewCoords &coords) {
return Vec3ByMatrix44(coords, gstate.projMatrix);
}
template <bool depthClamp, bool writeOutsideFlag>
static ScreenCoords ClipToScreenInternal(Vec3f scaled, const ClipCoords &coords, bool *outside_range_flag) {
ScreenCoords ret;
// Account for rounding for X and Y.
// TODO: Validate actual rounding range.
const float SCREEN_BOUND = 4095.0f + (15.5f / 16.0f);
// This matches hardware tests - depth is clamped when this flag is on.
if (depthClamp) {
// Note: if the depth is clipped (z/w <= -1.0), the outside_range_flag should NOT be set, even for x and y.
if (writeOutsideFlag && coords.z > -coords.w && (scaled.x >= SCREEN_BOUND || scaled.y >= SCREEN_BOUND || scaled.x < 0 || scaled.y < 0)) {
*outside_range_flag = true;
}
if (scaled.z < 0.f)
scaled.z = 0.f;
else if (scaled.z > 65535.0f)
scaled.z = 65535.0f;
} else if (writeOutsideFlag && (scaled.x > SCREEN_BOUND || scaled.y >= SCREEN_BOUND || scaled.x < 0 || scaled.y < 0)) {
*outside_range_flag = true;
}
// 16 = 0xFFFF / 4095.9375
// Round up at 0.625 to the nearest subpixel.
return ScreenCoords(scaled.x * 16.0f + 0.375f, scaled.y * 16.0f + 0.375f, scaled.z);
}
static inline ScreenCoords ClipToScreenInternal(const ClipCoords &coords, bool *outside_range_flag) {
// Parameters here can seem invalid, but the PSP is fine with negative viewport widths etc.
// The checking that OpenGL and D3D do is actually quite superflous as the calculations still "work"
// with some pretty crazy inputs, which PSP games are happy to do at times.
float xScale = gstate.getViewportXScale();
float xCenter = gstate.getViewportXCenter();
float yScale = gstate.getViewportYScale();
float yCenter = gstate.getViewportYCenter();
float zScale = gstate.getViewportZScale();
float zCenter = gstate.getViewportZCenter();
float x = coords.x * xScale / coords.w + xCenter;
float y = coords.y * yScale / coords.w + yCenter;
float z = coords.z * zScale / coords.w + zCenter;
if (gstate.isDepthClampEnabled()) {
if (outside_range_flag)
return ClipToScreenInternal<true, true>(Vec3f(x, y, z), coords, outside_range_flag);
return ClipToScreenInternal<true, false>(Vec3f(x, y, z), coords, outside_range_flag);
}
if (outside_range_flag)
return ClipToScreenInternal<false, true>(Vec3f(x, y, z), coords, outside_range_flag);
return ClipToScreenInternal<false, false>(Vec3f(x, y, z), coords, outside_range_flag);
}
ScreenCoords TransformUnit::ClipToScreen(const ClipCoords &coords) {
return ClipToScreenInternal(coords, nullptr);
}
ScreenCoords TransformUnit::DrawingToScreen(const DrawingCoords &coords, u16 z) {
ScreenCoords ret;
ret.x = (u32)coords.x * 16 + gstate.getOffsetX16();
ret.y = (u32)coords.y * 16 + gstate.getOffsetY16();
ret.z = z;
return ret;
}
enum class MatrixMode {
NONE = 0,
POS_TO_CLIP = 1,
POS_TO_VIEW = 2,
WORLD_TO_CLIP = 3,
};
struct TransformState {
Lighting::State lightingState;
float fogEnd;
float fogSlope;
uint16_t screenOffsetX;
uint16_t screenOffsetY;
float matrix[16];
Vec3f screenScale;
Vec3f screenAdd;
ScreenCoords(*roundToScreen)(Vec3f scaled, const ClipCoords &coords, bool *outside_range_flag);
struct {
bool enableTransform : 1;
bool enableLighting : 1;
bool enableFog : 1;
bool readUV : 1;
bool readWeights : 1;
bool negateNormals : 1;
uint8_t uvGenMode : 2;
uint8_t matrixMode : 2;
};
};
void ComputeTransformState(TransformState *state, const VertexReader &vreader) {
state->enableTransform = !gstate.isModeThrough();
state->enableLighting = gstate.isLightingEnabled();
state->enableFog = gstate.isFogEnabled();
state->readUV = !gstate.isModeClear() && gstate.isTextureMapEnabled() && vreader.hasUV();
state->readWeights = vertTypeIsSkinningEnabled(gstate.vertType) && state->enableTransform;
state->negateNormals = gstate.areNormalsReversed();
state->uvGenMode = gstate.getUVGenMode();
state->screenOffsetX = gstate.getOffsetX16();
state->screenOffsetY = gstate.getOffsetY16();
if (state->enableTransform) {
if (state->enableFog) {
state->fogEnd = getFloat24(gstate.fog1);
state->fogSlope = getFloat24(gstate.fog2);
// Same fixup as in ShaderManagerGLES.cpp
if (my_isnanorinf(state->fogEnd)) {
state->fogEnd = std::signbit(state->fogEnd) ? -INFINITY : INFINITY;
}
if (my_isnanorinf(state->fogSlope)) {
state->fogSlope = std::signbit(state->fogSlope) ? -INFINITY : INFINITY;
}
}
bool canSkipWorldPos = true;
bool canSkipViewPos = !state->enableFog;
if (state->enableLighting) {
Lighting::ComputeState(&state->lightingState, vreader.hasColor0());
for (int i = 0; i < 4; ++i) {
if (!state->lightingState.lights[i].enabled)
continue;
if (!state->lightingState.lights[i].directional)
canSkipWorldPos = false;
}
}
float world[16];
float view[16];
if (canSkipWorldPos && canSkipViewPos) {
state->matrixMode = (uint8_t)MatrixMode::POS_TO_CLIP;
ConvertMatrix4x3To4x4(world, gstate.worldMatrix);
ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
float worldview[16];
Matrix4ByMatrix4(worldview, world, view);
Matrix4ByMatrix4(state->matrix, worldview, gstate.projMatrix);
} else if (canSkipWorldPos) {
state->matrixMode = (uint8_t)MatrixMode::POS_TO_VIEW;
ConvertMatrix4x3To4x4(world, gstate.worldMatrix);
ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
Matrix4ByMatrix4(state->matrix, world, view);
} else if (canSkipViewPos) {
state->matrixMode = (uint8_t)MatrixMode::WORLD_TO_CLIP;
ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
Matrix4ByMatrix4(state->matrix, view, gstate.projMatrix);
} else {
state->matrixMode = (uint8_t)MatrixMode::NONE;
}
state->screenScale = Vec3f(gstate.getViewportXScale(), gstate.getViewportYScale(), gstate.getViewportZScale());
state->screenAdd = Vec3f(gstate.getViewportXCenter(), gstate.getViewportYCenter(), gstate.getViewportZCenter());
}
if (gstate.isDepthClampEnabled())
state->roundToScreen = &ClipToScreenInternal<true, true>;
else
state->roundToScreen = &ClipToScreenInternal<false, true>;
}
VertexData TransformUnit::ReadVertex(VertexReader &vreader, const TransformState &state, bool &outside_range_flag) {
PROFILE_THIS_SCOPE("read_vert");
VertexData vertex;
ModelCoords pos;
// VertexDecoder normally scales z, but we want it unscaled.
vreader.ReadPosThroughZ16(pos.AsArray());
if (state.readUV) {
vreader.ReadUV(vertex.texturecoords.AsArray());
}
Vec3<float> normal;
if (vreader.hasNormal()) {
vreader.ReadNrm(normal.AsArray());
if (state.negateNormals)
normal = -normal;
}
if (state.readWeights) {
float W[8] = { 1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f };
vreader.ReadWeights(W);
Vec3<float> tmppos(0.f, 0.f, 0.f);
Vec3<float> tmpnrm(0.f, 0.f, 0.f);
for (int i = 0; i < vertTypeGetNumBoneWeights(gstate.vertType); ++i) {
Vec3<float> step = Vec3ByMatrix43(pos, gstate.boneMatrix + i * 12);
tmppos += step * W[i];
if (vreader.hasNormal()) {
step = Norm3ByMatrix43(normal, gstate.boneMatrix + i * 12);
tmpnrm += step * W[i];
}
}
pos = tmppos;
if (vreader.hasNormal())
normal = tmpnrm;
}
if (vreader.hasColor0()) {
#ifdef _M_SSE
vreader.ReadColor0_8888((u8 *)vertex.color0.AsArray());
vertex.color0.ivec = _mm_unpacklo_epi8(vertex.color0.ivec, _mm_setzero_si128());
vertex.color0.ivec = _mm_unpacklo_epi16(vertex.color0.ivec, _mm_setzero_si128());
#else
float col[4];
vreader.ReadColor0(col);
vertex.color0 = Vec4<int>(col[0]*255, col[1]*255, col[2]*255, col[3]*255);
#endif
} else {
vertex.color0 = Vec4<int>::FromRGBA(gstate.getMaterialAmbientRGBA());
}
#ifdef _M_SSE
vertex.color1 = _mm_setzero_si128();
#else
vertex.color1 = Vec3<int>(0, 0, 0);
#endif
if (state.enableTransform) {
WorldCoords worldpos;
ModelCoords viewpos;
switch (MatrixMode(state.matrixMode)) {
case MatrixMode::NONE:
worldpos = TransformUnit::ModelToWorld(pos);
viewpos = TransformUnit::WorldToView(worldpos);
vertex.clippos = TransformUnit::ViewToClip(viewpos);
break;
case MatrixMode::POS_TO_CLIP:
vertex.clippos = Vec3ByMatrix44(pos, state.matrix);
break;
case MatrixMode::POS_TO_VIEW:
#ifdef _M_SSE
viewpos = Vec3ByMatrix44(pos, state.matrix).vec;
#else
viewpos = Vec3ByMatrix44(pos, state.matrix).rgb();
#endif
vertex.clippos = TransformUnit::ViewToClip(viewpos);
break;
case MatrixMode::WORLD_TO_CLIP:
worldpos = TransformUnit::ModelToWorld(pos);
vertex.clippos = Vec3ByMatrix44(worldpos, state.matrix);
break;
}
Vec3f screenScaled;
#ifdef _M_SSE
screenScaled.vec = _mm_mul_ps(vertex.clippos.vec, state.screenScale.vec);
screenScaled.vec = _mm_div_ps(screenScaled.vec, _mm_shuffle_ps(vertex.clippos.vec, vertex.clippos.vec, _MM_SHUFFLE(3, 3, 3, 3)));
screenScaled.vec = _mm_add_ps(screenScaled.vec, state.screenAdd.vec);
#else
screenScaled = vertex.clippos.xyz() * state.screenScale / vertex.clippos.w + state.screenAdd;
#endif
vertex.screenpos = state.roundToScreen(screenScaled, vertex.clippos, &outside_range_flag);
if (outside_range_flag)
return vertex;
if (state.enableFog) {
vertex.fogdepth = (viewpos.z + state.fogEnd) * state.fogSlope;
} else {
vertex.fogdepth = 1.0f;
}
Vec3<float> worldnormal;
if (vreader.hasNormal()) {
worldnormal = TransformUnit::ModelToWorldNormal(normal);
worldnormal.NormalizeOr001();
} else {
worldnormal = Vec3<float>(0.0f, 0.0f, 1.0f);
}
// Time to generate some texture coords. Lighting will handle shade mapping.
if (state.uvGenMode == GE_TEXMAP_TEXTURE_MATRIX) {
Vec3f source;
switch (gstate.getUVProjMode()) {
case GE_PROJMAP_POSITION:
source = pos;
break;
case GE_PROJMAP_UV:
source = Vec3f(vertex.texturecoords, 0.0f);
break;
case GE_PROJMAP_NORMALIZED_NORMAL:
source = normal.NormalizedOr001(cpu_info.bSSE4_1);
break;
case GE_PROJMAP_NORMAL:
source = normal;
break;
default:
source = Vec3f::AssignToAll(0.0f);
ERROR_LOG_REPORT(G3D, "Software: Unsupported UV projection mode %x", gstate.getUVProjMode());
break;
}
// TODO: What about uv scale and offset?
Vec3<float> stq = Vec3ByMatrix43(source, gstate.tgenMatrix);
float z_recip = 1.0f / stq.z;
vertex.texturecoords = Vec2f(stq.x * z_recip, stq.y * z_recip);
} else if (state.uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP) {
Lighting::GenerateLightST(vertex, worldnormal);
}
PROFILE_THIS_SCOPE("light");
if (state.enableLighting)
Lighting::Process(vertex, worldpos, worldnormal, state.lightingState);
} else {
vertex.screenpos.x = (int)(pos[0] * 16) + state.screenOffsetX;
vertex.screenpos.y = (int)(pos[1] * 16) + state.screenOffsetY;
vertex.screenpos.z = pos[2];
vertex.clippos.w = 1.f;
vertex.fogdepth = 1.f;
}
return vertex;
}
void TransformUnit::SetDirty(SoftDirty flags) {
binner_->SetDirty(flags);
}
SoftDirty TransformUnit::GetDirty() {
return binner_->GetDirty();
}
enum class CullType {
CW,
CCW,
OFF,
};
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, GEPrimitiveType prim_type, int vertex_count, u32 vertex_type, int *bytesRead, SoftwareDrawEngine *drawEngine)
{
VertexDecoder &vdecoder = *drawEngine->FindVertexDecoder(vertex_type);
const DecVtxFormat &vtxfmt = vdecoder.GetDecVtxFmt();
if (bytesRead)
*bytesRead = vertex_count * vdecoder.VertexSize();
// Frame skipping.
if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) {
return;
}
// Throughmode never draws 8-bit primitives, maybe because they can't fully specify the screen?
if ((vertex_type & GE_VTYPE_THROUGH_MASK) != 0 && (vertex_type & GE_VTYPE_POS_MASK) == GE_VTYPE_POS_8BIT)
return;
// Vertices without position are just entirely culled.
if ((vertex_type & GE_VTYPE_POS_MASK) == 0)
return;
u16 index_lower_bound = 0;
u16 index_upper_bound = vertex_count - 1;
IndexConverter ConvertIndex(vertex_type, indices);
if (indices)
GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound);
vdecoder.DecodeVerts(decoded_, vertices, index_lower_bound, index_upper_bound);
VertexReader vreader(decoded_, vtxfmt, vertex_type);
static VertexData data[4]; // Normally max verts per prim is 3, but we temporarily need 4 to detect rectangles from strips.
// This is the index of the next vert in data (or higher, may need modulus.)
static int data_index = 0;
static GEPrimitiveType prev_prim = GE_PRIM_POINTS;
if (prim_type != GE_PRIM_KEEP_PREVIOUS) {
data_index = 0;
prev_prim = prim_type;
} else {
prim_type = prev_prim;
}
int vtcs_per_prim;
switch (prim_type) {
case GE_PRIM_POINTS: vtcs_per_prim = 1; break;
case GE_PRIM_LINES: vtcs_per_prim = 2; break;
case GE_PRIM_TRIANGLES: vtcs_per_prim = 3; break;
case GE_PRIM_RECTANGLES: vtcs_per_prim = 2; break;
default: vtcs_per_prim = 0; break;
}
// TODO: Do this in two passes - first process the vertices (before indexing/stripping),
// then resolve the indices. This lets us avoid transforming shared vertices twice.
binner_->UpdateState();
static TransformState transformState;
if (binner_->HasDirty(SoftDirty::LIGHT_ALL | SoftDirty::TRANSFORM_ALL)) {
ComputeTransformState(&transformState, vreader);
binner_->ClearDirty(SoftDirty::LIGHT_ALL | SoftDirty::TRANSFORM_ALL);
}
bool skipCull = !gstate.isCullEnabled() || gstate.isModeClear();
const CullType cullType = skipCull ? CullType::OFF : (gstate.getCullMode() ? CullType::CCW : CullType::CW);
bool outside_range_flag = false;
switch (prim_type) {
case GE_PRIM_POINTS:
case GE_PRIM_LINES:
case GE_PRIM_TRIANGLES:
{
for (int vtx = 0; vtx < vertex_count; ++vtx) {
if (indices) {
vreader.Goto(ConvertIndex(vtx) - index_lower_bound);
} else {
vreader.Goto(vtx);
}
data[data_index++] = ReadVertex(vreader, transformState, outside_range_flag);
if (data_index < vtcs_per_prim) {
// Keep reading. Note: an incomplete prim will stay read for GE_PRIM_KEEP_PREVIOUS.
continue;
}
// Okay, we've got enough verts. Reset the index for next time.
data_index = 0;
if (outside_range_flag) {
// Cull the prim if it was outside, and move to the next prim.
outside_range_flag = false;
continue;
}
switch (prim_type) {
case GE_PRIM_TRIANGLES:
{
if (cullType == CullType::OFF) {
Clipper::ProcessTriangle(data[0], data[1], data[2], data[2], *binner_);
Clipper::ProcessTriangle(data[2], data[1], data[0], data[2], *binner_);
} else if (cullType == CullType::CW) {
Clipper::ProcessTriangle(data[2], data[1], data[0], data[2], *binner_);
} else {
Clipper::ProcessTriangle(data[0], data[1], data[2], data[2], *binner_);
}
break;
}
case GE_PRIM_LINES:
Clipper::ProcessLine(data[0], data[1], *binner_);
break;
case GE_PRIM_POINTS:
Clipper::ProcessPoint(data[0], *binner_);
break;
default:
_dbg_assert_msg_(false, "Unexpected prim type: %d", prim_type);
}
}
break;
}
case GE_PRIM_RECTANGLES:
for (int vtx = 0; vtx < vertex_count; ++vtx) {
if (indices) {
vreader.Goto(ConvertIndex(vtx) - index_lower_bound);
} else {
vreader.Goto(vtx);
}
data[data_index++] = ReadVertex(vreader, transformState, outside_range_flag);
if (outside_range_flag) {
outside_range_flag = false;
// Note: this is the post increment index. If odd, we set the first vert.
if (data_index & 1) {
// Skip the next one and forget this one.
vtx++;
data_index--;
} else {
// Forget both of the last 2.
data_index -= 2;
}
}
if (data_index == 4 && gstate.isModeThrough() && cullType == CullType::OFF) {
if (Rasterizer::DetectRectangleThroughModeSlices(binner_->State(), data)) {
data[1] = data[3];
data_index = 2;
}
}
if (data_index == 4) {
Clipper::ProcessRect(data[0], data[1], *binner_);
Clipper::ProcessRect(data[2], data[3], *binner_);
data_index = 0;
}
}
if (data_index >= 2) {
Clipper::ProcessRect(data[0], data[1], *binner_);
data_index -= 2;
}
break;
case GE_PRIM_LINE_STRIP:
{
// Don't draw a line when loading the first vertex.
// If data_index is 1 or 2, etc., it means we're continuing a line strip.
int skip_count = data_index == 0 ? 1 : 0;
for (int vtx = 0; vtx < vertex_count; ++vtx) {
if (indices) {
vreader.Goto(ConvertIndex(vtx) - index_lower_bound);
} else {
vreader.Goto(vtx);
}
data[(data_index++) & 1] = ReadVertex(vreader, transformState, outside_range_flag);
if (outside_range_flag) {
// Drop all primitives containing the current vertex
skip_count = 2;
outside_range_flag = false;
continue;
}
if (skip_count) {
--skip_count;
} else {
// We already incremented data_index, so data_index & 1 is previous one.
Clipper::ProcessLine(data[data_index & 1], data[(data_index & 1) ^ 1], *binner_);
}
}
break;
}
case GE_PRIM_TRIANGLE_STRIP:
{
// Don't draw a triangle when loading the first two vertices.
int skip_count = data_index >= 2 ? 0 : 2 - data_index;
// If index count == 4, check if we can convert to a rectangle.
// This is for Darkstalkers (and should speed up many 2D games).
if (data_index == 0 && vertex_count == 4 && cullType == CullType::OFF) {
for (int vtx = 0; vtx < 4; ++vtx) {
if (indices) {
vreader.Goto(ConvertIndex(vtx) - index_lower_bound);
}
else {
vreader.Goto(vtx);
}
data[vtx] = ReadVertex(vreader, transformState, outside_range_flag);
}
// If a strip is effectively a rectangle, draw it as such!
int tl = -1, br = -1;
if (!outside_range_flag && Rasterizer::DetectRectangleFromStrip(binner_->State(), data, &tl, &br)) {
Clipper::ProcessRect(data[tl], data[br], *binner_);
break;
}
}
outside_range_flag = false;
for (int vtx = 0; vtx < vertex_count; ++vtx) {
if (indices) {
vreader.Goto(ConvertIndex(vtx) - index_lower_bound);
} else {
vreader.Goto(vtx);
}
int provoking_index = (data_index++) % 3;
data[provoking_index] = ReadVertex(vreader, transformState, outside_range_flag);
if (outside_range_flag) {
// Drop all primitives containing the current vertex
skip_count = 2;
outside_range_flag = false;
continue;
}
if (skip_count) {
--skip_count;
continue;
}
if (cullType == CullType::OFF) {
Clipper::ProcessTriangle(data[0], data[1], data[2], data[provoking_index], *binner_);
Clipper::ProcessTriangle(data[2], data[1], data[0], data[provoking_index], *binner_);
} else if ((!(int)cullType) ^ ((data_index - 1) % 2)) {
// We need to reverse the vertex order for each second primitive,
// but we additionally need to do that for every primitive if CCW cullmode is used.
Clipper::ProcessTriangle(data[2], data[1], data[0], data[provoking_index], *binner_);
} else {
Clipper::ProcessTriangle(data[0], data[1], data[2], data[provoking_index], *binner_);
}
}
break;
}
case GE_PRIM_TRIANGLE_FAN:
{
// Don't draw a triangle when loading the first two vertices.
// (this doesn't count the central one.)
int skip_count = data_index <= 1 ? 1 : 0;
int start_vtx = 0;
// Only read the central vertex if we're not continuing.
if (data_index == 0) {
if (indices) {
vreader.Goto(ConvertIndex(0) - index_lower_bound);
} else {
vreader.Goto(0);
}
data[0] = ReadVertex(vreader, transformState, outside_range_flag);
data_index++;
start_vtx = 1;
// If the central vertex is outside range, all the points are toast.
if (outside_range_flag)
break;
}
if (data_index == 1 && vertex_count == 4 && cullType == CullType::OFF) {
for (int vtx = start_vtx; vtx < vertex_count; ++vtx) {
if (indices) {
vreader.Goto(ConvertIndex(vtx) - index_lower_bound);
} else {
vreader.Goto(vtx);
}
data[vtx] = ReadVertex(vreader, transformState, outside_range_flag);
}
int tl = -1, br = -1;
if (!outside_range_flag && Rasterizer::DetectRectangleFromFan(binner_->State(), data, vertex_count, &tl, &br)) {
Clipper::ProcessRect(data[tl], data[br], *binner_);
break;
}
}
outside_range_flag = false;
for (int vtx = start_vtx; vtx < vertex_count; ++vtx) {
if (indices) {
vreader.Goto(ConvertIndex(vtx) - index_lower_bound);
} else {
vreader.Goto(vtx);
}
int provoking_index = 2 - ((data_index++) % 2);
data[provoking_index] = ReadVertex(vreader, transformState, outside_range_flag);
if (outside_range_flag) {
// Drop all primitives containing the current vertex
skip_count = 2;
outside_range_flag = false;
continue;
}
if (skip_count) {
--skip_count;
continue;
}
if (cullType == CullType::OFF) {
Clipper::ProcessTriangle(data[0], data[1], data[2], data[provoking_index], *binner_);
Clipper::ProcessTriangle(data[2], data[1], data[0], data[provoking_index], *binner_);
} else if ((!(int)cullType) ^ ((data_index - 1) % 2)) {
// We need to reverse the vertex order for each second primitive,
// but we additionally need to do that for every primitive if CCW cullmode is used.
Clipper::ProcessTriangle(data[2], data[1], data[0], data[provoking_index], *binner_);
} else {
Clipper::ProcessTriangle(data[0], data[1], data[2], data[provoking_index], *binner_);
}
}
break;
}
default:
ERROR_LOG(G3D, "Unexpected prim type: %d", prim_type);
break;
}
}
void TransformUnit::Flush(const char *reason) {
binner_->Flush(reason);
GPUDebug::NotifyDraw();
}
void TransformUnit::GetStats(char *buffer, size_t bufsize) {
// TODO: More stats?
binner_->GetStats(buffer, bufsize);
}
void TransformUnit::FlushIfOverlap(const char *reason, uint32_t addr, uint32_t stride, uint32_t w, uint32_t h) {
if (binner_->HasPendingWrite(addr, stride, w, h))
Flush(reason);
}
void TransformUnit::NotifyClutUpdate(const void *src) {
binner_->UpdateClut(src);
}
// TODO: This probably is not the best interface.
// Also, we should try to merge this into the similar function in DrawEngineCommon.
bool TransformUnit::GetCurrentSimpleVertices(int count, std::vector<GPUDebugVertex> &vertices, std::vector<u16> &indices) {
// This is always for the current vertices.
u16 indexLowerBound = 0;
u16 indexUpperBound = count - 1;
if (count > 0 && (gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
const u8 *inds = Memory::GetPointer(gstate_c.indexAddr);
const u16_le *inds16 = (const u16_le *)inds;
const u32_le *inds32 = (const u32_le *)inds;
if (inds) {
GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound);
indices.resize(count);
switch (gstate.vertType & GE_VTYPE_IDX_MASK) {
case GE_VTYPE_IDX_8BIT:
for (int i = 0; i < count; ++i) {
indices[i] = inds[i];
}
break;
case GE_VTYPE_IDX_16BIT:
for (int i = 0; i < count; ++i) {
indices[i] = inds16[i];
}
break;
case GE_VTYPE_IDX_32BIT:
WARN_LOG_REPORT_ONCE(simpleIndexes32, G3D, "SimpleVertices: Decoding 32-bit indexes");
for (int i = 0; i < count; ++i) {
// These aren't documented and should be rare. Let's bounds check each one.
if (inds32[i] != (u16)inds32[i]) {
ERROR_LOG_REPORT_ONCE(simpleIndexes32Bounds, G3D, "SimpleVertices: Index outside 16-bit range");
}
indices[i] = (u16)inds32[i];
}
break;
}
} else {
indices.clear();
}
} else {
indices.clear();
}
static std::vector<u32> temp_buffer;
static std::vector<SimpleVertex> simpleVertices;
temp_buffer.resize(std::max((int)indexUpperBound, 8192) * 128 / sizeof(u32));
simpleVertices.resize(indexUpperBound + 1);
VertexDecoder vdecoder;
VertexDecoderOptions options{};
vdecoder.SetVertexType(gstate.vertType, options);
if (!Memory::IsValidRange(gstate_c.vertexAddr, (indexUpperBound + 1) * vdecoder.VertexSize()))
return false;
DrawEngineCommon::NormalizeVertices((u8 *)(&simpleVertices[0]), (u8 *)(&temp_buffer[0]), Memory::GetPointer(gstate_c.vertexAddr), &vdecoder, indexLowerBound, indexUpperBound, gstate.vertType);
float world[16];
float view[16];
float worldview[16];
float worldviewproj[16];
ConvertMatrix4x3To4x4(world, gstate.worldMatrix);
ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
Matrix4ByMatrix4(worldview, world, view);
Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix);
vertices.resize(indexUpperBound + 1);
for (int i = indexLowerBound; i <= indexUpperBound; ++i) {
const SimpleVertex &vert = simpleVertices[i];
if (gstate.isModeThrough()) {
if (gstate.vertType & GE_VTYPE_TC_MASK) {
vertices[i].u = vert.uv[0];
vertices[i].v = vert.uv[1];
} else {
vertices[i].u = 0.0f;
vertices[i].v = 0.0f;
}
vertices[i].x = vert.pos.x;
vertices[i].y = vert.pos.y;
vertices[i].z = vert.pos.z;
} else {
float clipPos[4];
Vec3ByMatrix44(clipPos, vert.pos.AsArray(), worldviewproj);
ScreenCoords screenPos = ClipToScreen(clipPos);
DrawingCoords drawPos = ScreenToDrawing(screenPos, gstate.getOffsetX16(), gstate.getOffsetY16());
if (gstate.vertType & GE_VTYPE_TC_MASK) {
vertices[i].u = vert.uv[0] * (float)gstate.getTextureWidth(0);
vertices[i].v = vert.uv[1] * (float)gstate.getTextureHeight(0);
} else {
vertices[i].u = 0.0f;
vertices[i].v = 0.0f;
}
vertices[i].x = drawPos.x;
vertices[i].y = drawPos.y;
vertices[i].z = screenPos.z;
}
if (gstate.vertType & GE_VTYPE_COL_MASK) {
memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
} else {
memset(vertices[i].c, 0, sizeof(vertices[i].c));
}
vertices[i].nx = vert.nrm.x;
vertices[i].ny = vert.nrm.y;
vertices[i].nz = vert.nrm.z;
}
// The GE debugger expects these to be set.
gstate_c.curTextureWidth = gstate.getTextureWidth(0);
gstate_c.curTextureHeight = gstate.getTextureHeight(0);
return true;
}