mirror of
https://github.com/hrydgard/ppsspp.git
synced 2024-11-23 13:30:02 +00:00
9fc94a3494
These already always go through software transform, so make sure we handle them consistently. We'll eventually convert to triangles.
784 lines
26 KiB
C++
784 lines
26 KiB
C++
// Copyright (c) 2013- PPSSPP Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official git repository and contact information can be found at
|
|
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
|
|
|
|
#include <algorithm>
|
|
|
|
#include "Common/Data/Convert/ColorConv.h"
|
|
#include "Common/Profiler/Profiler.h"
|
|
#include "Core/Config.h"
|
|
#include "GPU/Common/DrawEngineCommon.h"
|
|
#include "GPU/Common/SplineCommon.h"
|
|
#include "GPU/Common/VertexDecoderCommon.h"
|
|
#include "GPU/ge_constants.h"
|
|
#include "GPU/GPUState.h"
|
|
|
|
#define QUAD_INDICES_MAX 65536
|
|
|
|
enum {
|
|
TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex)
|
|
};
|
|
|
|
DrawEngineCommon::DrawEngineCommon() : decoderMap_(16) {
|
|
decJitCache_ = new VertexDecoderJitCache();
|
|
transformed = (TransformedVertex *)AllocateMemoryPages(TRANSFORMED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
|
|
transformedExpanded = (TransformedVertex *)AllocateMemoryPages(3 * TRANSFORMED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
|
|
}
|
|
|
|
DrawEngineCommon::~DrawEngineCommon() {
|
|
FreeMemoryPages(transformed, TRANSFORMED_VERTEX_BUFFER_SIZE);
|
|
FreeMemoryPages(transformedExpanded, 3 * TRANSFORMED_VERTEX_BUFFER_SIZE);
|
|
delete decJitCache_;
|
|
decoderMap_.Iterate([&](const uint32_t vtype, VertexDecoder *decoder) {
|
|
delete decoder;
|
|
});
|
|
ClearSplineBezierWeights();
|
|
}
|
|
|
|
void DrawEngineCommon::Init() {
|
|
useHWTransform_ = g_Config.bHardwareTransform;
|
|
useHWTessellation_ = UpdateUseHWTessellation(g_Config.bHardwareTessellation);
|
|
}
|
|
|
|
VertexDecoder *DrawEngineCommon::GetVertexDecoder(u32 vtype) {
|
|
VertexDecoder *dec = decoderMap_.Get(vtype);
|
|
if (dec)
|
|
return dec;
|
|
dec = new VertexDecoder();
|
|
dec->SetVertexType(vtype, decOptions_, decJitCache_);
|
|
decoderMap_.Insert(vtype, dec);
|
|
return dec;
|
|
}
|
|
|
|
int DrawEngineCommon::ComputeNumVertsToDecode() const {
|
|
int vertsToDecode = 0;
|
|
if (drawCalls[0].indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) {
|
|
for (int i = 0; i < numDrawCalls; i++) {
|
|
const DeferredDrawCall &dc = drawCalls[i];
|
|
vertsToDecode += dc.vertexCount;
|
|
}
|
|
} else {
|
|
// TODO: Share this computation with DecodeVertsStep?
|
|
for (int i = 0; i < numDrawCalls; i++) {
|
|
const DeferredDrawCall &dc = drawCalls[i];
|
|
int lastMatch = i;
|
|
const int total = numDrawCalls;
|
|
int indexLowerBound = dc.indexLowerBound;
|
|
int indexUpperBound = dc.indexUpperBound;
|
|
for (int j = i + 1; j < total; ++j) {
|
|
if (drawCalls[j].verts != dc.verts)
|
|
break;
|
|
|
|
indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound);
|
|
indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound);
|
|
lastMatch = j;
|
|
}
|
|
vertsToDecode += indexUpperBound - indexLowerBound + 1;
|
|
i = lastMatch;
|
|
}
|
|
}
|
|
return vertsToDecode;
|
|
}
|
|
|
|
void DrawEngineCommon::DecodeVerts(u8 *dest) {
|
|
const UVScale origUV = gstate_c.uv;
|
|
for (; decodeCounter_ < numDrawCalls; decodeCounter_++) {
|
|
gstate_c.uv = drawCalls[decodeCounter_].uvScale;
|
|
DecodeVertsStep(dest, decodeCounter_, decodedVerts_); // NOTE! DecodeVertsStep can modify decodeCounter_!
|
|
}
|
|
gstate_c.uv = origUV;
|
|
|
|
// Sanity check
|
|
if (indexGen.Prim() < 0) {
|
|
ERROR_LOG_REPORT(G3D, "DecodeVerts: Failed to deduce prim: %i", indexGen.Prim());
|
|
// Force to points (0)
|
|
indexGen.AddPrim(GE_PRIM_POINTS, 0, true);
|
|
}
|
|
}
|
|
|
|
std::vector<std::string> DrawEngineCommon::DebugGetVertexLoaderIDs() {
|
|
std::vector<std::string> ids;
|
|
decoderMap_.Iterate([&](const uint32_t vtype, VertexDecoder *decoder) {
|
|
std::string id;
|
|
id.resize(sizeof(vtype));
|
|
memcpy(&id[0], &vtype, sizeof(vtype));
|
|
ids.push_back(id);
|
|
});
|
|
return ids;
|
|
}
|
|
|
|
std::string DrawEngineCommon::DebugGetVertexLoaderString(std::string id, DebugShaderStringType stringType) {
|
|
u32 mapId;
|
|
memcpy(&mapId, &id[0], sizeof(mapId));
|
|
VertexDecoder *dec = decoderMap_.Get(mapId);
|
|
return dec ? dec->GetString(stringType) : "N/A";
|
|
}
|
|
|
|
struct Plane {
|
|
float x, y, z, w;
|
|
void Set(float _x, float _y, float _z, float _w) { x = _x; y = _y; z = _z; w = _w; }
|
|
float Test(float f[3]) const { return x * f[0] + y * f[1] + z * f[2] + w; }
|
|
};
|
|
|
|
static void PlanesFromMatrix(float mtx[16], Plane planes[6]) {
|
|
planes[0].Set(mtx[3]-mtx[0], mtx[7]-mtx[4], mtx[11]-mtx[8], mtx[15]-mtx[12]); // Right
|
|
planes[1].Set(mtx[3]+mtx[0], mtx[7]+mtx[4], mtx[11]+mtx[8], mtx[15]+mtx[12]); // Left
|
|
planes[2].Set(mtx[3]+mtx[1], mtx[7]+mtx[5], mtx[11]+mtx[9], mtx[15]+mtx[13]); // Bottom
|
|
planes[3].Set(mtx[3]-mtx[1], mtx[7]-mtx[5], mtx[11]-mtx[9], mtx[15]-mtx[13]); // Top
|
|
planes[4].Set(mtx[3]+mtx[2], mtx[7]+mtx[6], mtx[11]+mtx[10], mtx[15]+mtx[14]); // Near
|
|
planes[5].Set(mtx[3]-mtx[2], mtx[7]-mtx[6], mtx[11]-mtx[10], mtx[15]-mtx[14]); // Far
|
|
}
|
|
|
|
static Vec3f ClipToScreen(const Vec4f& coords) {
|
|
float xScale = gstate.getViewportXScale();
|
|
float xCenter = gstate.getViewportXCenter();
|
|
float yScale = gstate.getViewportYScale();
|
|
float yCenter = gstate.getViewportYCenter();
|
|
float zScale = gstate.getViewportZScale();
|
|
float zCenter = gstate.getViewportZCenter();
|
|
|
|
float x = coords.x * xScale / coords.w + xCenter;
|
|
float y = coords.y * yScale / coords.w + yCenter;
|
|
float z = coords.z * zScale / coords.w + zCenter;
|
|
|
|
// 16 = 0xFFFF / 4095.9375
|
|
return Vec3f(x * 16, y * 16, z);
|
|
}
|
|
|
|
static Vec3f ScreenToDrawing(const Vec3f& coords) {
|
|
Vec3f ret;
|
|
ret.x = (coords.x - gstate.getOffsetX16()) * (1.0f / 16.0f);
|
|
ret.y = (coords.y - gstate.getOffsetY16()) * (1.0f / 16.0f);
|
|
ret.z = coords.z;
|
|
return ret;
|
|
}
|
|
|
|
void DrawEngineCommon::Resized() {
|
|
decJitCache_->Clear();
|
|
lastVType_ = -1;
|
|
dec_ = nullptr;
|
|
decoderMap_.Iterate([&](const uint32_t vtype, VertexDecoder *decoder) {
|
|
delete decoder;
|
|
});
|
|
decoderMap_.Clear();
|
|
ClearTrackedVertexArrays();
|
|
|
|
useHWTransform_ = g_Config.bHardwareTransform;
|
|
useHWTessellation_ = UpdateUseHWTessellation(g_Config.bHardwareTessellation);
|
|
}
|
|
|
|
u32 DrawEngineCommon::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inPtr, int lowerBound, int upperBound, u32 vertType, int *vertexSize) {
|
|
const u32 vertTypeID = (vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24);
|
|
VertexDecoder *dec = GetVertexDecoder(vertTypeID);
|
|
if (vertexSize)
|
|
*vertexSize = dec->VertexSize();
|
|
return DrawEngineCommon::NormalizeVertices(outPtr, bufPtr, inPtr, dec, lowerBound, upperBound, vertType);
|
|
}
|
|
|
|
// This code has plenty of potential for optimization.
|
|
//
|
|
// It does the simplest and safest test possible: If all points of a bbox is outside a single of
|
|
// our clipping planes, we reject the box. Tighter bounds would be desirable but would take more calculations.
|
|
bool DrawEngineCommon::TestBoundingBox(void* control_points, int vertexCount, u32 vertType, int *bytesRead) {
|
|
SimpleVertex *corners = (SimpleVertex *)(decoded + 65536 * 12);
|
|
float *verts = (float *)(decoded + 65536 * 18);
|
|
|
|
// Try to skip NormalizeVertices if it's pure positions. No need to bother with a vertex decoder
|
|
// and a large vertex format.
|
|
if ((vertType & 0xFFFFFF) == GE_VTYPE_POS_FLOAT) {
|
|
verts = (float *)control_points;
|
|
*bytesRead = 3 * sizeof(float) * vertexCount;
|
|
} else if ((vertType & 0xFFFFFF) == GE_VTYPE_POS_8BIT) {
|
|
const s8 *vtx = (const s8 *)control_points;
|
|
for (int i = 0; i < vertexCount * 3; i++) {
|
|
verts[i] = vtx[i] * (1.0f / 128.0f);
|
|
}
|
|
*bytesRead = 3 * sizeof(s8) * vertexCount;
|
|
} else if ((vertType & 0xFFFFFF) == GE_VTYPE_POS_16BIT) {
|
|
const s16 *vtx = (const s16*)control_points;
|
|
for (int i = 0; i < vertexCount * 3; i++) {
|
|
verts[i] = vtx[i] * (1.0f / 32768.0f);
|
|
}
|
|
*bytesRead = 3 * sizeof(s16) * vertexCount;
|
|
} else {
|
|
// Simplify away bones and morph before proceeding
|
|
u8 *temp_buffer = decoded + 65536 * 24;
|
|
int vertexSize = 0;
|
|
NormalizeVertices((u8 *)corners, temp_buffer, (u8 *)control_points, 0, vertexCount, vertType, &vertexSize);
|
|
for (int i = 0; i < vertexCount; i++) {
|
|
verts[i * 3] = corners[i].pos.x;
|
|
verts[i * 3 + 1] = corners[i].pos.y;
|
|
verts[i * 3 + 2] = corners[i].pos.z;
|
|
}
|
|
*bytesRead = vertexSize * vertexCount;
|
|
}
|
|
|
|
Plane planes[6];
|
|
|
|
float world[16];
|
|
float view[16];
|
|
float worldview[16];
|
|
float worldviewproj[16];
|
|
ConvertMatrix4x3To4x4(world, gstate.worldMatrix);
|
|
ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
|
|
Matrix4ByMatrix4(worldview, world, view);
|
|
Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix);
|
|
PlanesFromMatrix(worldviewproj, planes);
|
|
for (int plane = 0; plane < 6; plane++) {
|
|
int inside = 0;
|
|
int out = 0;
|
|
for (int i = 0; i < vertexCount; i++) {
|
|
// Here we can test against the frustum planes!
|
|
float value = planes[plane].Test(verts + i * 3);
|
|
if (value < 0)
|
|
out++;
|
|
else
|
|
inside++;
|
|
}
|
|
|
|
if (inside == 0) {
|
|
// All out
|
|
return false;
|
|
}
|
|
|
|
// Any out. For testing that the planes are in the right locations.
|
|
// if (out != 0) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// TODO: This probably is not the best interface.
|
|
bool DrawEngineCommon::GetCurrentSimpleVertices(int count, std::vector<GPUDebugVertex> &vertices, std::vector<u16> &indices) {
|
|
// This is always for the current vertices.
|
|
u16 indexLowerBound = 0;
|
|
u16 indexUpperBound = count - 1;
|
|
|
|
if (!Memory::IsValidAddress(gstate_c.vertexAddr))
|
|
return false;
|
|
|
|
bool savedVertexFullAlpha = gstate_c.vertexFullAlpha;
|
|
|
|
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
|
|
const u8 *inds = Memory::GetPointer(gstate_c.indexAddr);
|
|
const u16_le *inds16 = (const u16_le *)inds;
|
|
const u32_le *inds32 = (const u32_le *)inds;
|
|
|
|
if (inds) {
|
|
GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound);
|
|
indices.resize(count);
|
|
switch (gstate.vertType & GE_VTYPE_IDX_MASK) {
|
|
case GE_VTYPE_IDX_8BIT:
|
|
for (int i = 0; i < count; ++i) {
|
|
indices[i] = inds[i];
|
|
}
|
|
break;
|
|
case GE_VTYPE_IDX_16BIT:
|
|
for (int i = 0; i < count; ++i) {
|
|
indices[i] = inds16[i];
|
|
}
|
|
break;
|
|
case GE_VTYPE_IDX_32BIT:
|
|
WARN_LOG_REPORT_ONCE(simpleIndexes32, G3D, "SimpleVertices: Decoding 32-bit indexes");
|
|
for (int i = 0; i < count; ++i) {
|
|
// These aren't documented and should be rare. Let's bounds check each one.
|
|
if (inds32[i] != (u16)inds32[i]) {
|
|
ERROR_LOG_REPORT_ONCE(simpleIndexes32Bounds, G3D, "SimpleVertices: Index outside 16-bit range");
|
|
}
|
|
indices[i] = (u16)inds32[i];
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
indices.clear();
|
|
}
|
|
} else {
|
|
indices.clear();
|
|
}
|
|
|
|
static std::vector<u32> temp_buffer;
|
|
static std::vector<SimpleVertex> simpleVertices;
|
|
temp_buffer.resize(std::max((int)indexUpperBound, 8192) * 128 / sizeof(u32));
|
|
simpleVertices.resize(indexUpperBound + 1);
|
|
NormalizeVertices((u8 *)(&simpleVertices[0]), (u8 *)(&temp_buffer[0]), Memory::GetPointer(gstate_c.vertexAddr), indexLowerBound, indexUpperBound, gstate.vertType);
|
|
|
|
float world[16];
|
|
float view[16];
|
|
float worldview[16];
|
|
float worldviewproj[16];
|
|
ConvertMatrix4x3To4x4(world, gstate.worldMatrix);
|
|
ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
|
|
Matrix4ByMatrix4(worldview, world, view);
|
|
Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix);
|
|
|
|
vertices.resize(indexUpperBound + 1);
|
|
uint32_t vertType = gstate.vertType;
|
|
for (int i = indexLowerBound; i <= indexUpperBound; ++i) {
|
|
const SimpleVertex &vert = simpleVertices[i];
|
|
|
|
if ((vertType & GE_VTYPE_THROUGH) != 0) {
|
|
if (vertType & GE_VTYPE_TC_MASK) {
|
|
vertices[i].u = vert.uv[0];
|
|
vertices[i].v = vert.uv[1];
|
|
} else {
|
|
vertices[i].u = 0.0f;
|
|
vertices[i].v = 0.0f;
|
|
}
|
|
vertices[i].x = vert.pos.x;
|
|
vertices[i].y = vert.pos.y;
|
|
vertices[i].z = vert.pos.z;
|
|
if (vertType & GE_VTYPE_COL_MASK) {
|
|
memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
|
|
} else {
|
|
memset(vertices[i].c, 0, sizeof(vertices[i].c));
|
|
}
|
|
vertices[i].nx = 0; // No meaningful normals in through mode
|
|
vertices[i].ny = 0;
|
|
vertices[i].nz = 1.0f;
|
|
} else {
|
|
float clipPos[4];
|
|
Vec3ByMatrix44(clipPos, vert.pos.AsArray(), worldviewproj);
|
|
Vec3f screenPos = ClipToScreen(clipPos);
|
|
Vec3f drawPos = ScreenToDrawing(screenPos);
|
|
|
|
if (vertType & GE_VTYPE_TC_MASK) {
|
|
vertices[i].u = vert.uv[0] * (float)gstate.getTextureWidth(0);
|
|
vertices[i].v = vert.uv[1] * (float)gstate.getTextureHeight(0);
|
|
} else {
|
|
vertices[i].u = 0.0f;
|
|
vertices[i].v = 0.0f;
|
|
}
|
|
// Should really have separate coordinates for before and after transform.
|
|
vertices[i].x = drawPos.x;
|
|
vertices[i].y = drawPos.y;
|
|
vertices[i].z = drawPos.z;
|
|
if (vertType & GE_VTYPE_COL_MASK) {
|
|
memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
|
|
} else {
|
|
memset(vertices[i].c, 0, sizeof(vertices[i].c));
|
|
}
|
|
vertices[i].nx = vert.nrm.x;
|
|
vertices[i].ny = vert.nrm.y;
|
|
vertices[i].nz = vert.nrm.z;
|
|
}
|
|
}
|
|
|
|
gstate_c.vertexFullAlpha = savedVertexFullAlpha;
|
|
|
|
return true;
|
|
}
|
|
|
|
// This normalizes a set of vertices in any format to SimpleVertex format, by processing away morphing AND skinning.
|
|
// The rest of the transform pipeline like lighting will go as normal, either hardware or software.
|
|
// The implementation is initially a bit inefficient but shouldn't be a big deal.
|
|
// An intermediate buffer of not-easy-to-predict size is stored at bufPtr.
|
|
u32 DrawEngineCommon::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inPtr, VertexDecoder *dec, int lowerBound, int upperBound, u32 vertType) {
|
|
// First, decode the vertices into a GPU compatible format. This step can be eliminated but will need a separate
|
|
// implementation of the vertex decoder.
|
|
dec->DecodeVerts(bufPtr, inPtr, lowerBound, upperBound);
|
|
|
|
// OK, morphing eliminated but bones still remain to be taken care of.
|
|
// Let's do a partial software transform where we only do skinning.
|
|
|
|
VertexReader reader(bufPtr, dec->GetDecVtxFmt(), vertType);
|
|
|
|
SimpleVertex *sverts = (SimpleVertex *)outPtr;
|
|
|
|
const u8 defaultColor[4] = {
|
|
(u8)gstate.getMaterialAmbientR(),
|
|
(u8)gstate.getMaterialAmbientG(),
|
|
(u8)gstate.getMaterialAmbientB(),
|
|
(u8)gstate.getMaterialAmbientA(),
|
|
};
|
|
|
|
// Let's have two separate loops, one for non skinning and one for skinning.
|
|
if (!g_Config.bSoftwareSkinning && (vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE) {
|
|
int numBoneWeights = vertTypeGetNumBoneWeights(vertType);
|
|
for (int i = lowerBound; i <= upperBound; i++) {
|
|
reader.Goto(i - lowerBound);
|
|
SimpleVertex &sv = sverts[i];
|
|
if (vertType & GE_VTYPE_TC_MASK) {
|
|
reader.ReadUV(sv.uv);
|
|
}
|
|
|
|
if (vertType & GE_VTYPE_COL_MASK) {
|
|
reader.ReadColor0_8888(sv.color);
|
|
} else {
|
|
memcpy(sv.color, defaultColor, 4);
|
|
}
|
|
|
|
float nrm[3], pos[3];
|
|
float bnrm[3], bpos[3];
|
|
|
|
if (vertType & GE_VTYPE_NRM_MASK) {
|
|
// Normals are generated during tessellation anyway, not sure if any need to supply
|
|
reader.ReadNrm(nrm);
|
|
} else {
|
|
nrm[0] = 0;
|
|
nrm[1] = 0;
|
|
nrm[2] = 1.0f;
|
|
}
|
|
reader.ReadPos(pos);
|
|
|
|
// Apply skinning transform directly
|
|
float weights[8];
|
|
reader.ReadWeights(weights);
|
|
// Skinning
|
|
Vec3Packedf psum(0, 0, 0);
|
|
Vec3Packedf nsum(0, 0, 0);
|
|
for (int w = 0; w < numBoneWeights; w++) {
|
|
if (weights[w] != 0.0f) {
|
|
Vec3ByMatrix43(bpos, pos, gstate.boneMatrix + w * 12);
|
|
Vec3Packedf tpos(bpos);
|
|
psum += tpos * weights[w];
|
|
|
|
Norm3ByMatrix43(bnrm, nrm, gstate.boneMatrix + w * 12);
|
|
Vec3Packedf tnorm(bnrm);
|
|
nsum += tnorm * weights[w];
|
|
}
|
|
}
|
|
sv.pos = psum;
|
|
sv.nrm = nsum;
|
|
}
|
|
} else {
|
|
for (int i = lowerBound; i <= upperBound; i++) {
|
|
reader.Goto(i - lowerBound);
|
|
SimpleVertex &sv = sverts[i];
|
|
if (vertType & GE_VTYPE_TC_MASK) {
|
|
reader.ReadUV(sv.uv);
|
|
} else {
|
|
sv.uv[0] = 0.0f; // This will get filled in during tessellation
|
|
sv.uv[1] = 0.0f;
|
|
}
|
|
if (vertType & GE_VTYPE_COL_MASK) {
|
|
reader.ReadColor0_8888(sv.color);
|
|
} else {
|
|
memcpy(sv.color, defaultColor, 4);
|
|
}
|
|
if (vertType & GE_VTYPE_NRM_MASK) {
|
|
// Normals are generated during tessellation anyway, not sure if any need to supply
|
|
reader.ReadNrm((float *)&sv.nrm);
|
|
} else {
|
|
sv.nrm.x = 0.0f;
|
|
sv.nrm.y = 0.0f;
|
|
sv.nrm.z = 1.0f;
|
|
}
|
|
reader.ReadPos((float *)&sv.pos);
|
|
}
|
|
}
|
|
|
|
// Okay, there we are! Return the new type (but keep the index bits)
|
|
return GE_VTYPE_TC_FLOAT | GE_VTYPE_COL_8888 | GE_VTYPE_NRM_FLOAT | GE_VTYPE_POS_FLOAT | (vertType & (GE_VTYPE_IDX_MASK | GE_VTYPE_THROUGH));
|
|
}
|
|
|
|
bool DrawEngineCommon::ApplyFramebufferRead(bool *fboTexNeedsBind) {
|
|
if (gstate_c.Supports(GPU_SUPPORTS_ANY_FRAMEBUFFER_FETCH)) {
|
|
*fboTexNeedsBind = false;
|
|
return true;
|
|
}
|
|
|
|
static const int MAX_REASONABLE_BLITS_PER_FRAME = 24;
|
|
|
|
static int lastFrameBlit = -1;
|
|
static int blitsThisFrame = 0;
|
|
if (lastFrameBlit != gpuStats.numFlips) {
|
|
if (blitsThisFrame > MAX_REASONABLE_BLITS_PER_FRAME) {
|
|
WARN_LOG_REPORT_ONCE(blendingBlit, G3D, "Lots of blits needed for obscure blending: %d per frame, blend %d/%d/%d", blitsThisFrame, gstate.getBlendFuncA(), gstate.getBlendFuncB(), gstate.getBlendEq());
|
|
}
|
|
blitsThisFrame = 0;
|
|
lastFrameBlit = gpuStats.numFlips;
|
|
}
|
|
++blitsThisFrame;
|
|
if (blitsThisFrame > MAX_REASONABLE_BLITS_PER_FRAME * 2) {
|
|
WARN_LOG_ONCE(blendingBlit2, G3D, "Skipping additional blits needed for obscure blending: %d per frame, blend %d/%d/%d", blitsThisFrame, gstate.getBlendFuncA(), gstate.getBlendFuncB(), gstate.getBlendEq());
|
|
return false;
|
|
}
|
|
|
|
*fboTexNeedsBind = true;
|
|
|
|
gstate_c.Dirty(DIRTY_SHADERBLEND);
|
|
return true;
|
|
}
|
|
|
|
void DrawEngineCommon::DecodeVertsStep(u8 *dest, int &i, int &decodedVerts) {
|
|
PROFILE_THIS_SCOPE("vertdec");
|
|
|
|
const DeferredDrawCall &dc = drawCalls[i];
|
|
|
|
indexGen.SetIndex(decodedVerts);
|
|
int indexLowerBound = dc.indexLowerBound;
|
|
int indexUpperBound = dc.indexUpperBound;
|
|
|
|
if (dc.indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) {
|
|
// Decode the verts and apply morphing. Simple.
|
|
dec_->DecodeVerts(dest + decodedVerts * (int)dec_->GetDecVtxFmt().stride,
|
|
dc.verts, indexLowerBound, indexUpperBound);
|
|
decodedVerts += indexUpperBound - indexLowerBound + 1;
|
|
|
|
bool clockwise = true;
|
|
if (gstate.isCullEnabled() && gstate.getCullMode() != dc.cullMode) {
|
|
clockwise = false;
|
|
}
|
|
indexGen.AddPrim(dc.prim, dc.vertexCount, clockwise);
|
|
} else {
|
|
// It's fairly common that games issue long sequences of PRIM calls, with differing
|
|
// inds pointer but the same base vertex pointer. We'd like to reuse vertices between
|
|
// these as much as possible, so we make sure here to combine as many as possible
|
|
// into one nice big drawcall, sharing data.
|
|
|
|
// 1. Look ahead to find the max index, only looking as "matching" drawcalls.
|
|
// Expand the lower and upper bounds as we go.
|
|
int lastMatch = i;
|
|
const int total = numDrawCalls;
|
|
for (int j = i + 1; j < total; ++j) {
|
|
if (drawCalls[j].verts != dc.verts)
|
|
break;
|
|
|
|
indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound);
|
|
indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound);
|
|
lastMatch = j;
|
|
}
|
|
|
|
// 2. Loop through the drawcalls, translating indices as we go.
|
|
switch (dc.indexType) {
|
|
case GE_VTYPE_IDX_8BIT >> GE_VTYPE_IDX_SHIFT:
|
|
for (int j = i; j <= lastMatch; j++) {
|
|
bool clockwise = true;
|
|
if (gstate.isCullEnabled() && gstate.getCullMode() != drawCalls[j].cullMode) {
|
|
clockwise = false;
|
|
}
|
|
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u8 *)drawCalls[j].inds, indexLowerBound, clockwise);
|
|
}
|
|
break;
|
|
case GE_VTYPE_IDX_16BIT >> GE_VTYPE_IDX_SHIFT:
|
|
for (int j = i; j <= lastMatch; j++) {
|
|
bool clockwise = true;
|
|
if (gstate.isCullEnabled() && gstate.getCullMode() != drawCalls[j].cullMode) {
|
|
clockwise = false;
|
|
}
|
|
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u16_le *)drawCalls[j].inds, indexLowerBound, clockwise);
|
|
}
|
|
break;
|
|
case GE_VTYPE_IDX_32BIT >> GE_VTYPE_IDX_SHIFT:
|
|
for (int j = i; j <= lastMatch; j++) {
|
|
bool clockwise = true;
|
|
if (gstate.isCullEnabled() && gstate.getCullMode() != drawCalls[j].cullMode) {
|
|
clockwise = false;
|
|
}
|
|
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u32_le *)drawCalls[j].inds, indexLowerBound, clockwise);
|
|
}
|
|
break;
|
|
}
|
|
|
|
const int vertexCount = indexUpperBound - indexLowerBound + 1;
|
|
|
|
// This check is a workaround for Pangya Fantasy Golf, which sends bogus index data when switching items in "My Room" sometimes.
|
|
if (decodedVerts + vertexCount > VERTEX_BUFFER_MAX) {
|
|
return;
|
|
}
|
|
|
|
// 3. Decode that range of vertex data.
|
|
dec_->DecodeVerts(dest + decodedVerts * (int)dec_->GetDecVtxFmt().stride,
|
|
dc.verts, indexLowerBound, indexUpperBound);
|
|
decodedVerts += vertexCount;
|
|
|
|
// 4. Advance indexgen vertex counter.
|
|
indexGen.Advance(vertexCount);
|
|
i = lastMatch;
|
|
}
|
|
}
|
|
|
|
inline u32 ComputeMiniHashRange(const void *ptr, size_t sz) {
|
|
// Switch to u32 units, and round up to avoid unaligned accesses.
|
|
// Probably doesn't matter if we skip the first few bytes in some cases.
|
|
const u32 *p = (const u32 *)(((uintptr_t)ptr + 3) & ~3);
|
|
sz >>= 2;
|
|
|
|
if (sz > 100) {
|
|
size_t step = sz / 4;
|
|
u32 hash = 0;
|
|
for (size_t i = 0; i < sz; i += step) {
|
|
hash += XXH3_64bits(p + i, 100);
|
|
}
|
|
return hash;
|
|
} else {
|
|
return p[0] + p[sz - 1];
|
|
}
|
|
}
|
|
|
|
u32 DrawEngineCommon::ComputeMiniHash() {
|
|
u32 fullhash = 0;
|
|
const int vertexSize = dec_->GetDecVtxFmt().stride;
|
|
const int indexSize = IndexSize(dec_->VertexType());
|
|
|
|
int step;
|
|
if (numDrawCalls < 3) {
|
|
step = 1;
|
|
} else if (numDrawCalls < 8) {
|
|
step = 4;
|
|
} else {
|
|
step = numDrawCalls / 8;
|
|
}
|
|
for (int i = 0; i < numDrawCalls; i += step) {
|
|
const DeferredDrawCall &dc = drawCalls[i];
|
|
if (!dc.inds) {
|
|
fullhash += ComputeMiniHashRange(dc.verts, vertexSize * dc.vertexCount);
|
|
} else {
|
|
int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound;
|
|
fullhash += ComputeMiniHashRange((const u8 *)dc.verts + vertexSize * indexLowerBound, vertexSize * (indexUpperBound - indexLowerBound));
|
|
fullhash += ComputeMiniHashRange(dc.inds, indexSize * dc.vertexCount);
|
|
}
|
|
}
|
|
|
|
return fullhash;
|
|
}
|
|
|
|
uint64_t DrawEngineCommon::ComputeHash() {
|
|
uint64_t fullhash = 0;
|
|
const int vertexSize = dec_->GetDecVtxFmt().stride;
|
|
const int indexSize = IndexSize(dec_->VertexType());
|
|
|
|
// TODO: Add some caps both for numDrawCalls and num verts to check?
|
|
// It is really very expensive to check all the vertex data so often.
|
|
for (int i = 0; i < numDrawCalls; i++) {
|
|
const DeferredDrawCall &dc = drawCalls[i];
|
|
if (!dc.inds) {
|
|
fullhash += XXH3_64bits((const char *)dc.verts, vertexSize * dc.vertexCount);
|
|
} else {
|
|
int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound;
|
|
int j = i + 1;
|
|
int lastMatch = i;
|
|
while (j < numDrawCalls) {
|
|
if (drawCalls[j].verts != dc.verts)
|
|
break;
|
|
indexLowerBound = std::min(indexLowerBound, (int)dc.indexLowerBound);
|
|
indexUpperBound = std::max(indexUpperBound, (int)dc.indexUpperBound);
|
|
lastMatch = j;
|
|
j++;
|
|
}
|
|
// This could get seriously expensive with sparse indices. Need to combine hashing ranges the same way
|
|
// we do when drawing.
|
|
fullhash += XXH3_64bits((const char *)dc.verts + vertexSize * indexLowerBound,
|
|
vertexSize * (indexUpperBound - indexLowerBound));
|
|
// Hm, we will miss some indices when combining above, but meh, it should be fine.
|
|
fullhash += XXH3_64bits((const char *)dc.inds, indexSize * dc.vertexCount);
|
|
i = lastMatch;
|
|
}
|
|
}
|
|
|
|
fullhash += XXH3_64bits(&drawCalls[0].uvScale, sizeof(drawCalls[0].uvScale) * numDrawCalls);
|
|
return fullhash;
|
|
}
|
|
|
|
// vertTypeID is the vertex type but with the UVGen mode smashed into the top bits.
|
|
void DrawEngineCommon::SubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertTypeID, int cullMode, int *bytesRead) {
|
|
if (!indexGen.PrimCompatible(prevPrim_, prim) || numDrawCalls >= MAX_DEFERRED_DRAW_CALLS || vertexCountInDrawCalls_ + vertexCount > VERTEX_BUFFER_MAX) {
|
|
DispatchFlush();
|
|
}
|
|
|
|
// TODO: Is this the right thing to do?
|
|
if (prim == GE_PRIM_KEEP_PREVIOUS) {
|
|
prim = prevPrim_ != GE_PRIM_INVALID ? prevPrim_ : GE_PRIM_POINTS;
|
|
} else {
|
|
prevPrim_ = prim;
|
|
}
|
|
|
|
// If vtype has changed, setup the vertex decoder.
|
|
if (vertTypeID != lastVType_) {
|
|
dec_ = GetVertexDecoder(vertTypeID);
|
|
lastVType_ = vertTypeID;
|
|
}
|
|
|
|
*bytesRead = vertexCount * dec_->VertexSize();
|
|
|
|
// Check that we have enough vertices to form the requested primitive.
|
|
if ((vertexCount < 2 && prim > 0) || (vertexCount < 3 && prim > GE_PRIM_LINE_STRIP && prim != GE_PRIM_RECTANGLES))
|
|
return;
|
|
|
|
if (g_Config.bVertexCache) {
|
|
u32 dhash = dcid_;
|
|
dhash = __rotl(dhash ^ (u32)(uintptr_t)verts, 13);
|
|
dhash = __rotl(dhash ^ (u32)(uintptr_t)inds, 13);
|
|
dhash = __rotl(dhash ^ (u32)vertTypeID, 13);
|
|
dhash = __rotl(dhash ^ (u32)vertexCount, 13);
|
|
dcid_ = dhash ^ (u32)prim;
|
|
}
|
|
|
|
DeferredDrawCall &dc = drawCalls[numDrawCalls];
|
|
dc.verts = verts;
|
|
dc.inds = inds;
|
|
dc.indexType = (vertTypeID & GE_VTYPE_IDX_MASK) >> GE_VTYPE_IDX_SHIFT;
|
|
dc.prim = prim;
|
|
dc.vertexCount = vertexCount;
|
|
dc.uvScale = gstate_c.uv;
|
|
dc.cullMode = cullMode;
|
|
|
|
if (inds) {
|
|
GetIndexBounds(inds, vertexCount, vertTypeID, &dc.indexLowerBound, &dc.indexUpperBound);
|
|
} else {
|
|
dc.indexLowerBound = 0;
|
|
dc.indexUpperBound = vertexCount - 1;
|
|
}
|
|
|
|
numDrawCalls++;
|
|
vertexCountInDrawCalls_ += vertexCount;
|
|
|
|
if (g_Config.bSoftwareSkinning && (vertTypeID & GE_VTYPE_WEIGHT_MASK)) {
|
|
DecodeVertsStep(decoded, decodeCounter_, decodedVerts_);
|
|
decodeCounter_++;
|
|
}
|
|
|
|
if (prim == GE_PRIM_RECTANGLES && (gstate.getTextureAddress(0) & 0x3FFFFFFF) == (gstate.getFrameBufAddress() & 0x3FFFFFFF)) {
|
|
// Rendertarget == texture? Shouldn't happen. Still, try some mitigations.
|
|
gstate_c.Dirty(DIRTY_TEXTURE_PARAMS);
|
|
DispatchFlush();
|
|
}
|
|
}
|
|
|
|
bool DrawEngineCommon::CanUseHardwareTransform(int prim) {
|
|
if (!useHWTransform_)
|
|
return false;
|
|
return !gstate.isModeThrough() && prim != GE_PRIM_RECTANGLES && prim > GE_PRIM_LINE_STRIP;
|
|
}
|
|
|
|
bool DrawEngineCommon::CanUseHardwareTessellation(GEPatchPrimType prim) {
|
|
if (useHWTessellation_) {
|
|
return CanUseHardwareTransform(PatchPrimToPrim(prim));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void TessellationDataTransfer::CopyControlPoints(float *pos, float *tex, float *col, int posStride, int texStride, int colStride, const SimpleVertex *const *points, int size, u32 vertType) {
|
|
bool hasColor = (vertType & GE_VTYPE_COL_MASK) != 0;
|
|
bool hasTexCoord = (vertType & GE_VTYPE_TC_MASK) != 0;
|
|
|
|
for (int i = 0; i < size; ++i) {
|
|
memcpy(pos, points[i]->pos.AsArray(), 3 * sizeof(float));
|
|
pos += posStride;
|
|
}
|
|
if (hasTexCoord) {
|
|
for (int i = 0; i < size; ++i) {
|
|
memcpy(tex, points[i]->uv, 2 * sizeof(float));
|
|
tex += texStride;
|
|
}
|
|
}
|
|
if (hasColor) {
|
|
for (int i = 0; i < size; ++i) {
|
|
memcpy(col, Vec4f::FromRGBA(points[i]->color_32).AsArray(), 4 * sizeof(float));
|
|
col += colStride;
|
|
}
|
|
}
|
|
}
|