ppsspp/Core/HLE/ReplaceTables.cpp

1538 lines
53 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include <map>
#include <unordered_map>
#include "base/basictypes.h"
#include "base/logging.h"
#include "Common/Log.h"
#include "Core/Config.h"
#include "Core/Debugger/Breakpoints.h"
#include "Core/Debugger/SymbolMap.h"
#include "Core/MemMap.h"
#include "Core/MIPS/JitCommon/JitCommon.h"
#include "Core/MIPS/MIPSCodeUtils.h"
#include "Core/MIPS/MIPSAnalyst.h"
#include "Core/HLE/ReplaceTables.h"
#include "Core/HLE/FunctionWrappers.h"
#include "GPU/Math3D.h"
#include "GPU/GPU.h"
#include "GPU/GPUInterface.h"
#include "GPU/GPUState.h"
#if defined(_M_IX86) || defined(_M_X64)
#include <emmintrin.h>
#endif
enum class GPUReplacementSkip {
MEMSET = 1,
MEMCPY = 2,
MEMMOVE = 4,
};
static int skipGPUReplacements = 0;
// I think these have to be pretty accurate as these are libc replacements,
// but we can probably get away with approximating the VFPU vsin/vcos and vrot
// pretty roughly.
static int Replace_sinf() {
float f = PARAMF(0);
RETURNF(sinf(f));
return 80; // guess number of cycles
}
static int Replace_cosf() {
float f = PARAMF(0);
RETURNF(cosf(f));
return 80; // guess number of cycles
}
static int Replace_tanf() {
float f = PARAMF(0);
RETURNF(tanf(f));
return 80; // guess number of cycles
}
static int Replace_acosf() {
float f = PARAMF(0);
RETURNF(acosf(f));
return 80; // guess number of cycles
}
static int Replace_asinf() {
float f = PARAMF(0);
RETURNF(asinf(f));
return 80; // guess number of cycles
}
static int Replace_atanf() {
float f = PARAMF(0);
RETURNF(atanf(f));
return 80; // guess number of cycles
}
static int Replace_sqrtf() {
float f = PARAMF(0);
RETURNF(sqrtf(f));
return 80; // guess number of cycles
}
static int Replace_atan2f() {
float f1 = PARAMF(0);
float f2 = PARAMF(1);
RETURNF(atan2f(f1, f2));
return 120; // guess number of cycles
}
static int Replace_floorf() {
float f1 = PARAMF(0);
RETURNF(floorf(f1));
return 30; // guess number of cycles
}
static int Replace_ceilf() {
float f1 = PARAMF(0);
RETURNF(ceilf(f1));
return 30; // guess number of cycles
}
// Should probably do JIT versions of this, possibly ones that only delegate
// large copies to a C function.
static int Replace_memcpy() {
u32 destPtr = PARAM(0);
u32 srcPtr = PARAM(1);
u32 bytes = PARAM(2);
bool skip = false;
if (!bytes) {
RETURN(destPtr);
return 10;
}
// Some games use memcpy on executable code. We need to flush emuhack ops.
currentMIPS->InvalidateICache(srcPtr, bytes);
if ((skipGPUReplacements & (int)GPUReplacementSkip::MEMCPY) == 0) {
if (Memory::IsVRAMAddress(destPtr) || Memory::IsVRAMAddress(srcPtr)) {
skip = gpu->PerformMemoryCopy(destPtr, srcPtr, bytes);
}
}
if (!skip && bytes != 0) {
u8 *dst = Memory::GetPointer(destPtr);
const u8 *src = Memory::GetPointer(srcPtr);
if (!dst || !src) {
// Already logged.
} else if (std::min(destPtr, srcPtr) + bytes > std::max(destPtr, srcPtr)) {
// Overlap. Star Ocean breaks if it's not handled in 16 bytes blocks.
const u32 blocks = bytes & ~0x0f;
for (u32 offset = 0; offset < blocks; offset += 0x10) {
memcpy(dst + offset, src + offset, 0x10);
}
for (u32 offset = blocks; offset < bytes; ++offset) {
dst[offset] = src[offset];
}
} else {
memmove(dst, src, bytes);
}
}
RETURN(destPtr);
CBreakPoints::ExecMemCheck(srcPtr, false, bytes, currentMIPS->pc);
CBreakPoints::ExecMemCheck(destPtr, true, bytes, currentMIPS->pc);
return 10 + bytes / 4; // approximation
}
static int Replace_memcpy_jak() {
u32 destPtr = PARAM(0);
u32 srcPtr = PARAM(1);
u32 bytes = PARAM(2);
bool skip = false;
if (bytes == 0) {
RETURN(destPtr);
return 5;
}
currentMIPS->InvalidateICache(srcPtr, bytes);
if ((skipGPUReplacements & (int)GPUReplacementSkip::MEMCPY) == 0) {
if (Memory::IsVRAMAddress(destPtr) || Memory::IsVRAMAddress(srcPtr)) {
skip = gpu->PerformMemoryCopy(destPtr, srcPtr, bytes);
}
}
if (!skip && bytes != 0) {
u8 *dst = Memory::GetPointer(destPtr);
const u8 *src = Memory::GetPointer(srcPtr);
if (!dst || !src) {
} else {
// Jak style overlap.
for (u32 i = 0; i < bytes; i++) {
dst[i] = src[i];
}
}
}
// Jak relies on more registers coming out right than the ABI specifies.
// See the disassembly of the function for the explanations for these...
currentMIPS->r[MIPS_REG_T0] = 0;
currentMIPS->r[MIPS_REG_A0] = -1;
currentMIPS->r[MIPS_REG_A2] = 0;
currentMIPS->r[MIPS_REG_A3] = destPtr + bytes;
RETURN(destPtr);
CBreakPoints::ExecMemCheck(srcPtr, false, bytes, currentMIPS->pc);
CBreakPoints::ExecMemCheck(destPtr, true, bytes, currentMIPS->pc);
return 5 + bytes * 8 + 2; // approximation. This is a slow memcpy - a byte copy loop..
}
static int Replace_memcpy16() {
u32 destPtr = PARAM(0);
u32 srcPtr = PARAM(1);
u32 bytes = PARAM(2) * 16;
bool skip = false;
// Some games use memcpy on executable code. We need to flush emuhack ops.
currentMIPS->InvalidateICache(srcPtr, bytes);
if ((skipGPUReplacements & (int)GPUReplacementSkip::MEMCPY) == 0) {
if (Memory::IsVRAMAddress(destPtr) || Memory::IsVRAMAddress(srcPtr)) {
skip = gpu->PerformMemoryCopy(destPtr, srcPtr, bytes);
}
}
if (!skip && bytes != 0) {
u8 *dst = Memory::GetPointer(destPtr);
const u8 *src = Memory::GetPointer(srcPtr);
if (dst && src) {
memmove(dst, src, bytes);
}
}
RETURN(destPtr);
CBreakPoints::ExecMemCheck(srcPtr, false, bytes, currentMIPS->pc);
CBreakPoints::ExecMemCheck(destPtr, true, bytes, currentMIPS->pc);
return 10 + bytes / 4; // approximation
}
static int Replace_memcpy_swizzled() {
u32 destPtr = PARAM(0);
u32 srcPtr = PARAM(1);
u32 pitch = PARAM(2);
u32 h = PARAM(4);
if ((skipGPUReplacements & (int)GPUReplacementSkip::MEMCPY) == 0) {
if (Memory::IsVRAMAddress(srcPtr)) {
gpu->PerformMemoryDownload(srcPtr, pitch * h);
}
}
u8 *dstp = Memory::GetPointer(destPtr);
const u8 *srcp = Memory::GetPointer(srcPtr);
if (dstp && srcp) {
const u8 *ysrcp = srcp;
for (u32 y = 0; y < h; y += 8) {
const u8 *xsrcp = ysrcp;
for (u32 x = 0; x < pitch; x += 16) {
const u8 *src = xsrcp;
for (int n = 0; n < 8; ++n) {
memcpy(dstp, src, 16);
src += pitch;
dstp += 16;
}
xsrcp += 16;
}
ysrcp += 8 * pitch;
}
}
RETURN(0);
CBreakPoints::ExecMemCheck(srcPtr, false, pitch * h, currentMIPS->pc);
CBreakPoints::ExecMemCheck(destPtr, true, pitch * h, currentMIPS->pc);
return 10 + (pitch * h) / 4; // approximation
}
static int Replace_memmove() {
u32 destPtr = PARAM(0);
u32 srcPtr = PARAM(1);
u32 bytes = PARAM(2);
bool skip = false;
// Some games use memcpy on executable code. We need to flush emuhack ops.
if ((skipGPUReplacements & (int)GPUReplacementSkip::MEMMOVE) == 0) {
currentMIPS->InvalidateICache(srcPtr, bytes);
if (Memory::IsVRAMAddress(destPtr) || Memory::IsVRAMAddress(srcPtr)) {
skip = gpu->PerformMemoryCopy(destPtr, srcPtr, bytes);
}
}
if (!skip && bytes != 0) {
u8 *dst = Memory::GetPointer(destPtr);
const u8 *src = Memory::GetPointer(srcPtr);
if (dst && src) {
memmove(dst, src, bytes);
}
}
RETURN(destPtr);
CBreakPoints::ExecMemCheck(srcPtr, false, bytes, currentMIPS->pc);
CBreakPoints::ExecMemCheck(destPtr, true, bytes, currentMIPS->pc);
return 10 + bytes / 4; // approximation
}
static int Replace_memset() {
u32 destPtr = PARAM(0);
u8 value = PARAM(1);
u32 bytes = PARAM(2);
bool skip = false;
if (Memory::IsVRAMAddress(destPtr) && (skipGPUReplacements & (int)GPUReplacementSkip::MEMSET) == 0) {
skip = gpu->PerformMemorySet(destPtr, value, bytes);
}
if (!skip && bytes != 0) {
u8 *dst = Memory::GetPointer(destPtr);
if (dst) {
memset(dst, value, bytes);
}
}
RETURN(destPtr);
CBreakPoints::ExecMemCheck(destPtr, true, bytes, currentMIPS->pc);
return 10 + bytes / 4; // approximation
}
static int Replace_memset_jak() {
u32 destPtr = PARAM(0);
u8 value = PARAM(1);
u32 bytes = PARAM(2);
if (bytes == 0) {
RETURN(destPtr);
return 5;
}
bool skip = false;
if (Memory::IsVRAMAddress(destPtr) && (skipGPUReplacements & (int)GPUReplacementSkip::MEMSET) == 0) {
skip = gpu->PerformMemorySet(destPtr, value, bytes);
}
if (!skip && bytes != 0) {
u8 *dst = Memory::GetPointer(destPtr);
if (dst) {
memset(dst, value, bytes);
}
}
currentMIPS->r[MIPS_REG_T0] = destPtr + bytes;
currentMIPS->r[MIPS_REG_A2] = -1;
currentMIPS->r[MIPS_REG_A3] = -1;
RETURN(destPtr);
CBreakPoints::ExecMemCheck(destPtr, true, bytes, currentMIPS->pc);
return 5 + bytes * 6 + 2; // approximation (hm, inspecting the disasm this should be 5 + 6 * bytes + 2, but this is what works..)
}
static int Replace_strlen() {
u32 srcPtr = PARAM(0);
const char *src = (const char *)Memory::GetPointer(srcPtr);
u32 len = src ? (u32)strlen(src) : 0UL;
RETURN(len);
return 7 + len * 4; // approximation
}
static int Replace_strcpy() {
u32 destPtr = PARAM(0);
char *dst = (char *)Memory::GetPointer(destPtr);
const char *src = (const char *)Memory::GetPointer(PARAM(1));
if (dst && src) {
strcpy(dst, src);
}
RETURN(destPtr);
return 10; // approximation
}
static int Replace_strncpy() {
u32 destPtr = PARAM(0);
char *dst = (char *)Memory::GetPointer(destPtr);
const char *src = (const char *)Memory::GetPointer(PARAM(1));
u32 bytes = PARAM(2);
if (dst && src && bytes != 0) {
strncpy(dst, src, bytes);
}
RETURN(destPtr);
return 10; // approximation
}
static int Replace_strcmp() {
const char *a = (const char *)Memory::GetPointer(PARAM(0));
const char *b = (const char *)Memory::GetPointer(PARAM(1));
if (a && b) {
RETURN(strcmp(a, b));
} else {
RETURN(0);
}
return 10; // approximation
}
static int Replace_strncmp() {
const char *a = (const char *)Memory::GetPointer(PARAM(0));
const char *b = (const char *)Memory::GetPointer(PARAM(1));
u32 bytes = PARAM(2);
if (a && b && bytes != 0) {
RETURN(strncmp(a, b, bytes));
} else {
RETURN(0);
}
return 10 + bytes / 4; // approximation
}
static int Replace_fabsf() {
RETURNF(fabsf(PARAMF(0)));
return 4;
}
static int Replace_vmmul_q_transp() {
float *out = (float *)Memory::GetPointer(PARAM(0));
const float *a = (const float *)Memory::GetPointer(PARAM(1));
const float *b = (const float *)Memory::GetPointer(PARAM(2));
// TODO: Actually use an optimized matrix multiply here...
if (out && b && a) {
Matrix4ByMatrix4(out, b, a);
}
return 16;
}
// a0 = pointer to destination address
// a1 = matrix
// a2 = source address
static int Replace_gta_dl_write_matrix() {
u32 *ptr = (u32 *)Memory::GetPointer(PARAM(0));
u32 *src = (u32_le *)Memory::GetPointer(PARAM(2));
u32 matrix = PARAM(1) << 24;
if (!ptr || !src) {
RETURN(0);
return 38;
}
u32 *dest = (u32_le *)Memory::GetPointer(ptr[0]);
if (!dest) {
RETURN(0);
return 38;
}
#if defined(_M_IX86) || defined(_M_X64)
__m128i topBytes = _mm_set1_epi32(matrix);
__m128i m0 = _mm_loadu_si128((const __m128i *)src);
__m128i m1 = _mm_loadu_si128((const __m128i *)(src + 4));
__m128i m2 = _mm_loadu_si128((const __m128i *)(src + 8));
__m128i m3 = _mm_loadu_si128((const __m128i *)(src + 12));
m0 = _mm_or_si128(_mm_srli_epi32(m0, 8), topBytes);
m1 = _mm_or_si128(_mm_srli_epi32(m1, 8), topBytes);
m2 = _mm_or_si128(_mm_srli_epi32(m2, 8), topBytes);
m3 = _mm_or_si128(_mm_srli_epi32(m3, 8), topBytes);
// These three stores overlap by a word, due to the offsets.
_mm_storeu_si128((__m128i *)dest, m0);
_mm_storeu_si128((__m128i *)(dest + 3), m1);
_mm_storeu_si128((__m128i *)(dest + 6), m2);
// Store the last one in parts to not overwrite forwards (probably mostly risk free though)
_mm_storel_epi64((__m128i *)(dest + 9), m3);
m3 = _mm_srli_si128(m3, 8);
_mm_store_ss((float *)(dest + 11), _mm_castsi128_ps(m3));
#else
// Bit tricky to SIMD (note the offsets) but should be doable if not perfect
dest[0] = matrix | (src[0] >> 8);
dest[1] = matrix | (src[1] >> 8);
dest[2] = matrix | (src[2] >> 8);
dest[3] = matrix | (src[4] >> 8);
dest[4] = matrix | (src[5] >> 8);
dest[5] = matrix | (src[6] >> 8);
dest[6] = matrix | (src[8] >> 8);
dest[7] = matrix | (src[9] >> 8);
dest[8] = matrix | (src[10] >> 8);
dest[9] = matrix | (src[12] >> 8);
dest[10] = matrix | (src[13] >> 8);
dest[11] = matrix | (src[14] >> 8);
#endif
(*ptr) += 0x30;
RETURN(0);
return 38;
}
// TODO: Inline into a few NEON or SSE instructions - especially if a1 is a known immediate!
// Anyway, not sure if worth it. There's not that many matrices written per frame normally.
static int Replace_dl_write_matrix() {
u32 *dlStruct = (u32 *)Memory::GetPointer(PARAM(0));
u32 *src = (u32 *)Memory::GetPointer(PARAM(2));
if (!dlStruct || !src) {
RETURN(0);
return 60;
}
u32 *dest = (u32 *)Memory::GetPointer(dlStruct[2]);
if (!dest) {
RETURN(0);
return 60;
}
u32 matrix = 0;
int count = 12;
switch (PARAM(1)) {
case 3:
matrix = 0x40000000; // tex mtx
break;
case 2:
matrix = 0x3A000000;
break;
case 1:
matrix = 0x3C000000;
break;
case 0:
matrix = 0x3E000000;
count = 16;
break;
}
*dest++ = matrix;
matrix += 0x01000000;
if (count == 16) {
// Ultra SIMD friendly! These intrinsics generate pretty much perfect code,
// no point in hand rolling.
#if defined(_M_IX86) || defined(_M_X64)
__m128i topBytes = _mm_set1_epi32(matrix);
__m128i m0 = _mm_loadu_si128((const __m128i *)src);
__m128i m1 = _mm_loadu_si128((const __m128i *)(src + 4));
__m128i m2 = _mm_loadu_si128((const __m128i *)(src + 8));
__m128i m3 = _mm_loadu_si128((const __m128i *)(src + 12));
m0 = _mm_or_si128(_mm_srli_epi32(m0, 8), topBytes);
m1 = _mm_or_si128(_mm_srli_epi32(m1, 8), topBytes);
m2 = _mm_or_si128(_mm_srli_epi32(m2, 8), topBytes);
m3 = _mm_or_si128(_mm_srli_epi32(m3, 8), topBytes);
_mm_storeu_si128((__m128i *)dest, m0);
_mm_storeu_si128((__m128i *)(dest + 4), m1);
_mm_storeu_si128((__m128i *)(dest + 8), m2);
_mm_storeu_si128((__m128i *)(dest + 12), m3);
#else
#if 0
//TODO: Finish NEON, make conditional somehow
uint32x4_t topBytes = vdupq_n_u32(matrix);
uint32x4_t m0 = vld1q_u32(dataPtr);
uint32x4_t m1 = vld1q_u32(dataPtr + 4);
uint32x4_t m2 = vld1q_u32(dataPtr + 8);
uint32x4_t m3 = vld1q_u32(dataPtr + 12);
m0 = vorr_u32(vsri_n_u32(m0, 8), topBytes); // TODO: look into VSRI
m1 = vorr_u32(vshr_n_u32(m1, 8), topBytes);
m2 = vorr_u32(vshr_n_u32(m2, 8), topBytes);
m3 = vorr_u32(vshr_n_u32(m3, 8), topBytes);
vst1q_u32(dlPtr, m0);
vst1q_u32(dlPtr + 4, m1);
vst1q_u32(dlPtr + 8, m2);
vst1q_u32(dlPtr + 12, m3);
#endif
for (int i = 0; i < count; i++) {
dest[i] = matrix | (src[i] >> 8);
}
#endif
} else {
#if defined(_M_IX86) || defined(_M_X64)
__m128i topBytes = _mm_set1_epi32(matrix);
__m128i m0 = _mm_loadu_si128((const __m128i *)src);
__m128i m1 = _mm_loadu_si128((const __m128i *)(src + 4));
__m128i m2 = _mm_loadu_si128((const __m128i *)(src + 8));
__m128i m3 = _mm_loadu_si128((const __m128i *)(src + 12));
m0 = _mm_or_si128(_mm_srli_epi32(m0, 8), topBytes);
m1 = _mm_or_si128(_mm_srli_epi32(m1, 8), topBytes);
m2 = _mm_or_si128(_mm_srli_epi32(m2, 8), topBytes);
m3 = _mm_or_si128(_mm_srli_epi32(m3, 8), topBytes);
// These three stores overlap by a word, due to the offsets.
_mm_storeu_si128((__m128i *)dest, m0);
_mm_storeu_si128((__m128i *)(dest + 3), m1);
_mm_storeu_si128((__m128i *)(dest + 6), m2);
// Store the last one in parts to not overwrite forwards (probably mostly risk free though)
_mm_storel_epi64((__m128i *)(dest + 9), m3);
m3 = _mm_srli_si128(m3, 8);
_mm_store_ss((float *)(dest + 11), _mm_castsi128_ps(m3));
#else
// Bit tricky to SIMD (note the offsets) but should be doable if not perfect
dest[0] = matrix | (src[0] >> 8);
dest[1] = matrix | (src[1] >> 8);
dest[2] = matrix | (src[2] >> 8);
dest[3] = matrix | (src[4] >> 8);
dest[4] = matrix | (src[5] >> 8);
dest[5] = matrix | (src[6] >> 8);
dest[6] = matrix | (src[8] >> 8);
dest[7] = matrix | (src[9] >> 8);
dest[8] = matrix | (src[10] >> 8);
dest[9] = matrix | (src[12] >> 8);
dest[10] = matrix | (src[13] >> 8);
dest[11] = matrix | (src[14] >> 8);
#endif
}
CBreakPoints::ExecMemCheck(PARAM(2), false, count * sizeof(float), currentMIPS->pc);
CBreakPoints::ExecMemCheck(PARAM(0) + 2 * sizeof(u32), true, sizeof(u32), currentMIPS->pc);
CBreakPoints::ExecMemCheck(dlStruct[2], true, (count + 1) * sizeof(u32), currentMIPS->pc);
dlStruct[2] += (1 + count) * 4;
RETURN(dlStruct[2]);
return 60;
}
static bool GetMIPSStaticAddress(u32 &addr, s32 lui_offset, s32 lw_offset) {
const MIPSOpcode upper = Memory::Read_Instruction(currentMIPS->pc + lui_offset, true);
if (upper != MIPS_MAKE_LUI(MIPS_GET_RT(upper), upper & 0xffff)) {
return false;
}
const MIPSOpcode lower = Memory::Read_Instruction(currentMIPS->pc + lw_offset, true);
if (lower != MIPS_MAKE_LW(MIPS_GET_RT(lower), MIPS_GET_RS(lower), lower & 0xffff)) {
if (lower != MIPS_MAKE_ORI(MIPS_GET_RT(lower), MIPS_GET_RS(lower), lower & 0xffff)) {
return false;
}
}
addr = ((upper & 0xffff) << 16) + (s16)(lower & 0xffff);
return true;
}
static bool GetMIPSGPAddress(u32 &addr, s32 offset) {
const MIPSOpcode loadOp = Memory::Read_Instruction(currentMIPS->pc + offset, true);
if (MIPS_GET_RS(loadOp) == MIPS_REG_GP) {
s16 gpoff = (s16)(u16)(loadOp & 0x0000FFFF);
addr = currentMIPS->r[MIPS_REG_GP] + gpoff;
return true;
}
return false;
}
static int Hook_godseaterburst_blit_texture() {
u32 texaddr;
// Only if there's no texture.
if (!GetMIPSStaticAddress(texaddr, 0x000c, 0x0030)) {
return 0;
}
u32 fb_infoaddr;
if (Memory::Read_U32(texaddr) != 0 || !GetMIPSStaticAddress(fb_infoaddr, 0x01d0, 0x01d4)) {
return 0;
}
const u32 fb_info = Memory::Read_U32(fb_infoaddr);
const u32 fb_address = Memory::Read_U32(fb_info);
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00044000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00044000, currentMIPS->pc);
}
return 0;
}
static int Hook_hexyzforce_monoclome_thread() {
u32 fb_info;
if (!GetMIPSStaticAddress(fb_info, -4, 0)) {
return 0;
}
const u32 fb_address = Memory::Read_U32(fb_info);
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_starocean_write_stencil() {
const u32 fb_address = currentMIPS->r[MIPS_REG_T7];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformStencilUpload(fb_address, 0x00088000);
}
return 0;
}
static int Hook_topx_create_saveicon() {
const u32 fb_address = currentMIPS->r[MIPS_REG_V0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00044000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00044000, currentMIPS->pc);
}
return 0;
}
static int Hook_ff1_battle_effect() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A1];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_dissidia_recordframe_avi() {
// This is called once per frame, and records that frame's data to avi.
const u32 fb_address = currentMIPS->r[MIPS_REG_A1];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00044000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00044000, currentMIPS->pc);
}
return 0;
}
static int Hook_brandish_download_frame() {
u32 fb_infoaddr;
if (!GetMIPSStaticAddress(fb_infoaddr, 0x2c, 0x30)) {
return 0;
}
const u32 fb_info = Memory::Read_U32(fb_infoaddr);
const MIPSOpcode fb_index_load = Memory::Read_Instruction(currentMIPS->pc + 0x38, true);
if (fb_index_load != MIPS_MAKE_LW(MIPS_GET_RT(fb_index_load), MIPS_GET_RS(fb_index_load), fb_index_load & 0xffff)) {
return 0;
}
const int fb_index_offset = (s16)(fb_index_load & 0xffff);
const u32 fb_index = (Memory::Read_U32(fb_info + fb_index_offset) + 1) & 1;
const u32 fb_address = 0x4000000 + (0x44000 * fb_index);
const u32 dest_address = currentMIPS->r[MIPS_REG_A1];
if (Memory::IsRAMAddress(dest_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00044000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00044000, currentMIPS->pc);
}
return 0;
}
static int Hook_growlanser_create_saveicon() {
const u32 fb_address = Memory::Read_U32(currentMIPS->r[MIPS_REG_SP] + 4);
const u32 fmt = Memory::Read_U32(currentMIPS->r[MIPS_REG_SP]);
const u32 sz = fmt == GE_FORMAT_8888 ? 0x00088000 : 0x00044000;
if (Memory::IsVRAMAddress(fb_address) && fmt <= 3) {
gpu->PerformMemoryDownload(fb_address, sz);
CBreakPoints::ExecMemCheck(fb_address, true, sz, currentMIPS->pc);
}
return 0;
}
static int Hook_sd_gundam_g_generation_download_frame() {
const u32 fb_address = Memory::Read_U32(currentMIPS->r[MIPS_REG_SP] + 8);
const u32 fmt = Memory::Read_U32(currentMIPS->r[MIPS_REG_SP] + 4);
const u32 sz = fmt == GE_FORMAT_8888 ? 0x00088000 : 0x00044000;
if (Memory::IsVRAMAddress(fb_address) && fmt <= 3) {
gpu->PerformMemoryDownload(fb_address, sz);
CBreakPoints::ExecMemCheck(fb_address, true, sz, currentMIPS->pc);
}
return 0;
}
static int Hook_narisokonai_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_V0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00044000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00044000, currentMIPS->pc);
}
return 0;
}
static int Hook_kirameki_school_life_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A2];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_orenoimouto_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A4];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_sakurasou_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_V0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_suikoden1_and_2_download_frame_1() {
const u32 fb_address = currentMIPS->r[MIPS_REG_S4];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_suikoden1_and_2_download_frame_2() {
const u32 fb_address = currentMIPS->r[MIPS_REG_S2];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_rezel_cross_download_frame() {
const u32 fb_address = Memory::Read_U32(currentMIPS->r[MIPS_REG_SP] + 0x1C);
const u32 fmt = Memory::Read_U32(currentMIPS->r[MIPS_REG_SP] + 0x14);
const u32 sz = fmt == GE_FORMAT_8888 ? 0x00088000 : 0x00044000;
if (Memory::IsVRAMAddress(fb_address) && fmt <= 3) {
gpu->PerformMemoryDownload(fb_address, sz);
CBreakPoints::ExecMemCheck(fb_address, true, sz, currentMIPS->pc);
}
return 0;
}
static int Hook_kagaku_no_ensemble_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_V0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_soranokiseki_fc_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A2];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00044000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00044000, currentMIPS->pc);
}
return 0;
}
static int Hook_soranokiseki_sc_download_frame() {
u32 fb_infoaddr;
if (!GetMIPSStaticAddress(fb_infoaddr, 0x28, 0x2C)) {
return 0;
}
const u32 fb_info = Memory::Read_U32(fb_infoaddr);
const MIPSOpcode fb_index_load = Memory::Read_Instruction(currentMIPS->pc + 0x34, true);
if (fb_index_load != MIPS_MAKE_LW(MIPS_GET_RT(fb_index_load), MIPS_GET_RS(fb_index_load), fb_index_load & 0xffff)) {
return 0;
}
const int fb_index_offset = (s16)(fb_index_load & 0xffff);
const u32 fb_index = (Memory::Read_U32(fb_info + fb_index_offset) + 1) & 1;
const u32 fb_address = 0x4000000 + (0x44000 * fb_index);
const u32 dest_address = currentMIPS->r[MIPS_REG_A1];
if (Memory::IsRAMAddress(dest_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00044000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00044000, currentMIPS->pc);
}
return 0;
}
static int Hook_bokunonatsuyasumi4_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A3];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00044000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00044000, currentMIPS->pc);
}
return 0;
}
static int Hook_danganronpa2_1_download_frame() {
const u32 fb_base = currentMIPS->r[MIPS_REG_V0];
const u32 fb_offset = currentMIPS->r[MIPS_REG_V1];
const u32 fb_offset_fix = fb_offset & 0xFFFFFFFC;
const u32 fb_address = fb_base + fb_offset_fix;
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_danganronpa2_2_download_frame() {
const u32 fb_base = currentMIPS->r[MIPS_REG_V0];
const u32 fb_offset = currentMIPS->r[MIPS_REG_V1];
const u32 fb_offset_fix = fb_offset & 0xFFFFFFFC;
const u32 fb_address = fb_base + fb_offset_fix;
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_danganronpa1_1_download_frame() {
const u32 fb_base = currentMIPS->r[MIPS_REG_A5];
const u32 fb_offset = currentMIPS->r[MIPS_REG_V0];
const u32 fb_offset_fix = fb_offset & 0xFFFFFFFC;
const u32 fb_address = fb_base + fb_offset_fix;
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_danganronpa1_2_download_frame() {
const MIPSOpcode instruction = Memory::Read_Instruction(currentMIPS->pc + 0x8, true);
const int reg_num = instruction >> 11 & 31;
const u32 fb_base = currentMIPS->r[reg_num];
const u32 fb_offset = currentMIPS->r[MIPS_REG_V0];
const u32 fb_offset_fix = fb_offset & 0xFFFFFFFC;
const u32 fb_address = fb_base + fb_offset_fix;
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_kankabanchoutbr_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A1];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00044000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00044000, currentMIPS->pc);
}
return 0;
}
static int Hook_orenoimouto_download_frame_2() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A4];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_rewrite_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_kudwafter_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_kumonohatateni_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_otomenoheihou_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_grisaianokajitsu_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_kokoroconnect_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A3];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_toheart2_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A1];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00044000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00044000, currentMIPS->pc);
}
return 0;
}
static int Hook_toheart2_download_frame_2() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_flowers_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_motorstorm_download_frame() {
const u32 fb_address = Memory::Read_U32(currentMIPS->r[MIPS_REG_A1] + 0x18);
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_utawarerumono_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_photokano_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A1];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_photokano_download_frame_2() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A1];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_gakuenheaven_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_youkosohitsujimura_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_V0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_tonyhawkp8_upload_tutorial_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryUpload(fb_address, 0x00088000);
}
return 0;
}
static int Hook_sdgundamggenerationportable_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A3];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_atvoffroadfurypro_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_S2];
const u32 fb_size = (currentMIPS->r[MIPS_REG_S4] >> 3) * currentMIPS->r[MIPS_REG_S3];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, fb_size);
CBreakPoints::ExecMemCheck(fb_address, true, fb_size, currentMIPS->pc);
}
return 0;
}
static int Hook_atvoffroadfuryblazintrails_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_S5];
const u32 fb_size = (currentMIPS->r[MIPS_REG_S3] >> 3) * currentMIPS->r[MIPS_REG_S2];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, fb_size);
CBreakPoints::ExecMemCheck(fb_address, true, fb_size, currentMIPS->pc);
}
return 0;
}
static int Hook_littlebustersce_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_A0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_shinigamitoshoujo_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_S2];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_atvoffroadfuryprodemo_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_S5];
const u32 fb_size = ((currentMIPS->r[MIPS_REG_A0] + currentMIPS->r[MIPS_REG_A1]) >> 3) * currentMIPS->r[MIPS_REG_S2];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, fb_size);
CBreakPoints::ExecMemCheck(fb_address, true, fb_size, currentMIPS->pc);
}
return 0;
}
static int Hook_unendingbloodycall_download_frame() {
const u32 fb_address = currentMIPS->r[MIPS_REG_T3];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_omertachinmokunookitethelegacy_download_frame() {
const u32 fb_address = Memory::Read_U32(currentMIPS->r[MIPS_REG_SP] + 4);
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryDownload(fb_address, 0x00044000);
CBreakPoints::ExecMemCheck(fb_address, true, 0x00044000, currentMIPS->pc);
}
return 0;
}
static int Hook_katamari_render_check() {
const u32 fb_address = Memory::Read_U32(currentMIPS->r[MIPS_REG_A0] + 0x3C);
const u32 fbInfoPtr = Memory::Read_U32(currentMIPS->r[MIPS_REG_A0] + 0x40);
if (Memory::IsVRAMAddress(fb_address) && fbInfoPtr != 0) {
const u32 sizeInfoPtr = Memory::Read_U32(fbInfoPtr + 0x0C);
// These are the values it uses to control the loop.
// Width in memory appears to be stride / 8.
const u32 width = Memory::Read_U16(sizeInfoPtr + 0x08) * 8;
// Height in memory is also divided by 8 (but this one isn't hardcoded.)
const u32 heightBlocks = Memory::Read_U16(sizeInfoPtr + 0x0A);
// For some reason this is the number of heightBlocks less 1.
const u32 heightBlockCount = Memory::Read_U8(fbInfoPtr + 0x08) + 1;
const u32 totalBytes = width * heightBlocks * heightBlockCount;
gpu->PerformMemoryDownload(fb_address, totalBytes);
CBreakPoints::ExecMemCheck(fb_address, true, totalBytes, currentMIPS->pc);
}
return 0;
}
static int Hook_katamari_screenshot_to_565() {
u32 fb_address;
if (GetMIPSStaticAddress(fb_address, 0x0040, 0x0044)) {
gpu->PerformMemoryDownload(0x04000000 | fb_address, 0x00088000);
CBreakPoints::ExecMemCheck(0x04000000 | fb_address, true, 0x00088000, currentMIPS->pc);
}
return 0;
}
static int Hook_mytranwars_upload_frame() {
u32 fb_address = currentMIPS->r[MIPS_REG_S0];
if (Memory::IsVRAMAddress(fb_address)) {
gpu->PerformMemoryUpload(fb_address, 0x00088000);
}
return 0;
}
static u32 marvelalliance1_copy_src = 0;
static u32 marvelalliance1_copy_dst = 0;
static u32 marvelalliance1_copy_size = 0;
static int Hook_marvelalliance1_copy_a1_before() {
marvelalliance1_copy_src = currentMIPS->r[MIPS_REG_A1];
marvelalliance1_copy_dst = currentMIPS->r[MIPS_REG_V1];
marvelalliance1_copy_size = currentMIPS->r[MIPS_REG_V0] - currentMIPS->r[MIPS_REG_V1];
gpu->PerformMemoryDownload(marvelalliance1_copy_src, marvelalliance1_copy_size);
CBreakPoints::ExecMemCheck(marvelalliance1_copy_src, true, marvelalliance1_copy_size, currentMIPS->pc);
return 0;
}
static int Hook_marvelalliance1_copy_a2_before() {
marvelalliance1_copy_src = currentMIPS->r[MIPS_REG_A2];
marvelalliance1_copy_dst = currentMIPS->r[MIPS_REG_V0];
marvelalliance1_copy_size = currentMIPS->r[MIPS_REG_A1] - currentMIPS->r[MIPS_REG_A2];
gpu->PerformMemoryDownload(marvelalliance1_copy_src, marvelalliance1_copy_size);
CBreakPoints::ExecMemCheck(marvelalliance1_copy_src, true, marvelalliance1_copy_size, currentMIPS->pc);
return 0;
}
static int Hook_marvelalliance1_copy_after() {
gpu->PerformMemoryUpload(marvelalliance1_copy_dst, marvelalliance1_copy_size);
CBreakPoints::ExecMemCheck(marvelalliance1_copy_dst, false, marvelalliance1_copy_size, currentMIPS->pc);
return 0;
}
static int Hook_starocean_clear_framebuf_before() {
skipGPUReplacements |= (int)GPUReplacementSkip::MEMSET;
return 0;
}
static int Hook_starocean_clear_framebuf_after() {
skipGPUReplacements &= ~(int)GPUReplacementSkip::MEMSET;
// This hook runs after the copy, this is the final memcpy destination.
u32 framebuf = currentMIPS->r[MIPS_REG_V0] - 512 * 4 * 271;
u32 y_address, h_address;
if (GetMIPSGPAddress(y_address, -204) && GetMIPSGPAddress(h_address, -200)) {
int y = (s16)Memory::Read_U16(y_address);
int h = (s16)Memory::Read_U16(h_address);
DEBUG_LOG(HLE, "starocean_clear_framebuf() - %08x y=%d-%d", framebuf, y, h);
// TODO: This is always clearing to 0, actually, which could be faster than an upload.
gpu->PerformMemoryUpload(framebuf + 512 * y * 4, 512 * h * 4);
}
return 0;
}
#define JITFUNC(f) (&MIPSComp::MIPSFrontendInterface::f)
// Can either replace with C functions or functions emitted in Asm/ArmAsm.
static const ReplacementTableEntry entries[] = {
// TODO: I think some games can be helped quite a bit by implementing the
// double-precision soft-float routines: __adddf3, __subdf3 and so on. These
// should of course be implemented JIT style, inline.
/* These two collide (same hash) and thus can't be replaced :/
{ "asinf", &Replace_asinf, 0, REPFLAG_DISABLED },
{ "acosf", &Replace_acosf, 0, REPFLAG_DISABLED },
*/
{ "sinf", &Replace_sinf, 0, REPFLAG_DISABLED },
{ "cosf", &Replace_cosf, 0, REPFLAG_DISABLED },
{ "tanf", &Replace_tanf, 0, REPFLAG_DISABLED },
{ "atanf", &Replace_atanf, 0, REPFLAG_DISABLED },
{ "sqrtf", &Replace_sqrtf, 0, REPFLAG_DISABLED },
{ "atan2f", &Replace_atan2f, 0, REPFLAG_DISABLED },
{ "floorf", &Replace_floorf, 0, REPFLAG_DISABLED },
{ "ceilf", &Replace_ceilf, 0, REPFLAG_DISABLED },
{ "memcpy", &Replace_memcpy, 0, 0 },
{ "memcpy_jak", &Replace_memcpy_jak, 0, 0 },
{ "memcpy16", &Replace_memcpy16, 0, 0 },
{ "memcpy_swizzled", &Replace_memcpy_swizzled, 0, 0 },
{ "memmove", &Replace_memmove, 0, 0 },
{ "memset", &Replace_memset, 0, 0 },
{ "memset_jak", &Replace_memset_jak, 0, 0 },
{ "strlen", &Replace_strlen, 0, REPFLAG_DISABLED },
{ "strcpy", &Replace_strcpy, 0, REPFLAG_DISABLED },
{ "strncpy", &Replace_strncpy, 0, REPFLAG_DISABLED },
{ "strcmp", &Replace_strcmp, 0, REPFLAG_DISABLED },
{ "strncmp", &Replace_strncmp, 0, REPFLAG_DISABLED },
{ "fabsf", &Replace_fabsf, JITFUNC(Replace_fabsf), REPFLAG_ALLOWINLINE | REPFLAG_DISABLED },
{ "dl_write_matrix", &Replace_dl_write_matrix, 0, REPFLAG_DISABLED }, // &MIPSComp::Jit::Replace_dl_write_matrix, REPFLAG_DISABLED },
{ "dl_write_matrix_2", &Replace_dl_write_matrix, 0, REPFLAG_DISABLED },
{ "gta_dl_write_matrix", &Replace_gta_dl_write_matrix, 0, REPFLAG_DISABLED },
// dl_write_matrix_3 doesn't take the dl as a parameter, it accesses a global instead. Need to extract the address of the global from the code when replacing...
// Haven't investigated write_matrix_4 and 5 but I think they are similar to 1 and 2.
// { "vmmul_q_transp", &Replace_vmmul_q_transp, 0, REPFLAG_DISABLED },
{ "godseaterburst_blit_texture", &Hook_godseaterburst_blit_texture, 0, REPFLAG_HOOKENTER },
{ "hexyzforce_monoclome_thread", &Hook_hexyzforce_monoclome_thread, 0, REPFLAG_HOOKENTER, 0x58 },
{ "starocean_write_stencil", &Hook_starocean_write_stencil, 0, REPFLAG_HOOKENTER, 0x260 },
{ "topx_create_saveicon", &Hook_topx_create_saveicon, 0, REPFLAG_HOOKENTER, 0x34 },
{ "ff1_battle_effect", &Hook_ff1_battle_effect, 0, REPFLAG_HOOKENTER },
// This is actually used in other games, not just Dissidia.
{ "dissidia_recordframe_avi", &Hook_dissidia_recordframe_avi, 0, REPFLAG_HOOKENTER },
{ "brandish_download_frame", &Hook_brandish_download_frame, 0, REPFLAG_HOOKENTER },
{ "growlanser_create_saveicon", &Hook_growlanser_create_saveicon, 0, REPFLAG_HOOKENTER, 0x7C },
{ "sd_gundam_g_generation_download_frame", &Hook_sd_gundam_g_generation_download_frame, 0, REPFLAG_HOOKENTER, 0x48},
{ "narisokonai_download_frame", &Hook_narisokonai_download_frame, 0, REPFLAG_HOOKENTER, 0x14 },
{ "kirameki_school_life_download_frame", &Hook_kirameki_school_life_download_frame, 0, REPFLAG_HOOKENTER },
{ "orenoimouto_download_frame", &Hook_orenoimouto_download_frame, 0, REPFLAG_HOOKENTER },
{ "sakurasou_download_frame", &Hook_sakurasou_download_frame, 0, REPFLAG_HOOKENTER, 0xF8 },
{ "suikoden1_and_2_download_frame_1", &Hook_suikoden1_and_2_download_frame_1, 0, REPFLAG_HOOKENTER, 0x9C },
{ "suikoden1_and_2_download_frame_2", &Hook_suikoden1_and_2_download_frame_2, 0, REPFLAG_HOOKENTER, 0x48 },
{ "rezel_cross_download_frame", &Hook_rezel_cross_download_frame, 0, REPFLAG_HOOKENTER, 0x54 },
{ "kagaku_no_ensemble_download_frame", &Hook_kagaku_no_ensemble_download_frame, 0, REPFLAG_HOOKENTER, 0x38 },
{ "soranokiseki_fc_download_frame", &Hook_soranokiseki_fc_download_frame, 0, REPFLAG_HOOKENTER, 0x180 },
{ "soranokiseki_sc_download_frame", &Hook_soranokiseki_sc_download_frame, 0, REPFLAG_HOOKENTER, },
{ "bokunonatsuyasumi4_download_frame", &Hook_bokunonatsuyasumi4_download_frame, 0, REPFLAG_HOOKENTER, 0x8C },
{ "danganronpa2_1_download_frame", &Hook_danganronpa2_1_download_frame, 0, REPFLAG_HOOKENTER, 0x68 },
{ "danganronpa2_2_download_frame", &Hook_danganronpa2_2_download_frame, 0, REPFLAG_HOOKENTER, 0x94 },
{ "danganronpa1_1_download_frame", &Hook_danganronpa1_1_download_frame, 0, REPFLAG_HOOKENTER, 0x78 },
{ "danganronpa1_2_download_frame", &Hook_danganronpa1_2_download_frame, 0, REPFLAG_HOOKENTER, 0xA8 },
{ "kankabanchoutbr_download_frame", &Hook_kankabanchoutbr_download_frame, 0, REPFLAG_HOOKENTER, },
{ "orenoimouto_download_frame_2", &Hook_orenoimouto_download_frame_2, 0, REPFLAG_HOOKENTER, },
{ "rewrite_download_frame", &Hook_rewrite_download_frame, 0, REPFLAG_HOOKENTER, 0x5C },
{ "kudwafter_download_frame", &Hook_kudwafter_download_frame, 0, REPFLAG_HOOKENTER, 0x58 },
{ "kumonohatateni_download_frame", &Hook_kumonohatateni_download_frame, 0, REPFLAG_HOOKENTER, },
{ "otomenoheihou_download_frame", &Hook_otomenoheihou_download_frame, 0, REPFLAG_HOOKENTER, 0x14 },
{ "grisaianokajitsu_download_frame", &Hook_grisaianokajitsu_download_frame, 0, REPFLAG_HOOKENTER, 0x14 },
{ "kokoroconnect_download_frame", &Hook_kokoroconnect_download_frame, 0, REPFLAG_HOOKENTER, 0x60 },
{ "toheart2_download_frame", &Hook_toheart2_download_frame, 0, REPFLAG_HOOKENTER, },
{ "toheart2_download_frame_2", &Hook_toheart2_download_frame_2, 0, REPFLAG_HOOKENTER, 0x18 },
{ "flowers_download_frame", &Hook_flowers_download_frame, 0, REPFLAG_HOOKENTER, 0x44 },
{ "motorstorm_download_frame", &Hook_motorstorm_download_frame, 0, REPFLAG_HOOKENTER, },
{ "utawarerumono_download_frame", &Hook_utawarerumono_download_frame, 0, REPFLAG_HOOKENTER, },
{ "photokano_download_frame", &Hook_photokano_download_frame, 0, REPFLAG_HOOKENTER, 0x2C },
{ "photokano_download_frame_2", &Hook_photokano_download_frame_2, 0, REPFLAG_HOOKENTER, },
{ "gakuenheaven_download_frame", &Hook_gakuenheaven_download_frame, 0, REPFLAG_HOOKENTER, },
{ "youkosohitsujimura_download_frame", &Hook_youkosohitsujimura_download_frame, 0, REPFLAG_HOOKENTER, 0x94 },
{ "tonyhawkp8_upload_tutorial_frame", &Hook_tonyhawkp8_upload_tutorial_frame, 0, REPFLAG_HOOKENTER, },
{ "sdgundamggenerationportable_download_frame", &Hook_sdgundamggenerationportable_download_frame, 0, REPFLAG_HOOKENTER, 0x34 },
{ "atvoffroadfurypro_download_frame", &Hook_atvoffroadfurypro_download_frame, 0, REPFLAG_HOOKENTER, 0xA0 },
{ "atvoffroadfuryblazintrails_download_frame", &Hook_atvoffroadfuryblazintrails_download_frame, 0, REPFLAG_HOOKENTER, 0x80 },
{ "littlebustersce_download_frame", &Hook_littlebustersce_download_frame, 0, REPFLAG_HOOKENTER, },
{ "shinigamitoshoujo_download_frame", &Hook_shinigamitoshoujo_download_frame, 0, REPFLAG_HOOKENTER, 0xBC },
{ "atvoffroadfuryprodemo_download_frame", &Hook_atvoffroadfuryprodemo_download_frame, 0, REPFLAG_HOOKENTER, 0x80 },
{ "unendingbloodycall_download_frame", &Hook_unendingbloodycall_download_frame, 0, REPFLAG_HOOKENTER, 0x54 },
{ "omertachinmokunookitethelegacy_download_frame", &Hook_omertachinmokunookitethelegacy_download_frame, 0, REPFLAG_HOOKENTER, 0x88 },
{ "katamari_render_check", &Hook_katamari_render_check, 0, REPFLAG_HOOKENTER, 0, },
{ "katamari_screenshot_to_565", &Hook_katamari_screenshot_to_565, 0, REPFLAG_HOOKENTER, 0 },
{ "mytranwars_upload_frame", &Hook_mytranwars_upload_frame, 0, REPFLAG_HOOKENTER, 0x128 },
{ "marvelalliance1_copy", &Hook_marvelalliance1_copy_a1_before, 0, REPFLAG_HOOKENTER, 0x284 },
{ "marvelalliance1_copy", &Hook_marvelalliance1_copy_after, 0, REPFLAG_HOOKENTER, 0x2bc },
{ "marvelalliance1_copy", &Hook_marvelalliance1_copy_a1_before, 0, REPFLAG_HOOKENTER, 0x2e8 },
{ "marvelalliance1_copy", &Hook_marvelalliance1_copy_after, 0, REPFLAG_HOOKENTER, 0x320 },
{ "marvelalliance1_copy", &Hook_marvelalliance1_copy_a2_before, 0, REPFLAG_HOOKENTER, 0x3b0 },
{ "marvelalliance1_copy", &Hook_marvelalliance1_copy_after, 0, REPFLAG_HOOKENTER, 0x3e8 },
{ "marvelalliance1_copy", &Hook_marvelalliance1_copy_a2_before, 0, REPFLAG_HOOKENTER, 0x410 },
{ "marvelalliance1_copy", &Hook_marvelalliance1_copy_after, 0, REPFLAG_HOOKENTER, 0x448 },
{ "marvelalliance1_copy", &Hook_marvelalliance1_copy_a1_before, 0, REPFLAG_HOOKENTER, 0x600 },
{ "marvelalliance1_copy", &Hook_marvelalliance1_copy_after, 0, REPFLAG_HOOKENTER, 0x638 },
{ "marvelalliance1_copy", &Hook_marvelalliance1_copy_a1_before, 0, REPFLAG_HOOKENTER, 0x664 },
{ "marvelalliance1_copy", &Hook_marvelalliance1_copy_after, 0, REPFLAG_HOOKENTER, 0x69c },
{ "starocean_clear_framebuf", &Hook_starocean_clear_framebuf_before, 0, REPFLAG_HOOKENTER, 0 },
{ "starocean_clear_framebuf", &Hook_starocean_clear_framebuf_after, 0, REPFLAG_HOOKEXIT, 0 },
{}
};
static std::map<u32, u32> replacedInstructions;
static std::unordered_map<std::string, std::vector<int> > replacementNameLookup;
void Replacement_Init() {
for (int i = 0; i < (int)ARRAY_SIZE(entries); i++) {
const auto entry = &entries[i];
if (!entry->name || (entry->flags & REPFLAG_DISABLED) != 0)
continue;
replacementNameLookup[entry->name].push_back(i);
}
skipGPUReplacements = 0;
}
void Replacement_Shutdown() {
replacedInstructions.clear();
replacementNameLookup.clear();
}
int GetNumReplacementFuncs() {
return ARRAY_SIZE(entries);
}
std::vector<int> GetReplacementFuncIndexes(u64 hash, int funcSize) {
const char *name = MIPSAnalyst::LookupHash(hash, funcSize);
std::vector<int> emptyResult;
if (!name) {
return emptyResult;
}
auto index = replacementNameLookup.find(name);
if (index != replacementNameLookup.end()) {
return index->second;
}
return emptyResult;
}
const ReplacementTableEntry *GetReplacementFunc(int i) {
return &entries[i];
}
static bool WriteReplaceInstruction(u32 address, int index) {
u32 prevInstr = Memory::Read_Instruction(address, false).encoding;
if (MIPS_IS_REPLACEMENT(prevInstr)) {
int prevIndex = prevInstr & MIPS_EMUHACK_VALUE_MASK;
if (prevIndex == index) {
return false;
}
WARN_LOG(HLE, "Replacement func changed at %08x (%d -> %d)", address, prevIndex, index);
// Make sure we don't save the old replacement.
prevInstr = replacedInstructions[address];
}
if (MIPS_IS_RUNBLOCK(Memory::Read_U32(address))) {
WARN_LOG(HLE, "Replacing jitted func address %08x", address);
}
replacedInstructions[address] = prevInstr;
Memory::Write_U32(MIPS_EMUHACK_CALL_REPLACEMENT | index, address);
return true;
}
void WriteReplaceInstructions(u32 address, u64 hash, int size) {
std::vector<int> indexes = GetReplacementFuncIndexes(hash, size);
for (int index : indexes) {
bool didReplace = false;
auto entry = GetReplacementFunc(index);
if (entry->flags & REPFLAG_HOOKEXIT) {
// When hooking func exit, we search for jr ra, and replace those.
for (u32 offset = 0; offset < (u32)size; offset += 4) {
const u32 op = Memory::Read_Instruction(address + offset, false).encoding;
if (op == MIPS_MAKE_JR_RA()) {
if (WriteReplaceInstruction(address + offset, index)) {
didReplace = true;
}
}
}
} else if (entry->flags & REPFLAG_HOOKENTER) {
if (WriteReplaceInstruction(address + entry->hookOffset, index)) {
didReplace = true;
}
} else {
if (WriteReplaceInstruction(address, index)) {
didReplace = true;
}
}
if (didReplace) {
INFO_LOG(HLE, "Replaced %s at %08x with hash %016llx", entries[index].name, address, hash);
}
}
}
void RestoreReplacedInstruction(u32 address) {
const u32 curInstr = Memory::Read_U32(address);
if (MIPS_IS_REPLACEMENT(curInstr)) {
Memory::Write_U32(replacedInstructions[address], address);
NOTICE_LOG(HLE, "Restored replaced func at %08x", address);
} else {
NOTICE_LOG(HLE, "Replaced func changed at %08x", address);
}
replacedInstructions.erase(address);
}
void RestoreReplacedInstructions(u32 startAddr, u32 endAddr) {
if (endAddr == startAddr)
return;
// Need to be in order, or we'll hang.
if (endAddr < startAddr)
std::swap(endAddr, startAddr);
const auto start = replacedInstructions.lower_bound(startAddr);
const auto end = replacedInstructions.upper_bound(endAddr);
int restored = 0;
for (auto it = start; it != end; ++it) {
const u32 addr = it->first;
const u32 curInstr = Memory::Read_U32(addr);
if (MIPS_IS_REPLACEMENT(curInstr)) {
Memory::Write_U32(it->second, addr);
++restored;
}
}
INFO_LOG(HLE, "Restored %d replaced funcs between %08x-%08x", restored, startAddr, endAddr);
replacedInstructions.erase(start, end);
}
std::map<u32, u32> SaveAndClearReplacements() {
std::map<u32, u32> saved;
for (auto it = replacedInstructions.begin(), end = replacedInstructions.end(); it != end; ++it) {
const u32 addr = it->first;
const u32 curInstr = Memory::Read_U32(addr);
if (MIPS_IS_REPLACEMENT(curInstr)) {
saved[addr] = curInstr;
Memory::Write_U32(it->second, addr);
}
}
return saved;
}
void RestoreSavedReplacements(const std::map<u32, u32> &saved) {
for (auto it = saved.begin(), end = saved.end(); it != end; ++it) {
const u32 addr = it->first;
// Just put the replacements back.
Memory::Write_U32(it->second, addr);
}
}
bool GetReplacedOpAt(u32 address, u32 *op) {
u32 instr = Memory::Read_Opcode_JIT(address).encoding;
if (MIPS_IS_REPLACEMENT(instr)) {
auto iter = replacedInstructions.find(address);
if (iter != replacedInstructions.end()) {
*op = iter->second;
return true;
} else {
return false;
}
}
return false;
}
bool CanReplaceJalTo(u32 dest, const ReplacementTableEntry **entry, u32 *funcSize) {
MIPSOpcode op(Memory::Read_Opcode_JIT(dest));
if (!MIPS_IS_REPLACEMENT(op.encoding))
return false;
// Make sure we don't replace if there are any breakpoints inside.
*funcSize = g_symbolMap->GetFunctionSize(dest);
if (*funcSize == SymbolMap::INVALID_ADDRESS) {
if (CBreakPoints::IsAddressBreakPoint(dest)) {
return false;
}
*funcSize = (u32)sizeof(u32);
} else {
if (CBreakPoints::RangeContainsBreakPoint(dest, *funcSize)) {
return false;
}
}
int index = op.encoding & MIPS_EMUHACK_VALUE_MASK;
*entry = GetReplacementFunc(index);
if (!*entry) {
ERROR_LOG(HLE, "ReplaceJalTo: Invalid replacement op %08x at %08x", op.encoding, dest);
return false;
}
if ((*entry)->flags & (REPFLAG_HOOKENTER | REPFLAG_HOOKEXIT | REPFLAG_DISABLED)) {
// If it's a hook, we can't replace the jal, we have to go inside the func.
return false;
}
return true;
}