mirror of
https://github.com/hrydgard/ppsspp.git
synced 2024-11-27 07:20:49 +00:00
8eb773888f
Previously at 1.7.0beta35.
4793 lines
157 KiB
C
4793 lines
157 KiB
C
#ifdef _MSC_VER
|
|
#pragma warning (disable:4018)
|
|
#pragma warning (disable:4146)
|
|
#endif
|
|
|
|
/* pngrutil.c - utilities to read a PNG file
|
|
*
|
|
* Last changed in libpng 1.7.0 [(PENDING RELEASE)]
|
|
* Copyright (c) 1998-2002,2004,2006-2017 Glenn Randers-Pehrson
|
|
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
|
|
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
|
|
*
|
|
* This code is released under the libpng license.
|
|
* For conditions of distribution and use, see the disclaimer
|
|
* and license in png.h
|
|
*
|
|
* This file contains routines that are only called from within
|
|
* libpng itself during the course of reading an image.
|
|
*/
|
|
|
|
#include "pngpriv.h"
|
|
#define PNG_SRC_FILE PNG_SRC_FILE_pngrutil
|
|
|
|
#ifdef PNG_READ_SUPPORTED
|
|
|
|
#if defined(PNG_READ_gAMA_SUPPORTED) || defined(PNG_READ_cHRM_SUPPORTED)
|
|
/* The following is a variation on the above for use with the fixed
|
|
* point values used for gAMA and cHRM. Instead of png_error it
|
|
* issues a warning and returns (-1) - an invalid value because both
|
|
* gAMA and cHRM use *unsigned* integers for fixed point values.
|
|
*/
|
|
#define PNG_FIXED_ERROR (-1)
|
|
|
|
static png_fixed_point /* PRIVATE */
|
|
png_get_fixed_point(png_structrp png_ptr, png_const_bytep buf)
|
|
{
|
|
png_uint_32 uval = png_get_uint_32(buf);
|
|
|
|
if (uval <= PNG_UINT_31_MAX)
|
|
return (png_fixed_point)uval; /* known to be in range */
|
|
|
|
/* The caller can turn off the warning by passing NULL. */
|
|
if (png_ptr != NULL)
|
|
png_warning(png_ptr, "PNG fixed point integer out of range");
|
|
|
|
return PNG_FIXED_ERROR;
|
|
}
|
|
#endif /* READ_gAMA or READ_cHRM */
|
|
|
|
#ifdef PNG_READ_INT_FUNCTIONS_SUPPORTED
|
|
/* NOTE: the read macros will obscure these definitions, so that if
|
|
* PNG_USE_READ_MACROS is set the library will not use them internally,
|
|
* but the APIs will still be available externally.
|
|
*
|
|
* The parentheses around "PNGAPI function_name" in the following three
|
|
* functions are necessary because they allow the macros to co-exist with
|
|
* these (unused but exported) functions.
|
|
*/
|
|
|
|
/* Grab an unsigned 32-bit integer from a buffer in big-endian format. */
|
|
png_uint_32 (PNGAPI
|
|
png_get_uint_32)(png_const_bytep buf)
|
|
{
|
|
return PNG_U32(buf[0], buf[1], buf[2], buf[3]);
|
|
}
|
|
|
|
/* Grab a signed 32-bit integer from a buffer in big-endian format. The
|
|
* data is stored in the PNG file in two's complement format and there
|
|
* is no guarantee that a 'png_int_32' is exactly 32 bits, therefore
|
|
* the following code does a two's complement to native conversion.
|
|
*/
|
|
png_int_32 (PNGAPI
|
|
png_get_int_32)(png_const_bytep buf)
|
|
{
|
|
return PNG_S32(buf[0], buf[1], buf[2], buf[3]);
|
|
}
|
|
|
|
/* Grab an unsigned 16-bit integer from a buffer in big-endian format. */
|
|
png_uint_16 (PNGAPI
|
|
png_get_uint_16)(png_const_bytep buf)
|
|
{
|
|
return PNG_U16(buf[0], buf[1]);
|
|
}
|
|
#endif /* READ_INT_FUNCTIONS */
|
|
|
|
/* This is an exported function however its error handling is too harsh for most
|
|
* internal use. For example if it were used for reading the chunk parameters
|
|
* it would error out even on ancillary chunks that can be ignored.
|
|
*/
|
|
png_uint_32 PNGAPI
|
|
png_get_uint_31(png_const_structrp png_ptr, png_const_bytep buf)
|
|
{
|
|
png_uint_32 uval = png_get_uint_32(buf);
|
|
|
|
if (uval > PNG_UINT_31_MAX)
|
|
png_error(png_ptr, "PNG unsigned integer out of range");
|
|
|
|
return uval;
|
|
}
|
|
|
|
/* Read and check the PNG file signature */
|
|
void /* PRIVATE */
|
|
png_read_sig(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_size_t num_checked, num_to_check;
|
|
|
|
/* Exit if the user application does not expect a signature. */
|
|
if (png_ptr->sig_bytes >= 8)
|
|
return;
|
|
|
|
num_checked = png_ptr->sig_bytes;
|
|
num_to_check = 8 - num_checked;
|
|
|
|
#ifdef PNG_IO_STATE_SUPPORTED
|
|
png_ptr->io_state = PNG_IO_READING | PNG_IO_SIGNATURE;
|
|
#endif
|
|
|
|
/* The signature must be serialized in a single I/O call. */
|
|
png_read_data(png_ptr, &(info_ptr->signature[num_checked]), num_to_check);
|
|
png_ptr->sig_bytes = 8;
|
|
|
|
if (png_sig_cmp(info_ptr->signature, num_checked, num_to_check))
|
|
{
|
|
if (num_checked < 4 &&
|
|
png_sig_cmp(info_ptr->signature, num_checked, num_to_check - 4))
|
|
png_error(png_ptr, "Not a PNG file");
|
|
else
|
|
png_error(png_ptr, "PNG file corrupted by ASCII conversion");
|
|
}
|
|
if (num_checked < 3)
|
|
png_ptr->mode |= PNG_HAVE_PNG_SIGNATURE;
|
|
}
|
|
|
|
/* Read data, and (optionally) run it through the CRC. */
|
|
void /* PRIVATE */
|
|
png_crc_read(png_structrp png_ptr, png_voidp buf, png_uint_32 length)
|
|
{
|
|
if (png_ptr == NULL)
|
|
return;
|
|
|
|
png_read_data(png_ptr, buf, length);
|
|
png_calculate_crc(png_ptr, buf, length);
|
|
}
|
|
|
|
/* Optionally skip data and then check the CRC. Depending on whether we are
|
|
* reading an ancillary or critical chunk, and how the program has set things
|
|
* up, we may calculate the CRC on the data and print a message. Returns true
|
|
* if the chunk should be discarded, otherwise false.
|
|
*/
|
|
int /* PRIVATE */
|
|
png_crc_finish(png_structrp png_ptr, png_uint_32 skip)
|
|
{
|
|
/* The size of the local buffer for inflate is a good guess as to a
|
|
* reasonable size to use for buffering reads from the application.
|
|
*/
|
|
while (skip > 0)
|
|
{
|
|
png_uint_32 len;
|
|
png_byte tmpbuf[PNG_INFLATE_BUF_SIZE];
|
|
|
|
len = (sizeof tmpbuf);
|
|
if (len > skip)
|
|
len = skip;
|
|
skip -= len;
|
|
|
|
png_crc_read(png_ptr, tmpbuf, len);
|
|
}
|
|
|
|
/* Compare the CRC stored in the PNG file with that calculated by libpng from
|
|
* the data it has read thus far. Do any required error handling. The
|
|
* second parameter is to allow a critical chunk (specifically PLTE) to be
|
|
* treated as ancillary.
|
|
*/
|
|
{
|
|
png_byte crc_bytes[4];
|
|
|
|
# ifdef PNG_IO_STATE_SUPPORTED
|
|
png_ptr->io_state = PNG_IO_READING | PNG_IO_CHUNK_CRC;
|
|
# endif
|
|
|
|
png_read_data(png_ptr, crc_bytes, 4);
|
|
|
|
if (png_ptr->current_crc != crc_quiet_use &&
|
|
png_get_uint_32(crc_bytes) != png_ptr->crc)
|
|
{
|
|
if (png_ptr->current_crc == crc_error_quit)
|
|
png_chunk_error(png_ptr, "CRC");
|
|
|
|
else
|
|
png_chunk_warning(png_ptr, "CRC");
|
|
|
|
/* The only way to discard a chunk at present is to issue a warning.
|
|
* TODO: quiet_discard.
|
|
*/
|
|
return png_ptr->current_crc == crc_warn_discard;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(PNG_READ_iCCP_SUPPORTED) || defined(PNG_READ_iTXt_SUPPORTED) ||\
|
|
defined(PNG_READ_pCAL_SUPPORTED) || defined(PNG_READ_sCAL_SUPPORTED) ||\
|
|
defined(PNG_READ_sPLT_SUPPORTED) || defined(PNG_READ_tEXt_SUPPORTED) ||\
|
|
defined(PNG_READ_zTXt_SUPPORTED) || defined(PNG_SEQUENTIAL_READ_SUPPORTED)
|
|
/* Manage the read buffer; this simply reallocates the buffer if it is not small
|
|
* enough (or if it is not allocated). The routine returns a pointer to the
|
|
* buffer; if an error occurs and 'warn' is set the routine returns NULL, else
|
|
* it will call png_error (via png_malloc) on failure. (warn == 2 means
|
|
* 'silent').
|
|
*/
|
|
png_bytep /* PRIVATE */
|
|
png_read_buffer(png_structrp png_ptr, png_alloc_size_t new_size, int warn)
|
|
{
|
|
png_bytep buffer = png_ptr->read_buffer;
|
|
|
|
if (buffer != NULL && new_size > png_ptr->read_buffer_size)
|
|
{
|
|
png_ptr->read_buffer = NULL;
|
|
png_ptr->read_buffer_size = 0;
|
|
png_free(png_ptr, buffer);
|
|
buffer = NULL;
|
|
}
|
|
|
|
if (buffer == NULL)
|
|
{
|
|
buffer = png_voidcast(png_bytep, png_malloc_base(png_ptr, new_size));
|
|
|
|
if (buffer != NULL)
|
|
{
|
|
png_ptr->read_buffer = buffer;
|
|
png_ptr->read_buffer_size = new_size;
|
|
}
|
|
|
|
else if (warn < 2) /* else silent */
|
|
{
|
|
if (warn != 0)
|
|
png_chunk_warning(png_ptr, "insufficient memory to read chunk");
|
|
|
|
else
|
|
png_chunk_error(png_ptr, "insufficient memory to read chunk");
|
|
}
|
|
}
|
|
|
|
return buffer;
|
|
}
|
|
#endif /* READ_iCCP|iTXt|pCAL|sCAL|sPLT|tEXt|zTXt|SEQUENTIAL_READ */
|
|
|
|
/* png_inflate_claim: claim the zstream for some nefarious purpose that involves
|
|
* decompression. Returns Z_OK on success, else a zlib error code. It checks
|
|
* the owner but, in final release builds, just issues a warning if some other
|
|
* chunk apparently owns the stream. Prior to release it does a png_error.
|
|
*/
|
|
static int
|
|
png_inflate_claim(png_structrp png_ptr, png_uint_32 owner)
|
|
{
|
|
if (png_ptr->zowner != 0)
|
|
{
|
|
char msg[64];
|
|
|
|
PNG_STRING_FROM_CHUNK(msg, png_ptr->zowner);
|
|
/* So the message that results is "<chunk> using zstream"; this is an
|
|
* internal error, but is very useful for debugging. i18n requirements
|
|
* are minimal.
|
|
*/
|
|
(void)png_safecat(msg, (sizeof msg), 4, " using zstream");
|
|
#if PNG_RELEASE_BUILD
|
|
png_chunk_warning(png_ptr, msg);
|
|
png_ptr->zowner = 0;
|
|
#else
|
|
png_chunk_error(png_ptr, msg);
|
|
#endif
|
|
}
|
|
|
|
/* Implementation note: unlike 'png_deflate_claim' this internal function
|
|
* does not take the size of the data as an argument. Some efficiency could
|
|
* be gained by using this when it is known *if* the zlib stream itself does
|
|
* not record the number; however, this is an illusion: the original writer
|
|
* of the PNG may have selected a lower window size, and we really must
|
|
* follow that because, for systems with with limited capabilities, we
|
|
* would otherwise reject the application's attempts to use a smaller window
|
|
* size (zlib doesn't have an interface to say "this or lower"!).
|
|
*
|
|
* inflateReset2 was added to zlib 1.2.4; before this the window could not be
|
|
* reset, therefore it is necessary to always allocate the maximum window
|
|
* size with earlier zlibs just in case later compressed chunks need it.
|
|
*/
|
|
{
|
|
int ret; /* zlib return code */
|
|
#if ZLIB_VERNUM >= 0x1240
|
|
int window_bits = 0;
|
|
|
|
# if defined(PNG_SET_OPTION_SUPPORTED) && \
|
|
defined(PNG_MAXIMUM_INFLATE_WINDOW)
|
|
|
|
if (png_ptr->maximum_inflate_window)
|
|
window_bits = 15;
|
|
|
|
# endif
|
|
#endif /* ZLIB_VERNUM >= 0x1240 */
|
|
|
|
/* Initialize the alloc/free callbacks every time: */
|
|
png_ptr->zstream.zalloc = png_zalloc;
|
|
png_ptr->zstream.zfree = png_zfree;
|
|
png_ptr->zstream.opaque = png_ptr;
|
|
|
|
/* Set this for safety, just in case the previous owner left pointers to
|
|
* memory allocations.
|
|
*/
|
|
png_ptr->zstream.next_in = NULL;
|
|
png_ptr->zstream.avail_in = 0;
|
|
png_ptr->zstream.next_out = NULL;
|
|
png_ptr->zstream.avail_out = 0;
|
|
|
|
/* If png_struct::zstream has been used before for decompression it does
|
|
* not need to be re-initialized, just reset.
|
|
*/
|
|
if (png_ptr->zstream.state != NULL)
|
|
{
|
|
#if ZLIB_VERNUM >= 0x1240
|
|
ret = inflateReset2(&png_ptr->zstream, window_bits);
|
|
#else
|
|
ret = inflateReset(&png_ptr->zstream);
|
|
#endif
|
|
}
|
|
|
|
else
|
|
{
|
|
#if ZLIB_VERNUM >= 0x1240
|
|
ret = inflateInit2(&png_ptr->zstream, window_bits);
|
|
#else
|
|
ret = inflateInit(&png_ptr->zstream);
|
|
#endif
|
|
}
|
|
|
|
#if ZLIB_VERNUM >= 0x1240
|
|
/* Turn off validation of the ADLER32 checksum */
|
|
if (png_ptr->current_crc == crc_quiet_use)
|
|
ret = inflateReset2(&png_ptr->zstream, -window_bits);
|
|
#endif
|
|
|
|
if (ret == Z_OK && png_ptr->zstream.state != NULL)
|
|
{
|
|
png_ptr->zowner = owner;
|
|
png_ptr->zstream_ended = 0;
|
|
}
|
|
|
|
else
|
|
{
|
|
png_zstream_error(&png_ptr->zstream, ret);
|
|
png_ptr->zstream_ended = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
# ifdef window_bits
|
|
# undef window_bits
|
|
# endif
|
|
}
|
|
|
|
/* This is a wrapper for the zlib deflate call which will handle larger buffer
|
|
* sizes than uInt. The input is limited to png_uint_32, because invariably
|
|
* the input comes from a chunk which has a 31-bit length, the output can be
|
|
* anything that fits in a png_alloc_size_t.
|
|
*
|
|
* This internal function sets png_struct::zstream_ended when the end of the
|
|
* decoded data has been encountered; this includes both a normal end and
|
|
* error conditions.
|
|
*/
|
|
static int
|
|
png_zlib_inflate(png_structrp png_ptr, png_uint_32 owner, int finish,
|
|
/* INPUT: */ png_const_bytep *next_in_ptr, png_uint_32p avail_in_ptr,
|
|
/* OUTPUT: */ png_bytep *next_out_ptr, png_alloc_size_t *avail_out_ptr)
|
|
{
|
|
if (png_ptr->zowner == owner) /* Else not claimed */
|
|
{
|
|
int ret;
|
|
png_alloc_size_t avail_out = *avail_out_ptr;
|
|
png_uint_32 avail_in = *avail_in_ptr;
|
|
png_bytep output = *next_out_ptr;
|
|
png_const_bytep input = *next_in_ptr;
|
|
|
|
/* zlib can't necessarily handle more than 65535 bytes at once (i.e. it
|
|
* can't even necessarily handle 65536 bytes) because the type uInt is
|
|
* "16 bits or more". Consequently it is necessary to chunk the input to
|
|
* zlib. This code uses ZLIB_IO_MAX, from pngpriv.h, as the maximum (the
|
|
* maximum value that can be stored in a uInt.) It is possible to set
|
|
* ZLIB_IO_MAX to a lower value in pngpriv.h and this may sometimes have
|
|
* a performance advantage, because it reduces the amount of data accessed
|
|
* at each step and that may give the OS more time to page it in.
|
|
*/
|
|
png_ptr->zstream.next_in = PNGZ_INPUT_CAST(input);
|
|
/* avail_in and avail_out are set below from 'size' */
|
|
png_ptr->zstream.avail_in = 0;
|
|
png_ptr->zstream.avail_out = 0;
|
|
|
|
/* Read directly into the output if it is available (this is set to
|
|
* a local buffer below if output is NULL).
|
|
*/
|
|
if (output != NULL)
|
|
png_ptr->zstream.next_out = output;
|
|
|
|
do
|
|
{
|
|
uInt avail;
|
|
Byte local_buffer[PNG_INFLATE_BUF_SIZE];
|
|
|
|
/* zlib INPUT BUFFER */
|
|
/* The setting of 'avail_in' used to be outside the loop; by setting it
|
|
* inside it is possible to chunk the input to zlib and simply rely on
|
|
* zlib to advance the 'next_in' pointer. This allows arbitrary
|
|
* amounts of data to be passed through zlib at the unavoidable cost of
|
|
* requiring a window save (memcpy of up to 32768 output bytes)
|
|
* every ZLIB_IO_MAX input bytes.
|
|
*/
|
|
avail_in += png_ptr->zstream.avail_in; /* not consumed last time */
|
|
avail = ZLIB_IO_MAX;
|
|
|
|
if (avail_in < avail)
|
|
avail = (uInt)avail_in; /* safe: < than ZLIB_IO_MAX */
|
|
|
|
avail_in -= avail;
|
|
png_ptr->zstream.avail_in = avail;
|
|
|
|
/* zlib OUTPUT BUFFER */
|
|
avail_out += png_ptr->zstream.avail_out; /* not written last time */
|
|
avail = ZLIB_IO_MAX; /* maximum zlib can process */
|
|
|
|
if (output == NULL)
|
|
{
|
|
/* Reset the output buffer each time round if output is NULL and
|
|
* make available the full buffer, up to 'remaining_space'
|
|
*/
|
|
png_ptr->zstream.next_out = local_buffer;
|
|
if ((sizeof local_buffer) < avail)
|
|
avail = (sizeof local_buffer);
|
|
}
|
|
|
|
if (avail_out < avail)
|
|
avail = (uInt)avail_out; /* safe: < ZLIB_IO_MAX */
|
|
|
|
png_ptr->zstream.avail_out = avail;
|
|
avail_out -= avail;
|
|
|
|
/* zlib inflate call */
|
|
/* In fact 'avail_out' may be 0 at this point, that happens at the end
|
|
* of the read when the final LZ end code was not passed at the end of
|
|
* the previous chunk of input data. Tell zlib if we have reached the
|
|
* end of the output buffer.
|
|
*/
|
|
ret = inflate(&png_ptr->zstream, avail_out > 0 ? Z_NO_FLUSH :
|
|
(finish ? Z_FINISH : Z_SYNC_FLUSH));
|
|
} while (ret == Z_OK);
|
|
|
|
/* For safety kill the local buffer pointer now */
|
|
if (output == NULL)
|
|
png_ptr->zstream.next_out = NULL;
|
|
|
|
/* Claw back the 'size' and 'remaining_space' byte counts. */
|
|
avail_in += png_ptr->zstream.avail_in;
|
|
avail_out += png_ptr->zstream.avail_out;
|
|
|
|
/* Update the input and output sizes; the updated values are the amount
|
|
* consumed or written, effectively the inverse of what zlib uses.
|
|
*/
|
|
*avail_out_ptr = avail_out;
|
|
if (output != NULL)
|
|
*next_out_ptr = png_ptr->zstream.next_out;
|
|
|
|
*avail_in_ptr = avail_in;
|
|
*next_in_ptr = png_ptr->zstream.next_in;
|
|
|
|
/* Ensure png_ptr->zstream.msg is set, ret can't be Z_OK at this point.
|
|
*/
|
|
debug(ret != Z_OK);
|
|
|
|
if (ret != Z_BUF_ERROR)
|
|
png_ptr->zstream_ended = 1;
|
|
|
|
png_zstream_error(&png_ptr->zstream, ret);
|
|
return ret;
|
|
}
|
|
|
|
else
|
|
{
|
|
/* This is a bad internal error. The recovery assigns to the zstream msg
|
|
* pointer, which is not owned by the caller, but this is safe; it's only
|
|
* used on errors! (The {next,avail}_{in,out} values are not changed.)
|
|
*/
|
|
png_ptr->zstream.msg = PNGZ_MSG_CAST("zstream unclaimed");
|
|
return Z_STREAM_ERROR;
|
|
}
|
|
}
|
|
|
|
#ifdef PNG_READ_COMPRESSED_TEXT_SUPPORTED
|
|
/* png_inflate now returns zlib error codes including Z_OK and Z_STREAM_END to
|
|
* allow the caller to do multiple calls if required. If the 'finish' flag is
|
|
* set Z_FINISH will be passed to the final inflate() call and Z_STREAM_END must
|
|
* be returned or there has been a problem, otherwise Z_SYNC_FLUSH is used and
|
|
* Z_OK or Z_STREAM_END will be returned on success.
|
|
*
|
|
* The input and output sizes are updated to the actual amounts of data consumed
|
|
* or written, not the amount available (as in a z_stream). The data pointers
|
|
* are not changed, so the next input is (data+input_size) and the next
|
|
* available output is (output+output_size).
|
|
*/
|
|
static int
|
|
png_inflate(png_structrp png_ptr, png_uint_32 owner, int finish,
|
|
/* INPUT: */ png_const_bytep input, png_uint_32p input_size_ptr,
|
|
/* OUTPUT: */ png_bytep output, png_alloc_size_t *output_size_ptr)
|
|
{
|
|
png_uint_32 avail_in = *input_size_ptr;
|
|
png_alloc_size_t avail_out = *output_size_ptr;
|
|
int ret = png_zlib_inflate(png_ptr, owner, finish,
|
|
&input, &avail_in, &output, &avail_out);
|
|
|
|
/* And implement the non-zlib semantics (the size values are updated to the
|
|
* amounts consumed and written, not the amount remaining.)
|
|
*/
|
|
*input_size_ptr -= avail_in;
|
|
*output_size_ptr -= avail_out;
|
|
return ret;
|
|
}
|
|
|
|
/* Decompress trailing data in a chunk. The assumption is that read_buffer
|
|
* points at an allocated area holding the contents of a chunk with a
|
|
* trailing compressed part. What we get back is an allocated area
|
|
* holding the original prefix part and an uncompressed version of the
|
|
* trailing part (the malloc area passed in is freed).
|
|
*/
|
|
static int
|
|
png_decompress_chunk(png_structrp png_ptr,
|
|
png_uint_32 chunklength, png_uint_32 prefix_size,
|
|
png_alloc_size_t *newlength /* must be initialized to the maximum! */,
|
|
int terminate /*add a '\0' to the end of the uncompressed data*/)
|
|
{
|
|
/* TODO: implement different limits for different types of chunk.
|
|
*
|
|
* The caller supplies *newlength set to the maximum length of the
|
|
* uncompressed data, but this routine allocates space for the prefix and
|
|
* maybe a '\0' terminator too. We have to assume that 'prefix_size' is
|
|
* limited only by the maximum chunk size.
|
|
*/
|
|
png_alloc_size_t limit = PNG_SIZE_MAX;
|
|
|
|
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
|
|
if (png_ptr->user_chunk_malloc_max > 0 &&
|
|
png_ptr->user_chunk_malloc_max < limit)
|
|
limit = png_ptr->user_chunk_malloc_max;
|
|
#elif PNG_USER_CHUNK_MALLOC_MAX > 0
|
|
if (PNG_USER_CHUNK_MALLOC_MAX < limit)
|
|
limit = PNG_USER_CHUNK_MALLOC_MAX;
|
|
#endif
|
|
|
|
if (limit >= prefix_size + (terminate != 0))
|
|
{
|
|
int ret;
|
|
|
|
limit -= prefix_size + (terminate != 0);
|
|
|
|
if (limit < *newlength)
|
|
*newlength = limit;
|
|
|
|
/* Now try to claim the stream. */
|
|
ret = png_inflate_claim(png_ptr, png_ptr->chunk_name);
|
|
|
|
if (ret == Z_OK)
|
|
{
|
|
png_uint_32 lzsize = chunklength - prefix_size;
|
|
|
|
ret = png_inflate(png_ptr, png_ptr->chunk_name, 1/*finish*/,
|
|
/* input: */ png_ptr->read_buffer + prefix_size, &lzsize,
|
|
/* output: */ NULL, newlength);
|
|
|
|
if (ret == Z_STREAM_END)
|
|
{
|
|
/* Use 'inflateReset' here, not 'inflateReset2' because this
|
|
* preserves the previously decided window size (otherwise it would
|
|
* be necessary to store the previous window size.) In practice
|
|
* this doesn't matter anyway, because png_inflate will call inflate
|
|
* with Z_FINISH in almost all cases, so the window will not be
|
|
* maintained.
|
|
*/
|
|
if (inflateReset(&png_ptr->zstream) == Z_OK)
|
|
{
|
|
/* Because of the limit checks above we know that the new,
|
|
* expanded, size will fit in a size_t (let alone an
|
|
* png_alloc_size_t). Use png_malloc_base here to avoid an
|
|
* extra OOM message.
|
|
*/
|
|
png_alloc_size_t new_size = *newlength;
|
|
png_alloc_size_t buffer_size = prefix_size + new_size +
|
|
(terminate != 0);
|
|
png_bytep text = png_voidcast(png_bytep, png_malloc_base(png_ptr,
|
|
buffer_size));
|
|
|
|
if (text != NULL)
|
|
{
|
|
ret = png_inflate(png_ptr, png_ptr->chunk_name, 1/*finish*/,
|
|
png_ptr->read_buffer + prefix_size, &lzsize,
|
|
text + prefix_size, newlength);
|
|
|
|
if (ret == Z_STREAM_END)
|
|
{
|
|
if (new_size == *newlength)
|
|
{
|
|
if (terminate != 0)
|
|
text[prefix_size + *newlength] = 0;
|
|
|
|
if (prefix_size > 0)
|
|
memcpy(text, png_ptr->read_buffer, prefix_size);
|
|
|
|
{
|
|
png_bytep old_ptr = png_ptr->read_buffer;
|
|
|
|
png_ptr->read_buffer = text;
|
|
png_ptr->read_buffer_size = buffer_size;
|
|
text = old_ptr; /* freed below */
|
|
}
|
|
}
|
|
|
|
else
|
|
{
|
|
/* The size changed on the second read, there can be no
|
|
* guarantee that anything is correct at this point.
|
|
* The 'msg' pointer has been set to "unexpected end of
|
|
* LZ stream", which is fine, but return an error code
|
|
* that the caller won't accept.
|
|
*/
|
|
ret = PNG_UNEXPECTED_ZLIB_RETURN;
|
|
}
|
|
}
|
|
|
|
else if (ret == Z_OK)
|
|
ret = PNG_UNEXPECTED_ZLIB_RETURN; /* for safety */
|
|
|
|
/* Free the text pointer (this is the old read_buffer on
|
|
* success)
|
|
*/
|
|
png_free(png_ptr, text);
|
|
|
|
/* This really is very benign, but it's still an error because
|
|
* the extra space may otherwise be used as a Trojan Horse.
|
|
*/
|
|
if (ret == Z_STREAM_END &&
|
|
chunklength - prefix_size != lzsize)
|
|
png_chunk_benign_error(png_ptr, "extra compressed data");
|
|
}
|
|
|
|
else
|
|
{
|
|
/* Out of memory allocating the buffer */
|
|
ret = Z_MEM_ERROR;
|
|
png_zstream_error(&png_ptr->zstream, Z_MEM_ERROR);
|
|
}
|
|
}
|
|
|
|
else
|
|
{
|
|
/* inflateReset failed, store the error message */
|
|
png_zstream_error(&png_ptr->zstream, ret);
|
|
|
|
if (ret == Z_STREAM_END)
|
|
ret = PNG_UNEXPECTED_ZLIB_RETURN;
|
|
}
|
|
}
|
|
|
|
else if (ret == Z_OK)
|
|
ret = PNG_UNEXPECTED_ZLIB_RETURN;
|
|
|
|
/* Release the claimed stream */
|
|
png_ptr->zowner = 0;
|
|
}
|
|
|
|
else /* the claim failed */ if (ret == Z_STREAM_END) /* impossible! */
|
|
ret = PNG_UNEXPECTED_ZLIB_RETURN;
|
|
|
|
return ret;
|
|
}
|
|
|
|
else
|
|
{
|
|
/* Application/configuration limits exceeded */
|
|
png_zstream_error(&png_ptr->zstream, Z_MEM_ERROR);
|
|
return Z_MEM_ERROR;
|
|
}
|
|
}
|
|
#endif /* READ_COMPRESSED_TEXT */
|
|
|
|
#ifdef PNG_READ_iCCP_SUPPORTED
|
|
/* Perform a partial read and decompress, producing 'avail_out' bytes and
|
|
* reading from the current chunk as required.
|
|
*/
|
|
static int
|
|
png_inflate_read(png_structrp png_ptr, png_bytep read_buffer, uInt read_size,
|
|
png_uint_32p chunk_bytes, png_bytep next_out, png_alloc_size_t *out_size,
|
|
int finish)
|
|
{
|
|
if (png_ptr->zowner == png_ptr->chunk_name)
|
|
{
|
|
int ret;
|
|
|
|
/* next_in and avail_in must have been initialized by the caller. */
|
|
png_ptr->zstream.next_out = next_out;
|
|
png_ptr->zstream.avail_out = 0; /* set in the loop */
|
|
|
|
do
|
|
{
|
|
if (png_ptr->zstream.avail_in == 0)
|
|
{
|
|
if (read_size > *chunk_bytes)
|
|
read_size = (uInt)*chunk_bytes;
|
|
*chunk_bytes -= read_size;
|
|
|
|
if (read_size > 0)
|
|
png_crc_read(png_ptr, read_buffer, read_size);
|
|
|
|
png_ptr->zstream.next_in = read_buffer;
|
|
png_ptr->zstream.avail_in = read_size;
|
|
}
|
|
|
|
if (png_ptr->zstream.avail_out == 0)
|
|
{
|
|
uInt avail = ZLIB_IO_MAX;
|
|
if (avail > *out_size)
|
|
avail = (uInt)*out_size;
|
|
*out_size -= avail;
|
|
|
|
png_ptr->zstream.avail_out = avail;
|
|
}
|
|
|
|
/* Use Z_SYNC_FLUSH when there is no more chunk data to ensure that all
|
|
* the available output is produced; this allows reading of truncated
|
|
* streams.
|
|
*/
|
|
ret = inflate(&png_ptr->zstream,
|
|
*chunk_bytes > 0 ? Z_NO_FLUSH : (finish ? Z_FINISH :
|
|
Z_SYNC_FLUSH));
|
|
}
|
|
while (ret == Z_OK && (*out_size > 0 || png_ptr->zstream.avail_out > 0));
|
|
|
|
*out_size += png_ptr->zstream.avail_out;
|
|
png_ptr->zstream.avail_out = 0; /* Should not be required, but is safe */
|
|
|
|
/* Ensure the error message pointer is always set: */
|
|
png_zstream_error(&png_ptr->zstream, ret);
|
|
return ret;
|
|
}
|
|
|
|
else
|
|
{
|
|
png_ptr->zstream.msg = PNGZ_MSG_CAST("zstream unclaimed");
|
|
return Z_STREAM_ERROR;
|
|
}
|
|
}
|
|
#endif /* READ_iCCP */
|
|
|
|
/* Chunk handling error handlers and utilities: */
|
|
/* Utility to read the chunk data from the start without processing it;
|
|
* a skip function.
|
|
*/
|
|
static void
|
|
png_handle_skip(png_structrp png_ptr)
|
|
/* Skip the entire chunk after the name,length header has been read: */
|
|
{
|
|
png_crc_finish(png_ptr, png_ptr->chunk_length);
|
|
}
|
|
|
|
static void
|
|
png_handle_error(png_structrp png_ptr
|
|
# ifdef PNG_ERROR_TEXT_SUPPORTED
|
|
, png_const_charp error
|
|
# else
|
|
# define png_handle_error(pp,e) png_handle_error(pp)
|
|
# endif
|
|
)
|
|
/* Handle an error detected immediately after the chunk header has been
|
|
* read; this skips the rest of the chunk data and the CRC then signals
|
|
* a *benign* chunk error.
|
|
*/
|
|
{
|
|
png_handle_skip(png_ptr);
|
|
png_chunk_benign_error(png_ptr, error);
|
|
}
|
|
|
|
#if defined (PNG_READ_gAMA_SUPPORTED) || defined (PNG_READ_sBIT_SUPPORTED) ||\
|
|
defined (PNG_READ_cHRM_SUPPORTED) || defined (PNG_READ_sRGB_SUPPORTED) ||\
|
|
defined (PNG_READ_iCCP_SUPPORTED) || defined (PNG_READ_tRNS_SUPPORTED) ||\
|
|
defined (PNG_READ_bKGD_SUPPORTED) || defined (PNG_READ_hIST_SUPPORTED) ||\
|
|
defined (PNG_READ_pHYs_SUPPORTED) || defined (PNG_READ_oFFs_SUPPORTED) ||\
|
|
defined (PNG_READ_sCAL_SUPPORTED) || defined (PNG_READ_tIME_SUPPORTED)
|
|
static void
|
|
png_handle_bad_length(png_structrp png_ptr)
|
|
{
|
|
png_handle_error(png_ptr, "invalid length");
|
|
}
|
|
#endif /* chunks that can generate length errors */
|
|
|
|
/* Read and check the IDHR chunk */
|
|
static void
|
|
png_handle_IHDR(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_byte buf[13];
|
|
png_uint_32 width, height;
|
|
png_byte bit_depth, color_type, compression_type, filter_method;
|
|
png_byte interlace_type;
|
|
|
|
png_debug(1, "in png_handle_IHDR");
|
|
|
|
/* Check the length (this is a chunk error; not benign) */
|
|
if (png_ptr->chunk_length != 13)
|
|
png_chunk_error(png_ptr, "invalid length");
|
|
|
|
png_crc_read(png_ptr, buf, 13);
|
|
png_crc_finish(png_ptr, 0);
|
|
|
|
width = png_get_uint_31(png_ptr, buf);
|
|
height = png_get_uint_31(png_ptr, buf + 4);
|
|
bit_depth = buf[8];
|
|
color_type = buf[9];
|
|
compression_type = buf[10];
|
|
filter_method = buf[11];
|
|
interlace_type = buf[12];
|
|
|
|
/* Set internal variables */
|
|
png_ptr->width = width;
|
|
png_ptr->height = height;
|
|
png_ptr->bit_depth = bit_depth;
|
|
png_ptr->interlaced = interlace_type;
|
|
png_ptr->color_type = color_type;
|
|
png_ptr->filter_method = filter_method;
|
|
|
|
png_set_IHDR(png_ptr, info_ptr, width, height, bit_depth,
|
|
color_type, interlace_type, compression_type, filter_method);
|
|
}
|
|
|
|
/* Read and check the palette */
|
|
static void
|
|
png_handle_PLTE(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_color palette[PNG_MAX_PALETTE_LENGTH];
|
|
png_uint_32 length = png_ptr->chunk_length;
|
|
png_uint_32 max_palette_length, num, i;
|
|
|
|
png_debug(1, "in png_handle_PLTE");
|
|
|
|
if (info_ptr == NULL)
|
|
return;
|
|
|
|
if (!(png_ptr->color_type & PNG_COLOR_MASK_COLOR))
|
|
{
|
|
png_handle_error(png_ptr, "ignored in grayscale PNG");
|
|
return;
|
|
}
|
|
|
|
#ifndef PNG_READ_OPT_PLTE_SUPPORTED
|
|
if (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE)
|
|
{
|
|
/* Skip the whole chunk: */
|
|
png_handle_skip(png_ptr);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (length > 3*PNG_MAX_PALETTE_LENGTH || length % 3)
|
|
{
|
|
png_crc_finish(png_ptr, length);
|
|
png_chunk_report(png_ptr, "invalid length",
|
|
((png_ptr->color_type != PNG_COLOR_TYPE_PALETTE) ? PNG_CHUNK_ERROR :
|
|
PNG_CHUNK_FATAL));
|
|
return;
|
|
}
|
|
|
|
/* The cast is safe because 'length' is less than 3*PNG_MAX_PALETTE_LENGTH */
|
|
num = length / 3U;
|
|
|
|
/* If the palette has 256 or fewer entries but is too large for the bit
|
|
* depth, we don't issue an error, to preserve the behavior of previous
|
|
* libpng versions. We silently truncate the unused extra palette entries
|
|
* here.
|
|
*/
|
|
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
|
|
max_palette_length = (1U << png_ptr->bit_depth);
|
|
else
|
|
max_palette_length = PNG_MAX_PALETTE_LENGTH;
|
|
|
|
if (num > max_palette_length)
|
|
num = max_palette_length;
|
|
|
|
for (i = 0; i < num; ++i)
|
|
{
|
|
png_byte buf[3];
|
|
|
|
png_crc_read(png_ptr, buf, 3);
|
|
palette[i].red = buf[0];
|
|
palette[i].green = buf[1];
|
|
palette[i].blue = buf[2];
|
|
}
|
|
|
|
png_crc_finish(png_ptr, length - num * 3U);
|
|
png_set_PLTE(png_ptr, info_ptr, palette, num);
|
|
|
|
/* Ok, make our own copy since the set succeeded: */
|
|
debug(png_ptr->palette == NULL); /* should only get set once */
|
|
png_ptr->palette = png_voidcast(png_colorp, png_malloc(png_ptr,
|
|
sizeof (png_color[PNG_MAX_PALETTE_LENGTH])));
|
|
/* This works because we know png_set_PLTE also expands the palette to the
|
|
* full size:
|
|
*/
|
|
memcpy(png_ptr->palette, info_ptr->palette,
|
|
sizeof (png_color[PNG_MAX_PALETTE_LENGTH]));
|
|
png_ptr->num_palette = info_ptr->num_palette;
|
|
|
|
/* The three chunks, bKGD, hIST and tRNS *must* appear after PLTE and before
|
|
* IDAT. Prior to 1.6.0 this was not checked; instead the code merely
|
|
* checked the apparent validity of a tRNS chunk inserted before PLTE on a
|
|
* palette PNG. 1.6.0 attempts to rigorously follow the standard and
|
|
* therefore does a benign error if the erroneous condition is detected *and*
|
|
* cancels the tRNS if the benign error returns. The alternative is to
|
|
* amend the standard since it would be rather hypocritical of the standards
|
|
* maintainers to ignore it.
|
|
*/
|
|
#ifdef PNG_READ_tRNS_SUPPORTED
|
|
if (png_ptr->num_trans > 0 ||
|
|
(info_ptr->valid & PNG_INFO_tRNS) != 0)
|
|
{
|
|
/* Cancel this because otherwise it would be used if the transforms
|
|
* require it. Don't cancel the 'valid' flag because this would prevent
|
|
* detection of duplicate chunks.
|
|
*/
|
|
png_ptr->num_trans = 0;
|
|
info_ptr->num_trans = 0;
|
|
|
|
png_chunk_benign_error(png_ptr, "tRNS must be after");
|
|
}
|
|
#endif /* READ_tRNS */
|
|
|
|
#ifdef PNG_READ_hIST_SUPPORTED
|
|
if ((info_ptr->valid & PNG_INFO_hIST) != 0)
|
|
png_chunk_benign_error(png_ptr, "hIST must be after");
|
|
#endif /* READ_hIST */
|
|
|
|
#ifdef PNG_READ_bKGD_SUPPORTED
|
|
if ((info_ptr->valid & PNG_INFO_bKGD) != 0)
|
|
png_chunk_benign_error(png_ptr, "bKGD must be after");
|
|
#endif /* READ_bKGD */
|
|
}
|
|
|
|
static void
|
|
png_handle_IEND(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_debug(1, "in png_handle_IEND");
|
|
|
|
png_crc_finish(png_ptr, png_ptr->chunk_length);
|
|
|
|
/* Treat this as benign and terminate the PNG anyway: */
|
|
if (png_ptr->chunk_length != 0)
|
|
png_chunk_benign_error(png_ptr, "invalid length");
|
|
|
|
PNG_UNUSED(info_ptr)
|
|
}
|
|
|
|
#ifdef PNG_READ_gAMA_SUPPORTED
|
|
static void
|
|
png_handle_gAMA(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_fixed_point igamma;
|
|
png_byte buf[4];
|
|
|
|
png_debug(1, "in png_handle_gAMA");
|
|
|
|
if (png_ptr->chunk_length != 4)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, buf, 4);
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
igamma = png_get_fixed_point(NULL, buf);
|
|
|
|
png_colorspace_set_gamma(png_ptr, &png_ptr->colorspace, igamma);
|
|
png_colorspace_sync(png_ptr, info_ptr);
|
|
}
|
|
#else
|
|
# define png_handle_gAMA NULL
|
|
#endif /* READ_gAMA */
|
|
|
|
#ifdef PNG_READ_sBIT_SUPPORTED
|
|
static void
|
|
png_handle_sBIT(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
unsigned int truelen, i;
|
|
png_byte sample_depth;
|
|
png_byte buf[4];
|
|
|
|
png_debug(1, "in png_handle_sBIT");
|
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sBIT))
|
|
{
|
|
png_handle_error(png_ptr, "duplicate");
|
|
return;
|
|
}
|
|
|
|
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
|
|
{
|
|
truelen = 3;
|
|
sample_depth = 8;
|
|
}
|
|
|
|
else
|
|
{
|
|
truelen = PNG_CHANNELS(*png_ptr);
|
|
sample_depth = png_ptr->bit_depth;
|
|
affirm(truelen <= 4);
|
|
}
|
|
|
|
if (png_ptr->chunk_length != truelen)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
buf[0] = buf[1] = buf[2] = buf[3] = sample_depth;
|
|
png_crc_read(png_ptr, buf, truelen);
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
for (i=0; i<truelen; ++i)
|
|
if (buf[i] == 0 || buf[i] > sample_depth)
|
|
{
|
|
png_chunk_benign_error(png_ptr, "invalid");
|
|
return;
|
|
}
|
|
|
|
if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
|
|
{
|
|
png_ptr->sig_bit.red = buf[0];
|
|
png_ptr->sig_bit.green = buf[1];
|
|
png_ptr->sig_bit.blue = buf[2];
|
|
png_ptr->sig_bit.alpha = buf[3];
|
|
}
|
|
|
|
else
|
|
{
|
|
png_ptr->sig_bit.gray = buf[0];
|
|
png_ptr->sig_bit.red = buf[0];
|
|
png_ptr->sig_bit.green = buf[0];
|
|
png_ptr->sig_bit.blue = buf[0];
|
|
png_ptr->sig_bit.alpha = buf[1];
|
|
}
|
|
|
|
png_set_sBIT(png_ptr, info_ptr, &(png_ptr->sig_bit));
|
|
}
|
|
#else
|
|
# define png_handle_sBIT NULL
|
|
#endif /* READ_sBIT */
|
|
|
|
#ifdef PNG_READ_cHRM_SUPPORTED
|
|
static void
|
|
png_handle_cHRM(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_byte buf[32];
|
|
png_xy xy;
|
|
|
|
png_debug(1, "in png_handle_cHRM");
|
|
|
|
if (png_ptr->chunk_length != 32)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, buf, 32);
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
xy.whitex = png_get_fixed_point(NULL, buf);
|
|
xy.whitey = png_get_fixed_point(NULL, buf + 4);
|
|
xy.redx = png_get_fixed_point(NULL, buf + 8);
|
|
xy.redy = png_get_fixed_point(NULL, buf + 12);
|
|
xy.greenx = png_get_fixed_point(NULL, buf + 16);
|
|
xy.greeny = png_get_fixed_point(NULL, buf + 20);
|
|
xy.bluex = png_get_fixed_point(NULL, buf + 24);
|
|
xy.bluey = png_get_fixed_point(NULL, buf + 28);
|
|
|
|
if (xy.whitex == PNG_FIXED_ERROR ||
|
|
xy.whitey == PNG_FIXED_ERROR ||
|
|
xy.redx == PNG_FIXED_ERROR ||
|
|
xy.redy == PNG_FIXED_ERROR ||
|
|
xy.greenx == PNG_FIXED_ERROR ||
|
|
xy.greeny == PNG_FIXED_ERROR ||
|
|
xy.bluex == PNG_FIXED_ERROR ||
|
|
xy.bluey == PNG_FIXED_ERROR)
|
|
{
|
|
png_chunk_benign_error(png_ptr, "invalid");
|
|
return;
|
|
}
|
|
|
|
/* If a colorspace error has already been output skip this chunk */
|
|
if (png_ptr->colorspace.flags & PNG_COLORSPACE_INVALID)
|
|
return;
|
|
|
|
if (png_ptr->colorspace.flags & PNG_COLORSPACE_FROM_cHRM)
|
|
{
|
|
png_ptr->colorspace.flags |= PNG_COLORSPACE_INVALID;
|
|
png_colorspace_sync(png_ptr, info_ptr);
|
|
png_chunk_benign_error(png_ptr, "duplicate");
|
|
return;
|
|
}
|
|
|
|
png_ptr->colorspace.flags |= PNG_COLORSPACE_FROM_cHRM;
|
|
(void)png_colorspace_set_chromaticities(png_ptr, &png_ptr->colorspace, &xy,
|
|
1/*prefer cHRM values*/);
|
|
png_colorspace_sync(png_ptr, info_ptr);
|
|
}
|
|
#else
|
|
# define png_handle_cHRM NULL
|
|
#endif /* READ_cHRM */
|
|
|
|
#ifdef PNG_READ_sRGB_SUPPORTED
|
|
static void
|
|
png_handle_sRGB(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_byte intent;
|
|
|
|
png_debug(1, "in png_handle_sRGB");
|
|
|
|
if (png_ptr->chunk_length != 1)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, &intent, 1);
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
/* If a colorspace error has already been output skip this chunk */
|
|
if (png_ptr->colorspace.flags & PNG_COLORSPACE_INVALID)
|
|
return;
|
|
|
|
/* Only one sRGB or iCCP chunk is allowed, use the HAVE_INTENT flag to detect
|
|
* this.
|
|
*/
|
|
if (png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_INTENT)
|
|
{
|
|
png_ptr->colorspace.flags |= PNG_COLORSPACE_INVALID;
|
|
png_colorspace_sync(png_ptr, info_ptr);
|
|
png_chunk_benign_error(png_ptr, "too many profiles");
|
|
return;
|
|
}
|
|
|
|
(void)png_colorspace_set_sRGB(png_ptr, &png_ptr->colorspace, intent);
|
|
png_colorspace_sync(png_ptr, info_ptr);
|
|
}
|
|
#else
|
|
# define png_handle_sRGB NULL
|
|
#endif /* READ_sRGB */
|
|
|
|
#ifdef PNG_READ_iCCP_SUPPORTED
|
|
static void
|
|
png_handle_iCCP(png_structrp png_ptr, png_inforp info_ptr)
|
|
/* Note: this does not properly handle profiles that are > 64K under DOS */
|
|
{
|
|
png_const_charp errmsg = NULL; /* error message output, or no error */
|
|
png_uint_32 length = png_ptr->chunk_length;
|
|
int finished = 0; /* crc checked */
|
|
|
|
png_debug(1, "in png_handle_iCCP");
|
|
|
|
/* Consistent with all the above colorspace handling an obviously *invalid*
|
|
* chunk is just ignored, so does not invalidate the color space. An
|
|
* alternative is to set the 'invalid' flags at the start of this routine
|
|
* and only clear them in they were not set before and all the tests pass.
|
|
* The minimum 'deflate' stream is assumed to be just the 2 byte header and
|
|
* 4 byte checksum. The keyword must be at least one character and there is
|
|
* a terminator (0) byte and the compression method.
|
|
*/
|
|
if (length < 9)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
/* If a colorspace error has already been output skip this chunk */
|
|
if ((png_ptr->colorspace.flags & PNG_COLORSPACE_INVALID) != 0)
|
|
{
|
|
png_crc_finish(png_ptr, length);
|
|
return;
|
|
}
|
|
|
|
/* Only one sRGB or iCCP chunk is allowed, use the HAVE_INTENT flag to detect
|
|
* this.
|
|
*/
|
|
if ((png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_INTENT) == 0)
|
|
{
|
|
uInt read_length, keyword_length;
|
|
char keyword[81];
|
|
|
|
/* Find the keyword; the keyword plus separator and compression method
|
|
* bytes can be at most 81 characters long.
|
|
*/
|
|
read_length = 81; /* maximum */
|
|
if (read_length > length)
|
|
read_length = (uInt)/*SAFE*/length;
|
|
|
|
png_crc_read(png_ptr, (png_bytep)keyword, read_length);
|
|
length -= read_length;
|
|
|
|
keyword_length = 0;
|
|
while (keyword_length < 80 && keyword_length < read_length &&
|
|
keyword[keyword_length] != 0)
|
|
++keyword_length;
|
|
|
|
/* TODO: make the keyword checking common */
|
|
if (keyword_length >= 1 && keyword_length <= 79)
|
|
{
|
|
/* We only understand '0' compression - deflate - so if we get a
|
|
* different value we can't safely decode the chunk.
|
|
*/
|
|
if (keyword_length+1 < read_length &&
|
|
keyword[keyword_length+1] == PNG_COMPRESSION_TYPE_BASE)
|
|
{
|
|
read_length -= keyword_length+2;
|
|
|
|
if (png_inflate_claim(png_ptr, png_iCCP) == Z_OK)
|
|
{
|
|
Byte profile_header[132];
|
|
Byte local_buffer[PNG_INFLATE_BUF_SIZE];
|
|
png_alloc_size_t size = (sizeof profile_header);
|
|
|
|
png_ptr->zstream.next_in = (Bytef*)keyword + (keyword_length+2);
|
|
png_ptr->zstream.avail_in = read_length;
|
|
(void)png_inflate_read(png_ptr, local_buffer,
|
|
(sizeof local_buffer), &length, profile_header, &size,
|
|
0/*finish: don't, because the output is too small*/);
|
|
|
|
if (size == 0)
|
|
{
|
|
/* We have the ICC profile header; do the basic header checks.
|
|
*/
|
|
const png_uint_32 profile_length =
|
|
png_get_uint_32(profile_header);
|
|
|
|
if (png_icc_check_length(png_ptr, &png_ptr->colorspace,
|
|
keyword, profile_length))
|
|
{
|
|
/* The length is apparently ok, so we can check the 132
|
|
* byte header.
|
|
*/
|
|
if (png_icc_check_header(png_ptr, &png_ptr->colorspace,
|
|
keyword, profile_length, profile_header,
|
|
(png_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0))
|
|
{
|
|
/* Now read the tag table; a variable size buffer is
|
|
* needed at this point, allocate one for the whole
|
|
* profile. The header check has already validated
|
|
* that none of these stuff will overflow.
|
|
*/
|
|
const png_uint_32 tag_count = png_get_uint_32(
|
|
profile_header+128);
|
|
png_bytep profile = png_read_buffer(png_ptr,
|
|
profile_length, 2/*silent*/);
|
|
|
|
if (profile != NULL)
|
|
{
|
|
memcpy(profile, profile_header,
|
|
(sizeof profile_header));
|
|
|
|
size = 12 * tag_count;
|
|
|
|
(void)png_inflate_read(png_ptr, local_buffer,
|
|
(sizeof local_buffer), &length,
|
|
profile + (sizeof profile_header), &size, 0);
|
|
|
|
/* Still expect a buffer error because we expect
|
|
* there to be some tag data!
|
|
*/
|
|
if (size == 0)
|
|
{
|
|
if (png_icc_check_tag_table(png_ptr,
|
|
&png_ptr->colorspace, keyword, profile_length,
|
|
profile))
|
|
{
|
|
/* The profile has been validated for basic
|
|
* security issues, so read the whole thing in.
|
|
*/
|
|
size = profile_length - (sizeof profile_header)
|
|
- 12 * tag_count;
|
|
|
|
(void)png_inflate_read(png_ptr, local_buffer,
|
|
(sizeof local_buffer), &length,
|
|
profile + (sizeof profile_header) +
|
|
12 * tag_count, &size, 1/*finish*/);
|
|
|
|
if (length > 0
|
|
# ifdef PNG_BENIGN_READ_ERRORS_SUPPORTED
|
|
&& png_ptr->benign_error_action ==
|
|
PNG_ERROR
|
|
# endif /* BENIGN_READ_ERRORS */
|
|
)
|
|
errmsg = "extra compressed data";
|
|
|
|
/* But otherwise allow extra data: */
|
|
else if (size == 0)
|
|
{
|
|
if (length > 0)
|
|
{
|
|
/* This can be handled completely, so
|
|
* keep going.
|
|
*/
|
|
png_chunk_warning(png_ptr,
|
|
"extra compressed data");
|
|
}
|
|
|
|
png_crc_finish(png_ptr, length);
|
|
finished = 1;
|
|
|
|
# if defined(PNG_sRGB_SUPPORTED) && PNG_sRGB_PROFILE_CHECKS >= 0
|
|
/* Check for a match against sRGB */
|
|
png_icc_set_sRGB(png_ptr,
|
|
&png_ptr->colorspace, profile,
|
|
png_ptr->zstream.adler);
|
|
# endif
|
|
|
|
/* Steal the profile for info_ptr. */
|
|
if (info_ptr != NULL)
|
|
{
|
|
png_free_data(png_ptr, info_ptr,
|
|
PNG_FREE_ICCP, 0);
|
|
|
|
info_ptr->iccp_name = png_voidcast(char*,
|
|
png_malloc_base(png_ptr,
|
|
keyword_length+1));
|
|
if (info_ptr->iccp_name != NULL)
|
|
{
|
|
memcpy(info_ptr->iccp_name, keyword,
|
|
keyword_length+1);
|
|
info_ptr->iccp_profile = profile;
|
|
png_ptr->read_buffer = NULL; /*steal*/
|
|
info_ptr->free_me |= PNG_FREE_ICCP;
|
|
info_ptr->valid |= PNG_INFO_iCCP;
|
|
}
|
|
|
|
else
|
|
{
|
|
png_ptr->colorspace.flags |=
|
|
PNG_COLORSPACE_INVALID;
|
|
errmsg = "out of memory";
|
|
}
|
|
}
|
|
|
|
/* else the profile remains in the read
|
|
* buffer which gets reused for subsequent
|
|
* chunks.
|
|
*/
|
|
|
|
if (info_ptr != NULL)
|
|
png_colorspace_sync(png_ptr, info_ptr);
|
|
|
|
if (errmsg == NULL)
|
|
{
|
|
png_ptr->zowner = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
else if (size > 0)
|
|
errmsg = "truncated";
|
|
}
|
|
|
|
/* else png_icc_check_tag_table output an error */
|
|
}
|
|
|
|
else /* profile truncated */
|
|
errmsg = png_ptr->zstream.msg;
|
|
}
|
|
|
|
else
|
|
errmsg = "out of memory";
|
|
}
|
|
|
|
/* else png_icc_check_header output an error */
|
|
}
|
|
|
|
/* else png_icc_check_length output an error */
|
|
}
|
|
|
|
else /* profile truncated */
|
|
errmsg = png_ptr->zstream.msg;
|
|
|
|
/* Release the stream */
|
|
png_ptr->zowner = 0;
|
|
}
|
|
|
|
else /* png_inflate_claim failed */
|
|
errmsg = png_ptr->zstream.msg;
|
|
}
|
|
|
|
else
|
|
errmsg = "bad compression method"; /* or missing */
|
|
}
|
|
|
|
else
|
|
errmsg = "bad keyword";
|
|
}
|
|
|
|
else
|
|
errmsg = "too many profiles";
|
|
|
|
/* Failure: the reason is in 'errmsg' */
|
|
if (finished == 0)
|
|
png_crc_finish(png_ptr, length);
|
|
|
|
png_ptr->colorspace.flags |= PNG_COLORSPACE_INVALID;
|
|
png_colorspace_sync(png_ptr, info_ptr);
|
|
if (errmsg != NULL) /* else already output */
|
|
png_chunk_benign_error(png_ptr, errmsg);
|
|
}
|
|
#else
|
|
# define png_handle_iCCP NULL
|
|
#endif /* READ_iCCP */
|
|
|
|
#ifdef PNG_READ_sPLT_SUPPORTED
|
|
static void
|
|
png_handle_sPLT(png_structrp png_ptr, png_inforp info_ptr)
|
|
/* Note: this does not properly handle chunks that are > 64K under DOS */
|
|
{
|
|
png_uint_32 length = png_ptr->chunk_length;
|
|
png_bytep entry_start, buffer;
|
|
png_sPLT_t new_palette;
|
|
png_sPLT_entryp pp;
|
|
png_uint_32 data_length;
|
|
int entry_size, i;
|
|
png_uint_32 skip = 0;
|
|
png_uint_32 dl;
|
|
png_size_t max_dl;
|
|
|
|
png_debug(1, "in png_handle_sPLT");
|
|
|
|
#ifdef PNG_USER_LIMITS_SUPPORTED
|
|
if (png_ptr->user_chunk_cache_max != 0)
|
|
{
|
|
if (png_ptr->user_chunk_cache_max == 1)
|
|
{
|
|
png_crc_finish(png_ptr, length);
|
|
return;
|
|
}
|
|
|
|
if (--png_ptr->user_chunk_cache_max == 1)
|
|
{
|
|
/* Warn the first time */
|
|
png_chunk_benign_error(png_ptr, "no space in chunk cache");
|
|
png_crc_finish(png_ptr, length);
|
|
return;
|
|
}
|
|
}
|
|
#endif /* USER_LIMITS */
|
|
|
|
buffer = png_read_buffer(png_ptr, length+1, 2/*silent*/);
|
|
if (buffer == NULL)
|
|
{
|
|
png_crc_finish(png_ptr, length);
|
|
png_chunk_benign_error(png_ptr, "out of memory");
|
|
return;
|
|
}
|
|
|
|
/* WARNING: this may break if size_t is less than 32 bits; it is assumed
|
|
* that the PNG_MAX_MALLOC_64K test is enabled in this case, but this is a
|
|
* potential breakage point if the types in pngconf.h aren't exactly right.
|
|
*/
|
|
png_crc_read(png_ptr, buffer, length);
|
|
|
|
if (png_crc_finish(png_ptr, skip))
|
|
return;
|
|
|
|
buffer[length] = 0;
|
|
|
|
for (entry_start = buffer; *entry_start; entry_start++)
|
|
/* Empty loop to find end of name */ ;
|
|
|
|
++entry_start;
|
|
|
|
/* A sample depth should follow the separator, and we should be on it */
|
|
if (length < 2U || entry_start > buffer + (length - 2U))
|
|
{
|
|
png_chunk_benign_error(png_ptr, "malformed");
|
|
return;
|
|
}
|
|
|
|
new_palette.depth = *entry_start++;
|
|
entry_size = (new_palette.depth == 8 ? 6 : 10);
|
|
/* This must fit in a png_uint_32 because it is derived from the original
|
|
* chunk data length.
|
|
*/
|
|
data_length = length - (png_uint_32)(entry_start - buffer);
|
|
|
|
/* Integrity-check the data length */
|
|
if (data_length % entry_size)
|
|
{
|
|
png_chunk_benign_error(png_ptr, "invalid length");
|
|
return;
|
|
}
|
|
|
|
dl = (png_int_32)(data_length / entry_size);
|
|
max_dl = PNG_SIZE_MAX / (sizeof (png_sPLT_entry));
|
|
|
|
if (dl > max_dl)
|
|
{
|
|
png_chunk_benign_error(png_ptr, "exceeds system limits");
|
|
return;
|
|
}
|
|
|
|
new_palette.nentries = (png_int_32)(data_length / entry_size);
|
|
|
|
new_palette.entries = png_voidcast(png_sPLT_entryp, png_malloc_base(
|
|
png_ptr, new_palette.nentries * (sizeof (png_sPLT_entry))));
|
|
|
|
if (new_palette.entries == NULL)
|
|
{
|
|
png_chunk_benign_error(png_ptr, "out of memory");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < new_palette.nentries; i++)
|
|
{
|
|
pp = new_palette.entries + i;
|
|
|
|
if (new_palette.depth == 8)
|
|
{
|
|
pp->red = *entry_start++;
|
|
pp->green = *entry_start++;
|
|
pp->blue = *entry_start++;
|
|
pp->alpha = *entry_start++;
|
|
}
|
|
|
|
else
|
|
{
|
|
pp->red = png_get_uint_16(entry_start); entry_start += 2;
|
|
pp->green = png_get_uint_16(entry_start); entry_start += 2;
|
|
pp->blue = png_get_uint_16(entry_start); entry_start += 2;
|
|
pp->alpha = png_get_uint_16(entry_start); entry_start += 2;
|
|
}
|
|
|
|
pp->frequency = png_get_uint_16(entry_start); entry_start += 2;
|
|
}
|
|
|
|
/* Discard all chunk data except the name and stash that */
|
|
new_palette.name = (png_charp)buffer;
|
|
|
|
png_set_sPLT(png_ptr, info_ptr, &new_palette, 1);
|
|
|
|
png_free(png_ptr, new_palette.entries);
|
|
}
|
|
#else
|
|
# define png_handle_sPLT NULL
|
|
#endif /* READ_sPLT */
|
|
|
|
#ifdef PNG_READ_tRNS_SUPPORTED
|
|
static void
|
|
png_handle_tRNS(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_uint_32 num_trans;
|
|
png_byte readbuf[PNG_MAX_PALETTE_LENGTH];
|
|
|
|
png_debug(1, "in png_handle_tRNS");
|
|
|
|
png_ptr->num_trans = 0U; /* safety */
|
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS))
|
|
{
|
|
/* libpng 1.7.0: this used to be a benign error, but it doesn't look very
|
|
* benign because it has security implications; libpng ignores the second
|
|
* tRNS, so if you can find something that ignores the first instead you
|
|
* can choose which image the user sees depending on the PNG decoder.
|
|
*/
|
|
png_crc_finish(png_ptr, png_ptr->chunk_length);
|
|
png_chunk_error(png_ptr, "duplicate");
|
|
return;
|
|
}
|
|
|
|
if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY)
|
|
{
|
|
png_byte buf[2];
|
|
|
|
if (png_ptr->chunk_length != 2)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, buf, 2);
|
|
num_trans = 1U;
|
|
png_ptr->trans_color.gray = png_get_uint_16(buf);
|
|
}
|
|
|
|
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB)
|
|
{
|
|
png_byte buf[6];
|
|
|
|
if (png_ptr->chunk_length != 6)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, buf, 6);
|
|
num_trans = 1U;
|
|
png_ptr->trans_color.red = png_get_uint_16(buf);
|
|
png_ptr->trans_color.green = png_get_uint_16(buf + 2);
|
|
png_ptr->trans_color.blue = png_get_uint_16(buf + 4);
|
|
}
|
|
|
|
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
|
|
{
|
|
/* png_find_chunk_op checks this: */
|
|
debug(png_ptr->mode & PNG_HAVE_PLTE);
|
|
|
|
num_trans = png_ptr->chunk_length;
|
|
|
|
if (num_trans > png_ptr->num_palette || num_trans == 0)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, readbuf, num_trans);
|
|
}
|
|
|
|
else
|
|
{
|
|
png_handle_error(png_ptr, "invalid");
|
|
return;
|
|
}
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
/* Set it into the info_struct: */
|
|
png_set_tRNS(png_ptr, info_ptr, readbuf, num_trans, &png_ptr->trans_color);
|
|
|
|
/* Now make a copy of the buffer if one is required (palette images). */
|
|
debug(png_ptr->trans_alpha == NULL);
|
|
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
|
|
{
|
|
png_ptr->trans_alpha = png_voidcast(png_bytep,
|
|
png_malloc(png_ptr, PNG_MAX_PALETTE_LENGTH));
|
|
memset(png_ptr->trans_alpha, 0xFFU, PNG_MAX_PALETTE_LENGTH);
|
|
memcpy(png_ptr->trans_alpha, info_ptr->trans_alpha, num_trans);
|
|
}
|
|
|
|
png_ptr->num_trans = png_check_bits(png_ptr, num_trans, 9);
|
|
}
|
|
#else
|
|
# define png_handle_tRNS NULL
|
|
#endif /* READ_tRNS */
|
|
|
|
#ifdef PNG_READ_bKGD_SUPPORTED
|
|
static void
|
|
png_handle_bKGD(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
unsigned int truelen;
|
|
png_byte buf[6];
|
|
png_color_16 background;
|
|
|
|
png_debug(1, "in png_handle_bKGD");
|
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_bKGD))
|
|
{
|
|
png_handle_error(png_ptr, "duplicate");
|
|
return;
|
|
}
|
|
|
|
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
|
|
truelen = 1;
|
|
|
|
else if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
|
|
truelen = 6;
|
|
|
|
else
|
|
truelen = 2;
|
|
|
|
if (png_ptr->chunk_length != truelen)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, buf, truelen);
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
/* We convert the index value into RGB components so that we can allow
|
|
* arbitrary RGB values for background when we have transparency, and
|
|
* so it is easy to determine the RGB values of the background color
|
|
* from the info_ptr struct.
|
|
*/
|
|
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
|
|
{
|
|
background.index = buf[0];
|
|
|
|
if (info_ptr && info_ptr->num_palette)
|
|
{
|
|
if (buf[0] >= info_ptr->num_palette)
|
|
{
|
|
png_chunk_benign_error(png_ptr, "invalid index");
|
|
return;
|
|
}
|
|
|
|
background.red = png_check_u16(png_ptr, png_ptr->palette[buf[0]].red);
|
|
background.green =
|
|
png_check_u16(png_ptr, png_ptr->palette[buf[0]].green);
|
|
background.blue =
|
|
png_check_u16(png_ptr, png_ptr->palette[buf[0]].blue);
|
|
}
|
|
|
|
else
|
|
background.red = background.green = background.blue = 0;
|
|
|
|
background.gray = 0;
|
|
}
|
|
|
|
else if (!(png_ptr->color_type & PNG_COLOR_MASK_COLOR)) /* GRAY */
|
|
{
|
|
background.index = 0;
|
|
background.red =
|
|
background.green =
|
|
background.blue =
|
|
background.gray = png_get_uint_16(buf);
|
|
}
|
|
|
|
else
|
|
{
|
|
background.index = 0;
|
|
background.red = png_get_uint_16(buf);
|
|
background.green = png_get_uint_16(buf + 2);
|
|
background.blue = png_get_uint_16(buf + 4);
|
|
background.gray = 0;
|
|
}
|
|
|
|
png_set_bKGD(png_ptr, info_ptr, &background);
|
|
}
|
|
#else
|
|
# define png_handle_bKGD NULL
|
|
#endif /* READ_bKGD */
|
|
|
|
#ifdef PNG_READ_hIST_SUPPORTED
|
|
static void
|
|
png_handle_hIST(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
unsigned int num, i;
|
|
png_uint_16 readbuf[PNG_MAX_PALETTE_LENGTH];
|
|
|
|
png_debug(1, "in png_handle_hIST");
|
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_hIST))
|
|
{
|
|
png_handle_error(png_ptr, "duplicate");
|
|
return;
|
|
}
|
|
|
|
num = png_ptr->chunk_length / 2;
|
|
|
|
if (num != png_ptr->num_palette || 2*num != png_ptr->chunk_length)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < num; i++)
|
|
{
|
|
png_byte buf[2];
|
|
|
|
png_crc_read(png_ptr, buf, 2);
|
|
readbuf[i] = png_get_uint_16(buf);
|
|
}
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
png_set_hIST(png_ptr, info_ptr, readbuf);
|
|
}
|
|
#else
|
|
# define png_handle_hIST NULL
|
|
#endif /* READ_hIST */
|
|
|
|
#ifdef PNG_READ_pHYs_SUPPORTED
|
|
static void
|
|
png_handle_pHYs(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_byte buf[9];
|
|
png_uint_32 res_x, res_y;
|
|
int unit_type;
|
|
|
|
png_debug(1, "in png_handle_pHYs");
|
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs))
|
|
{
|
|
png_handle_error(png_ptr, "duplicate");
|
|
return;
|
|
}
|
|
|
|
if (png_ptr->chunk_length != 9)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, buf, 9);
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
res_x = png_get_uint_32(buf);
|
|
res_y = png_get_uint_32(buf + 4);
|
|
unit_type = buf[8];
|
|
png_set_pHYs(png_ptr, info_ptr, res_x, res_y, unit_type);
|
|
}
|
|
#else
|
|
# define png_handle_pHYs NULL
|
|
#endif /* READ_pHYs */
|
|
|
|
#ifdef PNG_READ_oFFs_SUPPORTED /* EXTENSION, before IDAT, no duplicates */
|
|
static void
|
|
png_handle_oFFs(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_byte buf[9];
|
|
png_int_32 offset_x, offset_y;
|
|
int unit_type;
|
|
|
|
png_debug(1, "in png_handle_oFFs");
|
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_oFFs))
|
|
{
|
|
png_handle_error(png_ptr, "duplicate");
|
|
return;
|
|
}
|
|
|
|
if (png_ptr->chunk_length != 9)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, buf, 9);
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
offset_x = png_get_int_32(buf);
|
|
offset_y = png_get_int_32(buf + 4);
|
|
unit_type = buf[8];
|
|
png_set_oFFs(png_ptr, info_ptr, offset_x, offset_y, unit_type);
|
|
}
|
|
#else
|
|
# define png_handle_oFFs NULL
|
|
#endif /* READ_oFFs */
|
|
|
|
#ifdef PNG_READ_pCAL_SUPPORTED /* EXTENSION: before IDAT, no duplicates */
|
|
static void
|
|
png_handle_pCAL(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_int_32 X0, X1;
|
|
png_byte type, nparams;
|
|
png_bytep buffer, buf, units, endptr;
|
|
png_charpp params;
|
|
int i;
|
|
|
|
png_debug(1, "in png_handle_pCAL");
|
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_pCAL))
|
|
{
|
|
png_handle_error(png_ptr, "duplicate");
|
|
return;
|
|
}
|
|
|
|
png_debug1(2, "Allocating and reading pCAL chunk data (%u bytes)",
|
|
png_ptr->chunk_length + 1);
|
|
|
|
buffer = png_read_buffer(png_ptr, png_ptr->chunk_length+1, 2/*silent*/);
|
|
|
|
if (buffer == NULL)
|
|
{
|
|
png_handle_error(png_ptr, "out of memory");
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, buffer, png_ptr->chunk_length);
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
buffer[png_ptr->chunk_length] = 0; /* Null terminate the last string */
|
|
|
|
png_debug(3, "Finding end of pCAL purpose string");
|
|
for (buf = buffer; *buf; buf++)
|
|
/* Empty loop */ ;
|
|
|
|
endptr = buffer + png_ptr->chunk_length;
|
|
|
|
/* We need to have at least 12 bytes after the purpose string
|
|
* in order to get the parameter information.
|
|
*/
|
|
if (endptr - buf <= 12)
|
|
{
|
|
png_chunk_benign_error(png_ptr, "invalid");
|
|
return;
|
|
}
|
|
|
|
png_debug(3, "Reading pCAL X0, X1, type, nparams, and units");
|
|
X0 = png_get_int_32((png_bytep)buf+1);
|
|
X1 = png_get_int_32((png_bytep)buf+5);
|
|
type = buf[9];
|
|
nparams = buf[10];
|
|
units = buf + 11;
|
|
|
|
png_debug(3, "Checking pCAL equation type and number of parameters");
|
|
/* Check that we have the right number of parameters for known
|
|
* equation types.
|
|
*/
|
|
if ((type == PNG_EQUATION_LINEAR && nparams != 2) ||
|
|
(type == PNG_EQUATION_BASE_E && nparams != 3) ||
|
|
(type == PNG_EQUATION_ARBITRARY && nparams != 3) ||
|
|
(type == PNG_EQUATION_HYPERBOLIC && nparams != 4))
|
|
{
|
|
png_chunk_benign_error(png_ptr, "invalid parameter count");
|
|
return;
|
|
}
|
|
|
|
else if (type >= PNG_EQUATION_LAST)
|
|
{
|
|
png_chunk_benign_error(png_ptr, "unrecognized equation type");
|
|
return;
|
|
}
|
|
|
|
for (buf = units; *buf; buf++)
|
|
/* Empty loop to move past the units string. */ ;
|
|
|
|
png_debug(3, "Allocating pCAL parameters array");
|
|
|
|
params = png_voidcast(png_charpp, png_malloc_base(png_ptr,
|
|
nparams * (sizeof (png_charp))));
|
|
|
|
if (params == NULL)
|
|
{
|
|
png_chunk_benign_error(png_ptr, "out of memory");
|
|
return;
|
|
}
|
|
|
|
/* Get pointers to the start of each parameter string. */
|
|
for (i = 0; i < nparams; i++)
|
|
{
|
|
buf++; /* Skip the null string terminator from previous parameter. */
|
|
|
|
png_debug1(3, "Reading pCAL parameter %d", i);
|
|
|
|
for (params[i] = (png_charp)buf; buf <= endptr && *buf != 0; buf++)
|
|
/* Empty loop to move past each parameter string */ ;
|
|
|
|
/* Make sure we haven't run out of data yet */
|
|
if (buf > endptr)
|
|
{
|
|
png_free(png_ptr, params);
|
|
png_chunk_benign_error(png_ptr, "invalid data");
|
|
return;
|
|
}
|
|
}
|
|
|
|
png_set_pCAL(png_ptr, info_ptr, (png_charp)buffer, X0, X1, type, nparams,
|
|
(png_charp)units, params);
|
|
|
|
png_free(png_ptr, params);
|
|
}
|
|
#else
|
|
# define png_handle_pCAL NULL
|
|
#endif /* READ_pCAL */
|
|
|
|
#ifdef PNG_READ_sCAL_SUPPORTED
|
|
/* Read the sCAL chunk */
|
|
static void
|
|
png_handle_sCAL(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_uint_32 length = png_ptr->chunk_length;
|
|
png_bytep buffer;
|
|
png_size_t i;
|
|
int state;
|
|
|
|
png_debug(1, "in png_handle_sCAL");
|
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sCAL))
|
|
{
|
|
png_handle_error(png_ptr, "duplicate");
|
|
return;
|
|
}
|
|
|
|
/* Need unit type, width, \0, height: minimum 4 bytes */
|
|
if (length < 4)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
png_debug1(2, "Allocating and reading sCAL chunk data (%u bytes)",
|
|
length + 1);
|
|
|
|
buffer = png_read_buffer(png_ptr, length+1, 2/*silent*/);
|
|
|
|
if (buffer == NULL)
|
|
{
|
|
png_handle_error(png_ptr, "out of memory");
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, buffer, length);
|
|
buffer[length] = 0; /* Null terminate the last string */
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
/* Validate the unit. */
|
|
if (buffer[0] != 1 && buffer[0] != 2)
|
|
{
|
|
png_chunk_benign_error(png_ptr, "invalid unit");
|
|
return;
|
|
}
|
|
|
|
/* Validate the ASCII numbers, need two ASCII numbers separated by
|
|
* a '\0' and they need to fit exactly in the chunk data.
|
|
*/
|
|
i = 1;
|
|
state = 0;
|
|
|
|
if (!png_check_fp_number((png_const_charp)buffer, length, &state, &i) ||
|
|
i >= length || buffer[i++] != 0)
|
|
png_chunk_benign_error(png_ptr, "bad width format");
|
|
|
|
else if (!PNG_FP_IS_POSITIVE(state))
|
|
png_chunk_benign_error(png_ptr, "non-positive width");
|
|
|
|
else
|
|
{
|
|
png_size_t heighti = i;
|
|
|
|
state = 0;
|
|
if (!png_check_fp_number((png_const_charp)buffer, length, &state, &i) ||
|
|
i != length)
|
|
png_chunk_benign_error(png_ptr, "bad height format");
|
|
|
|
else if (!PNG_FP_IS_POSITIVE(state))
|
|
png_chunk_benign_error(png_ptr, "non-positive height");
|
|
|
|
else
|
|
/* This is the (only) success case. */
|
|
png_set_sCAL_s(png_ptr, info_ptr, buffer[0],
|
|
(png_charp)buffer+1, (png_charp)buffer+heighti);
|
|
}
|
|
}
|
|
#else
|
|
# define png_handle_sCAL NULL
|
|
#endif /* READ_sCAL */
|
|
|
|
#ifdef PNG_READ_tIME_SUPPORTED
|
|
static void
|
|
png_handle_tIME(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_byte buf[7];
|
|
png_time mod_time;
|
|
|
|
png_debug(1, "in png_handle_tIME");
|
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tIME))
|
|
{
|
|
png_handle_error(png_ptr, "duplicate");
|
|
return;
|
|
}
|
|
|
|
if (png_ptr->chunk_length != 7)
|
|
{
|
|
png_handle_bad_length(png_ptr);
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, buf, 7);
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
mod_time.second = buf[6];
|
|
mod_time.minute = buf[5];
|
|
mod_time.hour = buf[4];
|
|
mod_time.day = buf[3];
|
|
mod_time.month = buf[2];
|
|
mod_time.year = png_get_uint_16(buf);
|
|
|
|
png_set_tIME(png_ptr, info_ptr, &mod_time);
|
|
}
|
|
#else
|
|
# define png_handle_tIME NULL
|
|
#endif /* READ_tIME */
|
|
|
|
#ifdef PNG_READ_tEXt_SUPPORTED
|
|
static void
|
|
png_handle_tEXt(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_uint_32 length = png_ptr->chunk_length;
|
|
png_text text_info;
|
|
png_bytep buffer;
|
|
png_charp key;
|
|
png_charp text;
|
|
png_uint_32 skip = 0;
|
|
|
|
png_debug(1, "in png_handle_tEXt");
|
|
|
|
#ifdef PNG_USER_LIMITS_SUPPORTED
|
|
if (png_ptr->user_chunk_cache_max != 0)
|
|
{
|
|
if (png_ptr->user_chunk_cache_max == 1)
|
|
{
|
|
png_crc_finish(png_ptr, length);
|
|
return;
|
|
}
|
|
|
|
if (--png_ptr->user_chunk_cache_max == 1)
|
|
{
|
|
png_handle_error(png_ptr, "no space in chunk cache");
|
|
return;
|
|
}
|
|
}
|
|
#endif /* USER_LIMITS */
|
|
|
|
buffer = png_read_buffer(png_ptr, length+1, 1/*warn*/);
|
|
|
|
if (buffer == NULL)
|
|
{
|
|
png_handle_error(png_ptr, "out of memory");
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, buffer, length);
|
|
|
|
if (png_crc_finish(png_ptr, skip))
|
|
return;
|
|
|
|
key = (png_charp)buffer;
|
|
key[length] = 0;
|
|
|
|
for (text = key; *text; text++)
|
|
/* Empty loop to find end of key */ ;
|
|
|
|
if (text != key + length)
|
|
text++;
|
|
|
|
text_info.compression = PNG_TEXT_COMPRESSION_NONE;
|
|
text_info.key = key;
|
|
text_info.lang = NULL;
|
|
text_info.lang_key = NULL;
|
|
text_info.itxt_length = 0;
|
|
text_info.text = text;
|
|
text_info.text_length = strlen(text);
|
|
|
|
if (png_set_text_2(png_ptr, info_ptr, &text_info, 1))
|
|
png_warning(png_ptr, "Insufficient memory to process text chunk");
|
|
}
|
|
#else
|
|
# define png_handle_tEXt NULL
|
|
#endif /* READ_tEXt */
|
|
|
|
#ifdef PNG_READ_zTXt_SUPPORTED
|
|
static void
|
|
png_handle_zTXt(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_uint_32 length = png_ptr->chunk_length;
|
|
png_const_charp errmsg = NULL;
|
|
png_bytep buffer;
|
|
png_uint_32 keyword_length;
|
|
|
|
png_debug(1, "in png_handle_zTXt");
|
|
|
|
#ifdef PNG_USER_LIMITS_SUPPORTED
|
|
if (png_ptr->user_chunk_cache_max != 0)
|
|
{
|
|
if (png_ptr->user_chunk_cache_max == 1)
|
|
{
|
|
png_crc_finish(png_ptr, length);
|
|
return;
|
|
}
|
|
|
|
if (--png_ptr->user_chunk_cache_max == 1)
|
|
{
|
|
png_handle_error(png_ptr, "no space in chunk cache");
|
|
return;
|
|
}
|
|
}
|
|
#endif /* USER_LIMITS */
|
|
|
|
/* Note, "length" is sufficient here; we won't be adding
|
|
* a null terminator later.
|
|
*/
|
|
buffer = png_read_buffer(png_ptr, length, 2/*silent*/);
|
|
|
|
if (buffer == NULL)
|
|
{
|
|
png_handle_error(png_ptr, "out of memory");
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, buffer, length);
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
/* TODO: also check that the keyword contents match the spec! */
|
|
for (keyword_length = 0;
|
|
keyword_length < length && buffer[keyword_length] != 0;
|
|
++keyword_length)
|
|
/* Empty loop to find end of name */ ;
|
|
|
|
if (keyword_length > 79 || keyword_length < 1)
|
|
errmsg = "bad keyword";
|
|
|
|
/* zTXt must have some LZ data after the keyword, although it may expand to
|
|
* zero bytes; we need a '\0' at the end of the keyword, the compression type
|
|
* then the LZ data:
|
|
*/
|
|
else if (keyword_length + 3 > length)
|
|
errmsg = "truncated";
|
|
|
|
else if (buffer[keyword_length+1] != PNG_COMPRESSION_TYPE_BASE)
|
|
errmsg = "unknown compression type";
|
|
|
|
else
|
|
{
|
|
png_alloc_size_t uncompressed_length = PNG_SIZE_MAX;
|
|
|
|
/* TODO: at present png_decompress_chunk imposes a single application
|
|
* level memory limit, this should be split to different values for iCCP
|
|
* and text chunks.
|
|
*/
|
|
if (png_decompress_chunk(png_ptr, length, keyword_length+2,
|
|
&uncompressed_length, 1/*terminate*/) == Z_STREAM_END)
|
|
{
|
|
png_text text;
|
|
|
|
/* It worked; png_ptr->read_buffer now looks like a tEXt chunk except
|
|
* for the extra compression type byte and the fact that it isn't
|
|
* necessarily '\0' terminated.
|
|
*/
|
|
buffer = png_ptr->read_buffer;
|
|
buffer[uncompressed_length+(keyword_length+2)] = 0;
|
|
|
|
text.compression = PNG_TEXT_COMPRESSION_zTXt;
|
|
text.key = (png_charp)buffer;
|
|
text.text = (png_charp)(buffer + keyword_length+2);
|
|
text.text_length = uncompressed_length;
|
|
text.itxt_length = 0;
|
|
text.lang = NULL;
|
|
text.lang_key = NULL;
|
|
|
|
if (png_set_text_2(png_ptr, info_ptr, &text, 1))
|
|
errmsg = "insufficient memory";
|
|
}
|
|
|
|
else
|
|
errmsg = png_ptr->zstream.msg;
|
|
}
|
|
|
|
if (errmsg != NULL)
|
|
png_chunk_benign_error(png_ptr, errmsg);
|
|
}
|
|
#else
|
|
# define png_handle_zTXt NULL
|
|
#endif /* READ_zTXt */
|
|
|
|
#ifdef PNG_READ_iTXt_SUPPORTED
|
|
static void
|
|
png_handle_iTXt(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_uint_32 length = png_ptr->chunk_length;
|
|
png_const_charp errmsg = NULL;
|
|
png_bytep buffer;
|
|
png_uint_32 prefix_length;
|
|
|
|
png_debug(1, "in png_handle_iTXt");
|
|
|
|
#ifdef PNG_USER_LIMITS_SUPPORTED
|
|
if (png_ptr->user_chunk_cache_max != 0)
|
|
{
|
|
if (png_ptr->user_chunk_cache_max == 1)
|
|
{
|
|
png_crc_finish(png_ptr, length);
|
|
return;
|
|
}
|
|
|
|
if (--png_ptr->user_chunk_cache_max == 1)
|
|
{
|
|
png_handle_error(png_ptr, "no space in chunk cache");
|
|
return;
|
|
}
|
|
}
|
|
#endif /* USER_LIMITS */
|
|
|
|
buffer = png_read_buffer(png_ptr, length+1, 1/*warn*/);
|
|
|
|
if (buffer == NULL)
|
|
{
|
|
png_handle_error(png_ptr, "out of memory");
|
|
return;
|
|
}
|
|
|
|
png_crc_read(png_ptr, buffer, length);
|
|
|
|
if (png_crc_finish(png_ptr, 0))
|
|
return;
|
|
|
|
/* First the keyword. */
|
|
for (prefix_length=0;
|
|
prefix_length < length && buffer[prefix_length] != 0;
|
|
++prefix_length)
|
|
/* Empty loop */ ;
|
|
|
|
/* Perform a basic check on the keyword length here. */
|
|
if (prefix_length > 79 || prefix_length < 1)
|
|
errmsg = "bad keyword";
|
|
|
|
/* Expect keyword, compression flag, compression type, language, translated
|
|
* keyword (both may be empty but are 0 terminated) then the text, which may
|
|
* be empty.
|
|
*/
|
|
else if (prefix_length + 5 > length)
|
|
errmsg = "truncated";
|
|
|
|
else if (buffer[prefix_length+1] == 0 ||
|
|
(buffer[prefix_length+1] == 1 &&
|
|
buffer[prefix_length+2] == PNG_COMPRESSION_TYPE_BASE))
|
|
{
|
|
int compressed = buffer[prefix_length+1] != 0;
|
|
png_uint_32 language_offset, translated_keyword_offset;
|
|
png_alloc_size_t uncompressed_length = 0;
|
|
|
|
/* Now the language tag */
|
|
prefix_length += 3;
|
|
language_offset = prefix_length;
|
|
|
|
for (; prefix_length < length && buffer[prefix_length] != 0;
|
|
++prefix_length)
|
|
/* Empty loop */ ;
|
|
|
|
/* WARNING: the length may be invalid here, this is checked below. */
|
|
translated_keyword_offset = ++prefix_length;
|
|
|
|
for (; prefix_length < length && buffer[prefix_length] != 0;
|
|
++prefix_length)
|
|
/* Empty loop */ ;
|
|
|
|
/* prefix_length should now be at the trailing '\0' of the translated
|
|
* keyword, but it may already be over the end. None of this arithmetic
|
|
* can overflow because chunks are at most 2^31 bytes long, but on 16-bit
|
|
* systems the available allocation may overflow.
|
|
*/
|
|
++prefix_length;
|
|
|
|
if (!compressed && prefix_length <= length)
|
|
uncompressed_length = length - prefix_length;
|
|
|
|
else if (compressed && prefix_length < length)
|
|
{
|
|
uncompressed_length = PNG_SIZE_MAX;
|
|
|
|
/* TODO: at present png_decompress_chunk imposes a single application
|
|
* level memory limit, this should be split to different values for
|
|
* iCCP and text chunks.
|
|
*/
|
|
if (png_decompress_chunk(png_ptr, length, prefix_length,
|
|
&uncompressed_length, 1/*terminate*/) == Z_STREAM_END)
|
|
buffer = png_ptr->read_buffer;
|
|
|
|
else
|
|
errmsg = png_ptr->zstream.msg;
|
|
}
|
|
|
|
else
|
|
errmsg = "truncated";
|
|
|
|
if (errmsg == NULL)
|
|
{
|
|
png_text text;
|
|
|
|
buffer[uncompressed_length+prefix_length] = 0;
|
|
|
|
if (compressed == 0)
|
|
text.compression = PNG_ITXT_COMPRESSION_NONE;
|
|
|
|
else
|
|
text.compression = PNG_ITXT_COMPRESSION_zTXt;
|
|
|
|
text.key = (png_charp)buffer;
|
|
text.lang = (png_charp)buffer + language_offset;
|
|
text.lang_key = (png_charp)buffer + translated_keyword_offset;
|
|
text.text = (png_charp)buffer + prefix_length;
|
|
text.text_length = 0;
|
|
text.itxt_length = uncompressed_length;
|
|
|
|
if (png_set_text_2(png_ptr, info_ptr, &text, 1))
|
|
errmsg = "insufficient memory";
|
|
}
|
|
}
|
|
|
|
else
|
|
errmsg = "bad compression info";
|
|
|
|
if (errmsg != NULL)
|
|
png_chunk_benign_error(png_ptr, errmsg);
|
|
}
|
|
#else
|
|
# define png_handle_iTXt NULL
|
|
#endif /* READ_iTXt */
|
|
|
|
/* UNSUPPORTED CHUNKS */
|
|
#define png_handle_sTER NULL
|
|
#define png_handle_fRAc NULL
|
|
#define png_handle_gIFg NULL
|
|
#define png_handle_gIFt NULL
|
|
#define png_handle_gIFx NULL
|
|
#define png_handle_dSIG NULL
|
|
|
|
/* IDAT has special treatment below */
|
|
#define png_handle_IDAT NULL
|
|
|
|
/******************************************************************************
|
|
* UNKNOWN HANDLING LOGIC
|
|
*
|
|
* There are three ways an unknown chunk may arise:
|
|
*
|
|
* 1) Chunks not in the spec.
|
|
* 2) Chunks in the spec where libpng support doesn't exist or has been compiled
|
|
* out. These are recognized, for a very small performance benefit at the
|
|
* cost of maintaining a png_known_chunks entry for each one.
|
|
* 3) Chunks supported by libpng which have been marked as 'unknown' by the
|
|
* application.
|
|
*
|
|
* Prior to 1.7.0 all three cases are handled the same way, in 1.7.0 some
|
|
* attempt is made to optimize (2) and (3) by storing flags in
|
|
* png_struct::known_unknown for chunks in the spec which have been marked for
|
|
* unknown handling.
|
|
*
|
|
* There are three things libpng can do with an unknown chunk, in order of
|
|
* preference:
|
|
*
|
|
* 1) If PNG_READ_USER_CHUNKS_SUPPORTED call an application supplied callback
|
|
* with all the chunk data. If this doesn't handle the chunk in prior
|
|
* versions of libpng the chunk would be stored if safe otherwise skipped.
|
|
* In 1.7.0 the specified chunk unknown handling is used.
|
|
* 2) If PNG_SAVE_UNKNOWN_CHUNKS_SUPPOPRTED the chunk may be saved in the
|
|
* info_struct (if there is one.)
|
|
* 3) The chunk can be skipped.
|
|
*
|
|
* In effect libpng tries each option in turn. (2) looks at any per-chunk
|
|
* unknown handling then, if one wasn't specified, the overall default.
|
|
*
|
|
* IHDR and IEND cannot be treated as unknown. PLTE and IDAT can. Prior to
|
|
* 1.7.0 they couldn't be skipped without a png_error. 1.7.0 adds an extension
|
|
* which allows any critical chunk to be skipped so long as IDAT is skipped; the
|
|
* logic for failing on critical chunks only applies if the image data is being
|
|
* processed.
|
|
*
|
|
* The default behavior is (3); unknown chunks are simply skipped. 1.7.0 uses
|
|
* this to optimize the read code when possible.
|
|
*
|
|
* In the read code PNG_READ_UNKNOWN_CHUNKS_SUPPORTED is set only if either (1)
|
|
* or (2) or both are supported.
|
|
*
|
|
*****************************************************************************/
|
|
#ifdef PNG_SAVE_UNKNOWN_CHUNKS_SUPPORTED
|
|
static int
|
|
png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name)
|
|
{
|
|
png_byte chunk_string[5];
|
|
|
|
PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
|
|
return png_handle_as_unknown(png_ptr, chunk_string);
|
|
}
|
|
#endif /* SAVE_UNKNOWN_CHUNKS */
|
|
|
|
#ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED
|
|
/* Utility function for png_handle_unknown; set up png_ptr::unknown_chunk */
|
|
static void
|
|
png_make_unknown_chunk(png_structrp png_ptr, png_unknown_chunkp chunk,
|
|
png_bytep data)
|
|
{
|
|
chunk->data = data;
|
|
chunk->size = png_ptr->chunk_length;
|
|
PNG_CSTRING_FROM_CHUNK(chunk->name, png_ptr->chunk_name);
|
|
/* 'mode' is a flag array, only three of the bottom four bits are public: */
|
|
chunk->location =
|
|
png_ptr->mode & (PNG_HAVE_IHDR+PNG_HAVE_PLTE+PNG_AFTER_IDAT);
|
|
}
|
|
|
|
/* Handle an unknown, or known but disabled, chunk */
|
|
void /* PRIVATE */
|
|
png_handle_unknown(png_structrp png_ptr, png_inforp info_ptr,
|
|
png_bytep chunk_data)
|
|
{
|
|
png_debug(1, "in png_handle_unknown");
|
|
|
|
/* NOTE: this code is based on the code in libpng-1.4.12 except for fixing
|
|
* the bug which meant that setting a non-default behavior for a specific
|
|
* chunk would be ignored (the default was always used unless a user
|
|
* callback was installed).
|
|
*
|
|
* 'keep' is the value from the png_chunk_unknown_handling, the setting for
|
|
* this specific chunk_name, if PNG_HANDLE_AS_UNKNOWN_SUPPORTED, if not it
|
|
* will always be PNG_HANDLE_CHUNK_AS_DEFAULT and it needs to be set here.
|
|
* This is just an optimization to avoid multiple calls to the lookup
|
|
* function.
|
|
*
|
|
* One of the following methods will read the chunk or skip it (at least one
|
|
* of these is always defined because this is the only way to switch on
|
|
* PNG_READ_UNKNOWN_CHUNKS_SUPPORTED)
|
|
*/
|
|
# ifdef PNG_READ_USER_CHUNKS_SUPPORTED
|
|
/* The user callback takes precedence over the chunk handling option: */
|
|
if (png_ptr->read_user_chunk_fn != NULL)
|
|
{
|
|
png_unknown_chunk unknown_chunk;
|
|
int ret;
|
|
|
|
/* Callback to user unknown chunk handler */
|
|
png_make_unknown_chunk(png_ptr, &unknown_chunk, chunk_data);
|
|
ret = png_ptr->read_user_chunk_fn(png_ptr, &unknown_chunk);
|
|
|
|
/* ret is:
|
|
* negative: An error occurred; png_chunk_error will be called.
|
|
* zero: The chunk was not handled, the chunk will be discarded
|
|
* unless png_set_keep_unknown_chunks has been used to set
|
|
* a 'keep' behavior for this particular chunk, in which
|
|
* case that will be used. A critical chunk will cause an
|
|
* error at this point unless it is to be saved.
|
|
* positive: The chunk was handled, libpng will ignore/discard it.
|
|
*/
|
|
if (ret > 0)
|
|
return;
|
|
|
|
else if (ret < 0)
|
|
png_chunk_error(png_ptr, "application error");
|
|
|
|
/* Else: use the default handling. */
|
|
}
|
|
# endif /* READ_USER_CHUNKS */
|
|
|
|
# ifdef PNG_SAVE_UNKNOWN_CHUNKS_SUPPORTED
|
|
{
|
|
int keep = png_chunk_unknown_handling(png_ptr, png_ptr->chunk_name);
|
|
|
|
/* keep is currently just the per-chunk setting, if there was no
|
|
* setting change it to the global default now (note that this may
|
|
* still be AS_DEFAULT) then obtain the cache of the chunk if required,
|
|
* if not simply skip the chunk.
|
|
*/
|
|
if (keep == PNG_HANDLE_CHUNK_AS_DEFAULT)
|
|
keep = png_ptr->unknown_default;
|
|
|
|
if (keep == PNG_HANDLE_CHUNK_ALWAYS ||
|
|
(keep == PNG_HANDLE_CHUNK_IF_SAFE &&
|
|
PNG_CHUNK_ANCILLARY(png_ptr->chunk_name)))
|
|
# ifdef PNG_USER_LIMITS_SUPPORTED
|
|
switch (png_ptr->user_chunk_cache_max)
|
|
{
|
|
case 2:
|
|
png_ptr->user_chunk_cache_max = 1;
|
|
png_chunk_benign_error(png_ptr, "no space in chunk cache");
|
|
/* FALL THROUGH */
|
|
case 1:
|
|
/* NOTE: prior to 1.6.0 this case resulted in an unknown
|
|
* critical chunk being skipped, now there will be a hard
|
|
* error below.
|
|
*/
|
|
break;
|
|
|
|
default: /* not at limit */
|
|
--(png_ptr->user_chunk_cache_max);
|
|
/* FALL THROUGH */
|
|
case 0: /* no limit */
|
|
# endif /* USER_LIMITS */
|
|
/* Here when the limit isn't reached or when limits are
|
|
* compiled out; store the chunk.
|
|
*/
|
|
{
|
|
png_unknown_chunk unknown_chunk;
|
|
|
|
png_make_unknown_chunk(png_ptr, &unknown_chunk,
|
|
chunk_data);
|
|
png_set_unknown_chunks(png_ptr, info_ptr, &unknown_chunk,
|
|
1);
|
|
return;
|
|
}
|
|
# ifdef PNG_USER_LIMITS_SUPPORTED
|
|
}
|
|
# endif /* USER_LIMITS */
|
|
}
|
|
# else /* !SAVE_UNKNOWN_CHUNKS */
|
|
PNG_UNUSED(info_ptr)
|
|
# endif /* !SAVE_UNKNOWN_CHUNKS */
|
|
|
|
/* This is the 'skip' case, where the read callback (if any) returned 0 and
|
|
* the save code did not save the chunk.
|
|
*/
|
|
if (PNG_CHUNK_CRITICAL(png_ptr->chunk_name))
|
|
png_chunk_error(png_ptr, "unhandled critical chunk");
|
|
}
|
|
#endif /* READ_UNKNOWN_CHUNKS */
|
|
|
|
/* This function is called to verify that a chunk name is valid.
|
|
* This function can't have the "critical chunk check" incorporated
|
|
* into it, since in the future we will need to be able to call user
|
|
* functions to handle unknown critical chunks after we check that
|
|
* the chunk name itself is valid.
|
|
*/
|
|
|
|
/* Bit hacking: the test for an invalid byte in the 4 byte chunk name is:
|
|
*
|
|
* ((c) < 65 || (c) > 122 || ((c) > 90 && (c) < 97))
|
|
*/
|
|
|
|
void /* PRIVATE */
|
|
png_check_chunk_name(png_const_structrp png_ptr, const png_uint_32 chunk_name)
|
|
{
|
|
int i;
|
|
png_uint_32 cn=chunk_name;
|
|
|
|
png_debug(1, "in png_check_chunk_name");
|
|
|
|
for (i=1; i<=4; ++i)
|
|
{
|
|
int c = cn & 0xff;
|
|
|
|
if (c < 65 || c > 122 || (c > 90 && c < 97))
|
|
png_chunk_error(png_ptr, "invalid chunk type");
|
|
|
|
cn >>= 8;
|
|
}
|
|
}
|
|
void /* PRIVATE */
|
|
png_check_chunk_length(png_const_structrp png_ptr, const png_uint_32 length)
|
|
{
|
|
png_alloc_size_t limit = PNG_UINT_31_MAX;
|
|
|
|
# ifdef PNG_SET_USER_LIMITS_SUPPORTED
|
|
if (png_ptr->user_chunk_malloc_max > 0 &&
|
|
png_ptr->user_chunk_malloc_max < limit)
|
|
limit = png_ptr->user_chunk_malloc_max;
|
|
# elif PNG_USER_CHUNK_MALLOC_MAX > 0
|
|
if (PNG_USER_CHUNK_MALLOC_MAX < limit)
|
|
limit = PNG_USER_CHUNK_MALLOC_MAX;
|
|
# endif
|
|
if (png_ptr->chunk_name == png_IDAT)
|
|
{
|
|
/* color_type 0 x 2 3 4 x 6 */
|
|
int channels[]={1,0,3,1,2,0,4};
|
|
png_alloc_size_t idat_limit = PNG_UINT_31_MAX;
|
|
size_t row_factor =
|
|
(png_ptr->width * channels[png_ptr->color_type] *
|
|
(png_ptr->bit_depth > 8? 2: 1)
|
|
+ 1 + (png_ptr->interlaced? 6: 0));
|
|
if (png_ptr->height > PNG_UINT_32_MAX/row_factor)
|
|
idat_limit=PNG_UINT_31_MAX;
|
|
else
|
|
idat_limit = png_ptr->height * row_factor;
|
|
row_factor = row_factor > 32566? 32566 : row_factor;
|
|
idat_limit += 6 + 5*(idat_limit/row_factor+1); /* zlib+deflate overhead */
|
|
idat_limit=idat_limit < PNG_UINT_31_MAX? idat_limit : PNG_UINT_31_MAX;
|
|
limit = limit < idat_limit? idat_limit : limit;
|
|
}
|
|
|
|
if (length > limit)
|
|
{
|
|
png_debug2(0," length = %lu, limit = %lu",
|
|
(unsigned long)length,(unsigned long)limit);
|
|
png_chunk_error(png_ptr, "chunk data is too large");
|
|
}
|
|
}
|
|
|
|
/* This is the known chunk table; it contains an entry for each supported
|
|
* chunk.
|
|
*/
|
|
static const struct
|
|
{
|
|
void (*handle)(png_structrp png_ptr, png_infop info_ptr);
|
|
png_uint_32 name;
|
|
unsigned int before :5;
|
|
unsigned int after :5;
|
|
}
|
|
png_known_chunks[] =
|
|
/* To make the code easier to write the following defines are used, note that
|
|
* before_end should never trip - it would indicate that libpng attempted to
|
|
* read beyond the IEND chunk.
|
|
*
|
|
* 'within_IDAT' is used for IDAT chunks; PNG_AFTER_IDAT must not be set, but
|
|
* PNG_HAVE_IDAT may be set.
|
|
*/
|
|
#define before_end PNG_HAVE_IEND /* Should be impossible */
|
|
#define within_IDAT (before_end+PNG_AFTER_IDAT)
|
|
#define before_IDAT (within_IDAT+PNG_HAVE_IDAT)
|
|
#define before_PLTE (before_IDAT+PNG_HAVE_PLTE)
|
|
#define before_start (before_PLTE+PNG_HAVE_IHDR)
|
|
#define at_start 0
|
|
#define after_start PNG_HAVE_IHDR
|
|
#define after_PLTE (after_start+PNG_HAVE_PLTE) /* NOTE: PLTE optional */
|
|
#define after_IDAT (after_PLTE+PNG_AFTER_IDAT) /* NOTE: PLTE optional */
|
|
|
|
/* See pngchunk.h for how this works: */
|
|
#define PNG_CHUNK_END(n, c1, c2, c3, c4, before, after)\
|
|
{ png_handle_ ## n, png_ ##n, before, after }
|
|
#define PNG_CHUNK(n, c1, c2, c3, c4, before, after)\
|
|
PNG_CHUNK_END(n, c1, c2, c3, c4, before, after),
|
|
#define PNG_CHUNK_BEGIN(n, c1, c2, c3, c4, before, after)\
|
|
PNG_CHUNK_END(n, c1, c2, c3, c4, before, after),
|
|
{
|
|
# include "pngchunk.h"
|
|
};
|
|
#undef PNG_CHUNK_START
|
|
#undef PNG_CHUNK
|
|
#undef PNG_CHUNK_END
|
|
|
|
#define C_KNOWN ((sizeof png_known_chunks)/(sizeof png_known_chunks[0]))
|
|
|
|
/* See: scripts/chunkhash.c for code to generate this. This reads the same
|
|
* description file (pngchunk.h) as is included above. Whenever
|
|
* that file is changed chunkhash needs to be re-run to generate the lines
|
|
* following this comment.
|
|
*
|
|
* PNG_CHUNK_HASH modifes its argument and returns an index. png_chunk_index is
|
|
* a function which does the same thing without modifying the value of the
|
|
* argument. Both macro and function always return a valid index; to detect
|
|
* known chunks it is necessary to check png_known_chunks[index].name against
|
|
* the hashed name.
|
|
*/
|
|
static const png_byte png_chunk_lut[64] =
|
|
{
|
|
10, 20, 7, 3, 0, 23, 8, 0, 0, 11, 24, 0, 0, 0, 0, 4,
|
|
12, 0, 0, 0, 13, 0, 0, 0, 25, 0, 0, 0, 2, 0, 0, 0,
|
|
0, 6, 17, 0, 15, 0, 5, 19, 26, 0, 0, 0, 18, 0, 0, 9,
|
|
1, 0, 21, 0, 22, 14, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0
|
|
};
|
|
|
|
#define PNG_CHUNK_HASH(n)\
|
|
png_chunk_lut[0x3f & (((n += n >> 2),n += n >> 8),n += n >> 16)]
|
|
|
|
static png_byte
|
|
png_chunk_index(png_uint_32 name)
|
|
{
|
|
name += name >> 2;
|
|
name += name >> 8;
|
|
name += name >> 16;
|
|
return png_chunk_lut[name & 0x3f];
|
|
}
|
|
|
|
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
|
|
/* Mark a known chunk to be handled as unknown. */
|
|
void /*PRIVATE*/
|
|
png_cache_known_unknown(png_structrp png_ptr, png_const_bytep add, int keep)
|
|
/* Update the png_struct::known_unknown bit cache which stores whether each
|
|
* known chunk should be treated as unknown.
|
|
*
|
|
* This cache exists to avoid doing the search loop on every chunk while
|
|
* handling chunks. This code is only ever used if unknown handling is
|
|
* invoked, and the loop is isolated code; the function is called from
|
|
* add_one_chunk in pngset.c once for each unknown and while this is
|
|
* happening no other code is being run in this thread.
|
|
*/
|
|
{
|
|
/* The cache only stores whether or not to handle the chunk; specifically
|
|
* whether or not keep is 0.
|
|
*/
|
|
png_uint_32 name = PNG_CHUNK_FROM_STRING(add);
|
|
|
|
debug(PNG_HANDLE_CHUNK_AS_DEFAULT == 0 && C_KNOWN <= 32);
|
|
|
|
/* But do not treat IHDR or IEND as unknown. This is historical; it
|
|
* always was this way, it's not clear if PLTE can always safely be
|
|
* treated as unknown, but it is allowed.
|
|
*/
|
|
if (name != png_IHDR && name != png_IEND)
|
|
{
|
|
png_byte i = png_chunk_index(name);
|
|
|
|
if (png_known_chunks[i].name == name)
|
|
{
|
|
{
|
|
if (keep != PNG_HANDLE_CHUNK_AS_DEFAULT)
|
|
{
|
|
png_ptr->known_unknown |= 1U << i;
|
|
|
|
# ifdef PNG_SAVE_UNKNOWN_CHUNKS_SUPPORTED
|
|
if (keep == PNG_HANDLE_CHUNK_ALWAYS ||
|
|
(keep == PNG_HANDLE_CHUNK_IF_SAFE &&
|
|
PNG_CHUNK_ANCILLARY(name)))
|
|
png_ptr->save_unknown |= 1U << i;
|
|
|
|
else /* PNG_HANDLE_CHUNK_NEVER || !SAFE */
|
|
png_ptr->save_unknown &= ~(1U << i);
|
|
# endif /* SAVE_UNKNOWN_CHUNKS */
|
|
}
|
|
|
|
else
|
|
png_ptr->known_unknown &= ~(1U << i);
|
|
}
|
|
}
|
|
|
|
/* else this is not a known chunk */
|
|
}
|
|
|
|
else /* 1.7.0: inform the app writer; */
|
|
png_app_warning(png_ptr, "IHDR, IEND cannot be treated as unknown");
|
|
|
|
}
|
|
#endif /* HANDLE_AS_UNKNOWN */
|
|
|
|
/* Handle chunk position requirements in a consistent way. The chunk must
|
|
* come after 'after' and before 'before', either of which may be 0. If it
|
|
* does the function returns true, if it does not an appropriate chunk error
|
|
* is issued; benign for non-critical chunks, fatal for critical ones.
|
|
*/
|
|
static int
|
|
png_handle_position(png_const_structrp png_ptr, unsigned int chunk)
|
|
{
|
|
unsigned int before = png_known_chunks[chunk].before;
|
|
unsigned int after = png_known_chunks[chunk].after;
|
|
|
|
# ifdef PNG_ERROR_TEXT_SUPPORTED
|
|
png_const_charp error = NULL;
|
|
# endif /* ERROR_TEXT */
|
|
|
|
/* PLTE is optional with all color types except PALETTE, so for the other
|
|
* color types clear it from the 'after' bits.
|
|
*
|
|
* TODO: find some better way of recognizing the case where there is a PLTE
|
|
* and it follows after_PLTE chunks (see the complex stuff in handle_PLTE.)
|
|
*/
|
|
if (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE)
|
|
after &= PNG_BIC_MASK(PNG_HAVE_PLTE);
|
|
|
|
if ((png_ptr->mode & before) == 0 &&
|
|
(png_ptr->mode & after) == after)
|
|
return 1;
|
|
|
|
/* The error case; do before first (it is normally more important) */
|
|
# ifdef PNG_ERROR_TEXT_SUPPORTED
|
|
switch (before & -before) /* Lowest set bit */
|
|
{
|
|
case 0:
|
|
/* Check 'after'; only one bit set. */
|
|
switch (after)
|
|
{
|
|
case PNG_HAVE_IHDR:
|
|
error = "missing IHDR";
|
|
break;
|
|
|
|
case PNG_HAVE_PLTE:
|
|
error = "must occur after PLTE";
|
|
break;
|
|
|
|
case PNG_AFTER_IDAT:
|
|
error = "must come after IDAT";
|
|
break;
|
|
|
|
default:
|
|
impossible("invalid 'after' position");
|
|
}
|
|
break;
|
|
|
|
case PNG_HAVE_IHDR:
|
|
error = "must occur first";
|
|
break;
|
|
|
|
case PNG_HAVE_PLTE:
|
|
error = "must come before PLTE";
|
|
break;
|
|
|
|
case PNG_HAVE_IDAT:
|
|
error = "must come before IDAT";
|
|
break;
|
|
|
|
default:
|
|
impossible("invalid 'before' position");
|
|
}
|
|
# endif /* ERROR_TEXT */
|
|
|
|
png_chunk_report(png_ptr, error, PNG_CHUNK_CRITICAL(png_ptr->chunk_name) ?
|
|
PNG_CHUNK_FATAL : PNG_CHUNK_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
/* This is the shared chunk handling function, used for both the sequential and
|
|
* progressive reader.
|
|
*/
|
|
png_chunk_op /* PRIVATE */
|
|
png_find_chunk_op(png_structrp png_ptr)
|
|
{
|
|
/* Given a chunk in png_struct::{chunk_name,chunk_length} validate the name
|
|
* and work out how it should be handled. This function checks the chunk
|
|
* location using png_struct::mode and will set the PNG_AFTER_IDAT bit if
|
|
* appropriate but otherwise makes no changes to the stream read state.
|
|
*
|
|
* png_chunk_skip Skip this chunk
|
|
* png_chunk_unknown This is an unknown chunk which can't be skipped;
|
|
* the unknown handler must be called with all the
|
|
* chunk data.
|
|
* png_chunk_process_all The caller must call png_chunk_handle to handle
|
|
* the chunk, when this call is made all the chunk
|
|
* data must be available to the handler.
|
|
* png_chunk_process_part The handler expects data in png_struct::zstream.
|
|
* {next,avail}_in and does not require all of the
|
|
* data at once (as png_read_process_IDAT).
|
|
*/
|
|
png_uint_32 chunk_name = png_ptr->chunk_name;
|
|
unsigned int mode = png_ptr->mode;
|
|
unsigned int index;
|
|
|
|
/* This function should never be called if IEND has been set:
|
|
*/
|
|
debug((mode & PNG_HAVE_IEND) == 0);
|
|
|
|
/* IDAT logic: we are only *after* IDAT when we start reading the first
|
|
* following (non-IDAT) chunk, this may already have been set in the IDAT
|
|
* handling code, but if IDAT is handled as unknown this doesn't happen.
|
|
*/
|
|
if (chunk_name != png_IDAT && (mode & PNG_HAVE_IDAT) != 0)
|
|
mode = png_ptr->mode |= PNG_AFTER_IDAT;
|
|
|
|
index = png_chunk_index(chunk_name);
|
|
|
|
if (png_known_chunks[index].name == chunk_name)
|
|
{
|
|
/* Known chunks have a position requirement; check it, badly positioned
|
|
* chunks that do not error out in png_handle_position are simply skipped.
|
|
*
|
|
* API CHANGE: libpng 1.7.0: prior versions of libpng did not check
|
|
* ordering requirements for known chunks where the support for reading
|
|
* them had been configured out of libpng. This seems dangerous; the
|
|
* user chunk callback could still see them and crash as a result.
|
|
*/
|
|
if (!png_handle_position(png_ptr, index))
|
|
return png_chunk_skip;
|
|
|
|
/* Do the mode update.
|
|
*
|
|
* API CHANGE 1.7.0: the 'HAVE' flags are now consistently set *before*
|
|
* the chunk is handled. Previously only IDAT was handled this way. This
|
|
* can only affect an app that was previously handling PLTE itself in a
|
|
* callback, however this seems to be impossible.
|
|
*/
|
|
switch (chunk_name)
|
|
{
|
|
case png_IHDR: png_ptr->mode |= PNG_HAVE_IHDR; break;
|
|
case png_PLTE: png_ptr->mode |= PNG_HAVE_PLTE; break;
|
|
case png_IDAT: png_ptr->mode |= PNG_HAVE_IDAT; break;
|
|
case png_IEND: png_ptr->mode |= PNG_HAVE_IEND; break;
|
|
default: break;
|
|
}
|
|
|
|
# ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
|
|
/* A known chunk may still be treated as unknown. Check for that. */
|
|
if (!((png_ptr->known_unknown >> index) & 1U))
|
|
# endif /* HANDLE_AS_UNKNOWN */
|
|
{
|
|
/* This is a known chunk that is not being treated as unknown. If
|
|
* it is IDAT then partial processing is done, otherwise (at present)
|
|
* the whole thing is processed in one shot
|
|
*
|
|
* TODO: this is a feature of the legacy use of the sequential read
|
|
* code in the handlers, fix this.
|
|
*/
|
|
if (chunk_name == png_IDAT)
|
|
return png_chunk_process_part;
|
|
|
|
/* Check for a known chunk where support has been compiled out of
|
|
* libpng. We know it cannot be a critical chunk; support for those
|
|
* cannot be removed.
|
|
*/
|
|
if (png_known_chunks[index].handle != NULL)
|
|
return png_chunk_process_all;
|
|
|
|
# ifdef PNG_READ_USER_CHUNKS_SUPPORTED
|
|
if (png_ptr->read_user_chunk_fn != NULL)
|
|
return png_chunk_unknown;
|
|
# endif /* READ_USER_CHUNKS */
|
|
|
|
# ifdef PNG_SAVE_UNKNOWN_CHUNKS_SUPPORTED
|
|
/* There is no per-chunk special handling set for this chunk
|
|
* (because of the test on known_unknown above) so only the
|
|
* default unknown handling behavior matters. We skip the chunk
|
|
* if the behavior is 'NEVER' or 'DEFAULT'. This is irrelevant
|
|
* if SAVE_UNKNOWN_CHUNKS is not supported.
|
|
*/
|
|
if (png_ptr->unknown_default > PNG_HANDLE_CHUNK_NEVER)
|
|
return png_chunk_unknown;
|
|
# endif /* SAVE_UNKNOWN_CHUNKS */
|
|
|
|
return png_chunk_skip;
|
|
}
|
|
|
|
# ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
|
|
else
|
|
{
|
|
/* Else this is a known chunk that is being treated as unknown. If
|
|
* there is a user callback the whole shebang is required:
|
|
*/
|
|
# ifdef PNG_READ_USER_CHUNKS_SUPPORTED
|
|
if (png_ptr->read_user_chunk_fn != NULL)
|
|
return png_chunk_unknown;
|
|
# endif /* READ_USER_CHUNKS */
|
|
|
|
/* No user callback, there is a possibility that we can skip this
|
|
* chunk:
|
|
*/
|
|
# ifdef PNG_SAVE_UNKNOWN_CHUNKS_SUPPORTED
|
|
if ((png_ptr->save_unknown >> index) & 1U)
|
|
return png_chunk_unknown;
|
|
# endif /* SAVE_UNKNOWN_CHUNKS */
|
|
|
|
/* If this is a critical chunk and IDAT is not being skipped then
|
|
* this is an error. The only possibility here is PLTE on an
|
|
* image which is palette mapped. If the app ignores this error
|
|
* then there will be a more definate one in png_handle_unknown.
|
|
*/
|
|
if (chunk_name == png_PLTE &&
|
|
png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
|
|
png_app_error(png_ptr, "skipping PLTE on palette image");
|
|
|
|
return png_chunk_skip;
|
|
}
|
|
# endif /* HANDLE_AS_UNKNOWN */
|
|
}
|
|
|
|
else /* unknown chunk */
|
|
{
|
|
/* The code above implicitly validates the chunk name, however if a chunk
|
|
* name/type is not recognized it is necessary to validate it to ensure
|
|
* that the PNG stream isn't hopelessly damaged:
|
|
*/
|
|
png_check_chunk_name(png_ptr, chunk_name);
|
|
|
|
# ifdef PNG_READ_USER_CHUNKS_SUPPORTED
|
|
if (png_ptr->read_user_chunk_fn != NULL)
|
|
return png_chunk_unknown;
|
|
# endif /* READ_USER_CHUNKS */
|
|
|
|
# ifdef PNG_SAVE_UNKNOWN_CHUNKS_SUPPORTED
|
|
/* There may be per-chunk handling, otherwise the default is used, this
|
|
* is the one place where the list needs to be searched:
|
|
*/
|
|
{
|
|
int keep = png_chunk_unknown_handling(png_ptr, chunk_name);
|
|
|
|
if (keep == PNG_HANDLE_CHUNK_AS_DEFAULT)
|
|
keep = png_ptr->unknown_default;
|
|
|
|
if (keep == PNG_HANDLE_CHUNK_ALWAYS ||
|
|
(keep == PNG_HANDLE_CHUNK_IF_SAFE &&
|
|
PNG_CHUNK_ANCILLARY(chunk_name)))
|
|
return png_chunk_unknown;
|
|
}
|
|
# endif /* SAVE_UNKNOWN_CHUNKS */
|
|
|
|
/* The chunk will be skipped so it must not be a critical chunk, unless
|
|
* IDATs are being skipped too.
|
|
*/
|
|
if (PNG_CHUNK_CRITICAL(chunk_name)
|
|
# ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
|
|
&& !png_IDATs_skipped(png_ptr)
|
|
# endif /* HANDLE_AS_UNKNOWN */
|
|
)
|
|
png_chunk_error(png_ptr, "unhandled critical chunk");
|
|
|
|
return png_chunk_skip;
|
|
}
|
|
}
|
|
|
|
void /* PRIVATE */
|
|
png_handle_chunk(png_structrp png_ptr, png_inforp info_ptr)
|
|
/* The chunk to handle is in png_struct::chunk_name,chunk_length.
|
|
*
|
|
* NOTE: at present it is only valid to call this after png_find_chunk_op
|
|
* has returned png_chunk_process_all and all the data is available for
|
|
* png_handle_chunk (via the libpng read callback.)
|
|
*/
|
|
{
|
|
png_uint_32 chunk_name = png_ptr->chunk_name;
|
|
unsigned int index = png_chunk_index(chunk_name);
|
|
|
|
/* So this must be true: */
|
|
affirm(png_known_chunks[index].name == chunk_name &&
|
|
png_known_chunks[index].handle != NULL);
|
|
|
|
png_known_chunks[index].handle(png_ptr, info_ptr);
|
|
}
|
|
|
|
static void
|
|
copy_row(png_const_structrp png_ptr, png_bytep dp, png_const_bytep sp,
|
|
png_uint_32 x/*in INPUT*/, png_uint_32 width/*of INPUT*/, int clear)
|
|
/* Copy the row in row_buffer; this is the 'simple' case of combine_row
|
|
* where no adjustment to the pixel spacing is required.
|
|
*/
|
|
{
|
|
png_copy_row(png_ptr, dp, sp, x, width,
|
|
# ifdef PNG_TRANSFORM_MECH_SUPPORTED
|
|
png_ptr->row_bit_depth * PNG_FORMAT_CHANNELS(png_ptr->row_format),
|
|
# else
|
|
PNG_PIXEL_DEPTH(*png_ptr),
|
|
# endif
|
|
clear/*clear partial byte at end of row*/, 1/*sp -> dp[x]*/);
|
|
}
|
|
|
|
#ifdef PNG_READ_INTERLACING_SUPPORTED
|
|
static void
|
|
combine_row(png_const_structrp png_ptr, png_bytep dp, png_const_bytep sp,
|
|
png_uint_32 x/*in INPUT*/, png_uint_32 width/*of INPUT*/, int display)
|
|
/* 1.7.0: API CHANGE: prior to 1.7.0 read de-interlace was done in two steps,
|
|
* the first would expand a narrow pass by replicating pixels according to
|
|
* the inter-pixel spacing of the pixels from the pass in the image. It did
|
|
* not take account of any offset from the start of the image row of the
|
|
* first pixel. The second step happened in png_combine_row where the result
|
|
* was merged into the output rows.
|
|
*
|
|
* In 1.7.0 this is no longer done. Instead all the work happens here. This
|
|
* is only an API change for the progressive reader if the app didn't call
|
|
* png_combine_row, but rather expected an expanded row. It's not obvious
|
|
* why any user of the progressive reader would want this, particularly given
|
|
* the weird non-offseting of the start in the original
|
|
* 'png_do_read_interlace'; the behavior was completely undocumented.
|
|
*
|
|
* In 1.7.0 combine_row does all the work. It expects a raw uncompressed,
|
|
* de-filtered, transformed row and it either copies it if:
|
|
*
|
|
* 1) It is not interlaced.
|
|
* 2) libpng isn't handling the de-interlace.
|
|
* 3) This is pass 7 (i.e. '6' using the libpng 0-based numbering).
|
|
*
|
|
* The input data comes from png_struct and sp:
|
|
*
|
|
* sp[width(pixels)]; the row data from input[x(pixels)...]
|
|
* png_struct::pass; the pass
|
|
* png_struct::row_number; the row number in the *image*
|
|
* png_struct::row_bit_depth,
|
|
* png_struct::row_format; the pixel format, if TRANSFORM_MECH, else:
|
|
* png_struct::bit_depth,
|
|
* png_struct::color_type; the pixel format otherwise
|
|
*
|
|
* The destination pointer (but not size) and how to handle intermediate
|
|
* passes are arguments to the API. The destination is the pointer to the
|
|
* entire row buffer, not just the part from output[x] on. 'display' is
|
|
* interpreted as:
|
|
*
|
|
* 0: only overwrite destination pixels that will correspond to the source
|
|
* pixel in the final image. 'sparkle' mode.
|
|
* 1: overwrite the corresponding destination pixel and all following
|
|
* pixels (horizontally and, eventually, vertically) that will come
|
|
* from *later* passes. 'block' mode.
|
|
*/
|
|
{
|
|
const unsigned int pass = png_ptr->pass;
|
|
|
|
png_debug(1, "in png_combine_row");
|
|
|
|
/* Factor out the copy case first, the 'display' argument is irrelevant in
|
|
* these cases:
|
|
*/
|
|
if (!png_ptr->do_interlace || png_ptr->pass == 6)
|
|
{
|
|
copy_row(png_ptr, dp, sp, x, width, 0/*do not clear*/);
|
|
return;
|
|
}
|
|
|
|
else /* not a simple copy */
|
|
{
|
|
const unsigned int pixel_depth =
|
|
# ifdef PNG_TRANSFORM_MECH_SUPPORTED
|
|
png_ptr->row_bit_depth * PNG_IMAGE_PIXEL_CHANNELS(png_ptr->row_format);
|
|
# else
|
|
PNG_PIXEL_DEPTH(*png_ptr);
|
|
# endif
|
|
png_uint_32 row_width = png_ptr->width; /* output width */
|
|
/* The first source pixel is written to PNG_COL_FROM_PASS of the
|
|
* destination:
|
|
*/
|
|
png_uint_32 dx = PNG_COL_FROM_PASS_COL(x, pass);
|
|
/* The corresponding offset within the 8x8 block: */
|
|
const unsigned int dstart = dx & 0x7U;
|
|
/* Find the first pixel written in any 8x8 block IN THIS PASS: */
|
|
const unsigned int pass_start = PNG_PASS_START_COL(pass);
|
|
/* Subsequent pixels are written PNG_PASS_COL_OFFSET further on: */
|
|
const unsigned int doffset = PNG_PASS_COL_OFFSET(pass);
|
|
/* In 'block' mode when PNG_PASS_START_COL(pass) is 0 (PNG passes 1,3,5,7)
|
|
* the same pixel is replicated doffset times, when PNG_PASS_START_COL is
|
|
* non-zero (PNG passes 2,4,6) it is replicated PNG_PASS_START_COL times.
|
|
* For 'sparkle' mode only one copy of the pixel is written:
|
|
*/
|
|
unsigned int drep = display ? (pass_start ? pass_start : doffset) : 1;
|
|
|
|
/* Standard check for byte alignment */
|
|
debug(((x * pixel_depth/*OVERFLOW OK*/) & 0x7U) == 0U);
|
|
|
|
/* The caller should have excluded the narrow cases: */
|
|
affirm(row_width > dx);
|
|
row_width -= dx;
|
|
/* Advance dp to the start of the 8x8 block containing the first pixel to
|
|
* write, adjust dx to be an offset within the block:
|
|
*/
|
|
dp += png_calc_rowbytes(png_ptr, pixel_depth, dx & ~0x7U);
|
|
dx &= 0x7U;
|
|
|
|
/* So each source pixel sp[i] is written to:
|
|
*
|
|
* dp[dstart + i*doffset]..dp[dstart + i*doffset + (drep-1)]
|
|
*
|
|
* Until we get to row_width. This is easy for pixels that are 8 or more
|
|
* bits deep; whole bytes are read and written, slightly more difficult
|
|
* when pixel_depth * drep is at least 8 bits, because then dstart *
|
|
* pixel_depth will always be a whole byte and most complex when source
|
|
* and destination require sub-byte addressing.
|
|
*
|
|
* Cherry pick the easy cases:
|
|
*/
|
|
if (pixel_depth > 8U)
|
|
{
|
|
/* Convert to bytes: */
|
|
const unsigned int pixel_bytes = pixel_depth >> 3;
|
|
|
|
dp += dstart * pixel_bytes;
|
|
|
|
for (;;)
|
|
{
|
|
unsigned int c;
|
|
|
|
if (drep > row_width)
|
|
drep = row_width;
|
|
|
|
for (c=0U; c<drep; ++c)
|
|
memcpy(dp, sp, pixel_bytes), dp += pixel_bytes;
|
|
|
|
if (doffset >= row_width)
|
|
break;
|
|
|
|
row_width -= doffset;
|
|
dp += (doffset-drep) * pixel_bytes;
|
|
sp += pixel_bytes;
|
|
}
|
|
}
|
|
|
|
else if (pixel_depth == 8U)
|
|
{
|
|
/* Optimize the common 1-byte per pixel case (typical case for palette
|
|
* mapped images):
|
|
*/
|
|
dp += dstart;
|
|
|
|
for (;;)
|
|
{
|
|
if (drep > row_width)
|
|
drep = row_width;
|
|
|
|
memset(dp, *sp++, drep);
|
|
|
|
if (doffset >= row_width)
|
|
break;
|
|
|
|
row_width -= doffset;
|
|
dp += doffset;
|
|
}
|
|
}
|
|
|
|
else /* pixel_depth < 8 */
|
|
{
|
|
/* Pixels are 1, 2 or 4 bits in size. */
|
|
unsigned int spixel = *sp++;
|
|
unsigned int dbrep = pixel_depth * drep;
|
|
unsigned int spos = 0U;
|
|
# ifdef PNG_READ_PACKSWAP_SUPPORTED
|
|
const int lsb =
|
|
(png_ptr->row_format & PNG_FORMAT_FLAG_SWAPPED) != 0;
|
|
# endif /* READ_PACKSWAP */
|
|
|
|
if (dbrep >= 8U)
|
|
{
|
|
/* brep must be greater than 1, the destination does not require
|
|
* sub-byte addressing except, maybe, at the end.
|
|
*
|
|
* db is the count of bytes required to replicate the source pixel
|
|
* drep times.
|
|
*/
|
|
debug((dbrep & 7U) == 0U);
|
|
dbrep >>= 3;
|
|
debug((dstart * pixel_depth & 7U) == 0U);
|
|
dp += (dstart * pixel_depth) >> 3;
|
|
|
|
for (;;)
|
|
{
|
|
/* Fill a byte with copies of the next pixel: */
|
|
unsigned int spixel_rep = spixel;
|
|
|
|
# ifdef PNG_READ_PACKSWAP_SUPPORTED
|
|
if (lsb)
|
|
spixel_rep >>= spos;
|
|
else
|
|
# endif /* READ_PACKSWAP */
|
|
spixel_rep >>= (8U-pixel_depth)-spos;
|
|
|
|
switch (pixel_depth)
|
|
{
|
|
case 1U: spixel_rep &= 1U; spixel_rep |= spixel_rep << 1;
|
|
/*FALL THROUGH*/
|
|
case 2U: spixel_rep &= 3U; spixel_rep |= spixel_rep << 2;
|
|
/*FALL THROUGH*/
|
|
case 4U: spixel_rep &= 15U; spixel_rep |= spixel_rep << 4;
|
|
/*FALL THROUGH*/
|
|
default: break;
|
|
}
|
|
|
|
/* This may leave some pixels unwritten when there is a partial
|
|
* byte write required at the end:
|
|
*/
|
|
if (drep > row_width)
|
|
drep = row_width, dbrep = (pixel_depth * drep) >> 3;
|
|
|
|
memset(dp, spixel_rep, dbrep);
|
|
|
|
if (doffset >= row_width)
|
|
{
|
|
/* End condition; were all 'drep' pixels written at the end?
|
|
*/
|
|
drep = (pixel_depth * drep - (dbrep << 3));
|
|
|
|
if (drep)
|
|
{
|
|
unsigned int mask;
|
|
|
|
debug(drep < 8U);
|
|
dp += dbrep;
|
|
|
|
/* Set 'mask' to have 0's where *dp must be overwritten
|
|
* with spixel_rep:
|
|
*/
|
|
# ifdef PNG_READ_PACKSWAP_SUPPORTED
|
|
if (lsb)
|
|
mask = 0xff << drep;
|
|
else
|
|
# endif /* READ_PACKSWAP */
|
|
mask = 0xff >> drep;
|
|
|
|
*dp = PNG_BYTE((*dp & mask) | (spixel_rep & ~mask));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
row_width -= doffset;
|
|
dp += (doffset * pixel_depth) >> 3;
|
|
spos += pixel_depth;
|
|
if (spos == 8U)
|
|
spixel = *sp++, spos = 0U;
|
|
} /* for (;;) */
|
|
} /* pixel_depth * drep >= 8 */
|
|
|
|
else /* pixel_depth * drep < 8 */
|
|
{
|
|
/* brep may be 1, pixel_depth may be 1, 2 or 4, dbrep is the number
|
|
* of bits to set.
|
|
*/
|
|
unsigned int bstart = dstart * pixel_depth; /* in bits */
|
|
unsigned int dpixel;
|
|
|
|
dp += bstart >> 3;
|
|
bstart &= 7U;
|
|
dpixel = *dp;
|
|
|
|
/* dpixel: current *dp, being modified
|
|
* bstart: bit offset within dpixel
|
|
* drep: pixel size to write (used as a check against row_width)
|
|
* doffset: pixel step to next written destination
|
|
*
|
|
* spixel: current *sp, being read, and:
|
|
* spixel_rep: current pixel, replicated to fill a byte
|
|
* spos: bit offset within spixel
|
|
*
|
|
* Set dbrep to a mask for the bits to set:
|
|
*/
|
|
dbrep = (1U<<dbrep)-1U;
|
|
for (;;)
|
|
{
|
|
/* Fill a byte with copies of the next pixel: */
|
|
unsigned int spixel_rep = spixel;
|
|
|
|
# ifdef PNG_READ_PACKSWAP_SUPPORTED
|
|
if (lsb)
|
|
spixel_rep >>= spos;
|
|
else
|
|
# endif /* READ_PACKSWAP */
|
|
spixel_rep >>= (8U-pixel_depth)-spos;
|
|
|
|
switch (pixel_depth)
|
|
{
|
|
case 1U: spixel_rep &= 1U; spixel_rep |= spixel_rep << 1;
|
|
/*FALL THROUGH*/
|
|
case 2U: spixel_rep &= 3U; spixel_rep |= spixel_rep << 2;
|
|
/*FALL THROUGH*/
|
|
case 4U: spixel_rep &= 15U; spixel_rep |= spixel_rep << 4;
|
|
/*FALL THROUGH*/
|
|
default: break;
|
|
}
|
|
|
|
/* This may leave some pixels unwritten when there is a partial
|
|
* byte write required at the end:
|
|
*/
|
|
if (drep > row_width)
|
|
drep = row_width, dbrep = (1U<<(pixel_depth*drep))-1U;
|
|
|
|
{
|
|
unsigned int mask;
|
|
|
|
/* Mask dbrep bits at bstart: */
|
|
# ifdef PNG_READ_PACKSWAP_SUPPORTED
|
|
if (lsb)
|
|
mask = bstart;
|
|
else
|
|
# endif /* READ_PACKSWAP */
|
|
mask = (8U-pixel_depth)-bstart;
|
|
mask = dbrep << mask;
|
|
|
|
dpixel &= ~mask;
|
|
dpixel |= spixel_rep & mask;
|
|
}
|
|
|
|
if (doffset >= row_width)
|
|
{
|
|
*dp = PNG_BYTE(dpixel);
|
|
break;
|
|
}
|
|
|
|
row_width -= doffset;
|
|
bstart += doffset * pixel_depth;
|
|
|
|
if (bstart >= 8U)
|
|
{
|
|
*dp = PNG_BYTE(dpixel);
|
|
dp += bstart >> 3;
|
|
bstart &= 7U;
|
|
dpixel = *dp;
|
|
}
|
|
|
|
spos += pixel_depth;
|
|
if (spos == 8U)
|
|
spixel = *sp++, spos = 0U;
|
|
} /* for (;;) */
|
|
} /* pixel_depth * drep < 8 */
|
|
} /* pixel_depth < 8 */
|
|
} /* not a simple copy */
|
|
}
|
|
|
|
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
|
|
void PNGAPI
|
|
png_progressive_combine_row(png_const_structrp png_ptr, png_bytep old_row,
|
|
png_const_bytep new_row)
|
|
{
|
|
/* new_row is a flag here - if it is NULL then the app callback was called
|
|
* from an empty row (see the calls to png_struct::row_fn above), otherwise
|
|
* it must be png_struct::transformed_row
|
|
*/
|
|
if (png_ptr != NULL && new_row != NULL)
|
|
{
|
|
if (new_row != png_ptr->row_buffer
|
|
# ifdef PNG_TRANSFORM_MECH_SUPPORTED
|
|
&& new_row != png_ptr->transformed_row
|
|
# endif /* TRANSFORM_MECH */
|
|
)
|
|
png_app_error(png_ptr, "invalid call to png_progressive_combine_row");
|
|
else
|
|
{
|
|
png_uint_32 width = png_ptr->width;
|
|
|
|
if (png_ptr->interlaced == PNG_INTERLACE_ADAM7)
|
|
{
|
|
const unsigned int pass = png_ptr->pass;
|
|
width = PNG_PASS_COLS(width, pass);
|
|
}
|
|
|
|
combine_row(png_ptr, old_row, new_row, 0U, width, 1/*blocky display*/);
|
|
}
|
|
}
|
|
}
|
|
#endif /* PROGRESSIVE_READ */
|
|
#else /* !READ_INTERLACING */
|
|
/* No read deinterlace support, so 'combine' always reduces to 'copy', there
|
|
* is no 'display' argument:
|
|
*/
|
|
# define combine_row(pp, dp, sp, x, w, display)\
|
|
copy_row(pp, dp, sp, x, w, 0/*!clear*/)
|
|
#endif /* !READ_INTERLACING */
|
|
|
|
static void
|
|
png_read_filter_row_sub(png_alloc_size_t row_bytes, unsigned int bpp,
|
|
png_bytep row, png_const_bytep prev_row, png_const_bytep prev_pixels)
|
|
{
|
|
while (row_bytes >= bpp)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i=0; i<bpp; ++i)
|
|
row[i] = PNG_BYTE(row[i] + prev_pixels[i]);
|
|
|
|
prev_pixels = row;
|
|
row += bpp;
|
|
row_bytes -= bpp;
|
|
}
|
|
|
|
PNG_UNUSED(prev_row)
|
|
}
|
|
|
|
static void
|
|
png_read_filter_row_up(png_alloc_size_t row_bytes, unsigned int bpp,
|
|
png_bytep row, png_const_bytep prev_row, png_const_bytep prev_pixels)
|
|
{
|
|
while (row_bytes > 0)
|
|
{
|
|
*row = PNG_BYTE(*row + *prev_row);
|
|
++row;
|
|
++prev_row;
|
|
--row_bytes;
|
|
}
|
|
|
|
PNG_UNUSED(bpp)
|
|
PNG_UNUSED(prev_pixels)
|
|
}
|
|
|
|
static void
|
|
png_read_filter_row_avg(png_alloc_size_t row_bytes, unsigned int bpp,
|
|
png_bytep row, png_const_bytep prev_row, png_const_bytep prev_pixels)
|
|
{
|
|
while (row_bytes >= bpp)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i=0; i<bpp; ++i)
|
|
row[i] = PNG_BYTE(row[i] + (prev_pixels[i] + prev_row[i])/2U);
|
|
|
|
prev_pixels = row;
|
|
row += bpp;
|
|
prev_row += bpp;
|
|
row_bytes -= bpp;
|
|
}
|
|
}
|
|
|
|
static void
|
|
png_read_filter_row_paeth_1byte_pixel(png_alloc_size_t row_bytes,
|
|
unsigned int bpp, png_bytep row, png_const_bytep prev_row,
|
|
png_const_bytep prev_pixels)
|
|
{
|
|
png_const_bytep rp_end = row + row_bytes;
|
|
png_byte a, c;
|
|
|
|
/* prev_pixels stores pixel a then c */
|
|
a = prev_pixels[0];
|
|
c = prev_pixels[1];
|
|
|
|
while (row < rp_end)
|
|
{
|
|
png_byte b;
|
|
int pa, pb, pc, p;
|
|
|
|
b = *prev_row++;
|
|
|
|
p = b - c;
|
|
pc = a - c;
|
|
|
|
# ifdef PNG_USE_ABS
|
|
pa = abs(p);
|
|
pb = abs(pc);
|
|
pc = abs(p + pc);
|
|
# else
|
|
pa = p < 0 ? -p : p;
|
|
pb = pc < 0 ? -pc : pc;
|
|
pc = (p + pc) < 0 ? -(p + pc) : p + pc;
|
|
# endif
|
|
|
|
/* Find the best predictor, the least of pa, pb, pc favoring the earlier
|
|
* ones in the case of a tie.
|
|
*/
|
|
if (pb < pa)
|
|
{
|
|
pa = pb; a = b;
|
|
}
|
|
if (pc < pa) a = c;
|
|
|
|
/* Calculate the current pixel in a, and move the previous row pixel to c
|
|
* for the next time round the loop
|
|
*/
|
|
c = b;
|
|
a = 0xFFU & (a + *row);
|
|
*row++ = a;
|
|
}
|
|
|
|
PNG_UNUSED(bpp)
|
|
}
|
|
|
|
static void
|
|
png_read_filter_row_paeth_multibyte_pixel(png_alloc_size_t row_bytes,
|
|
unsigned int bpp, png_bytep row, png_const_bytep prev_row,
|
|
png_const_bytep prev_pixels)
|
|
{
|
|
png_bytep rp_end = row + bpp;
|
|
|
|
/* 'a' and 'c' for the first pixel come from prev_pixels: */
|
|
while (row < rp_end)
|
|
{
|
|
png_byte a, b, c;
|
|
int pa, pb, pc, p;
|
|
|
|
/* prev_pixels stores bpp bytes for 'a', the bpp for 'c': */
|
|
c = *(prev_pixels+bpp);
|
|
a = *prev_pixels++;
|
|
b = *prev_row++;
|
|
|
|
p = b - c;
|
|
pc = a - c;
|
|
|
|
# ifdef PNG_USE_ABS
|
|
pa = abs(p);
|
|
pb = abs(pc);
|
|
pc = abs(p + pc);
|
|
# else
|
|
pa = p < 0 ? -p : p;
|
|
pb = pc < 0 ? -pc : pc;
|
|
pc = (p + pc) < 0 ? -(p + pc) : p + pc;
|
|
# endif
|
|
|
|
if (pb < pa)
|
|
{
|
|
pa = pb; a = b;
|
|
}
|
|
if (pc < pa) a = c;
|
|
|
|
a = 0xFFU & (a + *row);
|
|
*row++ = a;
|
|
}
|
|
|
|
/* Remainder */
|
|
rp_end += row_bytes - bpp;
|
|
|
|
while (row < rp_end)
|
|
{
|
|
png_byte a, b, c;
|
|
int pa, pb, pc, p;
|
|
|
|
c = *(prev_row-bpp);
|
|
a = *(row-bpp);
|
|
b = *prev_row++;
|
|
|
|
p = b - c;
|
|
pc = a - c;
|
|
|
|
# ifdef PNG_USE_ABS
|
|
pa = abs(p);
|
|
pb = abs(pc);
|
|
pc = abs(p + pc);
|
|
# else
|
|
pa = p < 0 ? -p : p;
|
|
pb = pc < 0 ? -pc : pc;
|
|
pc = (p + pc) < 0 ? -(p + pc) : p + pc;
|
|
# endif
|
|
|
|
if (pb < pa)
|
|
{
|
|
pa = pb; a = b;
|
|
}
|
|
if (pc < pa) a = c;
|
|
|
|
a = 0xFFU & (a + *row);
|
|
*row++ = a;
|
|
}
|
|
}
|
|
|
|
static void
|
|
png_init_filter_functions(png_structrp pp, unsigned int bpp)
|
|
/* This function is called once for every PNG image (except for PNG images
|
|
* that only use PNG_FILTER_VALUE_NONE for all rows) to set the
|
|
* implementations required to reverse the filtering of PNG rows. Reversing
|
|
* the filter is the first transformation performed on the row data. It is
|
|
* performed in place, therefore an implementation can be selected based on
|
|
* the image pixel format. If the implementation depends on image width then
|
|
* take care to ensure that it works correctly if the image is interlaced -
|
|
* interlacing causes the actual row width to vary.
|
|
*/
|
|
{
|
|
pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub;
|
|
pp->read_filter[PNG_FILTER_VALUE_UP-1] = png_read_filter_row_up;
|
|
pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg;
|
|
if (bpp == 1)
|
|
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] =
|
|
png_read_filter_row_paeth_1byte_pixel;
|
|
else
|
|
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] =
|
|
png_read_filter_row_paeth_multibyte_pixel;
|
|
|
|
#ifdef PNG_FILTER_OPTIMIZATIONS
|
|
/* To use this define PNG_FILTER_OPTIMIZATIONS as the name of a function to
|
|
* call to install hardware optimizations for the above functions; simply
|
|
* replace whatever elements of the pp->read_filter[] array with a hardware
|
|
* specific (or, for that matter, generic) optimization.
|
|
*
|
|
* To see an example of this examine what configure.ac does when
|
|
* --enable-arm-neon is specified on the command line.
|
|
*/
|
|
PNG_FILTER_OPTIMIZATIONS(pp, bpp);
|
|
#endif
|
|
}
|
|
|
|
/* This is an IDAT specific wrapper for png_zlib_inflate; the input is already
|
|
* in png_ptr->zstream.{next,avail}_in however the output uses the full
|
|
* capabilities of png_zlib_inflate, returning a byte count of bytes read.
|
|
* This is just a convenience for IDAT processing.
|
|
*
|
|
* NOTE: this function works just fine after the zstream has ended, it just
|
|
* fills the buffer with zeros (outputing an error message once.)
|
|
*/
|
|
static png_alloc_size_t
|
|
png_inflate_IDAT(png_structrp png_ptr, int finish,
|
|
/* OUTPUT: */ png_bytep output, png_alloc_size_t output_size)
|
|
{
|
|
/* Expect Z_OK if !finsh and Z_STREAM_END if finish; if Z_STREAM_END is
|
|
* delivered when finish is not set the IDAT stream is truncated, if Z_OK is
|
|
* delivered when finish is set this is harmless and indicates that the
|
|
* stream end code has not been read.
|
|
*
|
|
* finish should be set as follows:
|
|
*
|
|
* 0: not reading the last row, stream not expected to end
|
|
* 1: reading the last row, stream expected to end
|
|
* 2: looking for stream end after the last row has been read, expect no
|
|
* more output and stream end.
|
|
*/
|
|
png_alloc_size_t original_size = output_size;
|
|
int ret = Z_STREAM_END; /* In case it ended ok before. */
|
|
|
|
if (!png_ptr->zstream_ended)
|
|
{
|
|
png_const_bytep next_in = png_ptr->zstream.next_in;
|
|
png_uint_32 avail_in = png_ptr->zstream.avail_in;
|
|
|
|
ret = png_zlib_inflate(png_ptr, png_IDAT, finish,
|
|
&next_in, &avail_in, &output, &output_size/*remaining*/);
|
|
|
|
debug(next_in == png_ptr->zstream.next_in);
|
|
debug(avail_in == png_ptr->zstream.avail_in);
|
|
debug(output == png_ptr->zstream.next_out);
|
|
/* But zstream.avail_out may be truncated to uInt */
|
|
|
|
switch (ret)
|
|
{
|
|
case Z_STREAM_END:
|
|
/* The caller must set finish on the last row of the image (not
|
|
* the last row of the pass!)
|
|
*/
|
|
debug(png_ptr->zstream_ended);
|
|
|
|
if (!finish) /* early end */
|
|
break;
|
|
|
|
if (output_size > 0) /* incomplete read */
|
|
{
|
|
if (finish == 2) /* looking for end; it has been found */
|
|
return original_size - output_size;
|
|
|
|
/* else those bytes are really needed: */
|
|
break;
|
|
}
|
|
|
|
/* else: FALL THROUGH: success */
|
|
|
|
case Z_BUF_ERROR:
|
|
/* this is the success case: output or input is empty: */
|
|
original_size -= output_size; /* bytes written */
|
|
|
|
if (output_size > 0)
|
|
{
|
|
/* Some output still needed; if the next chunk is known
|
|
* to not be an IDAT then this is the truncation case.
|
|
*/
|
|
affirm(avail_in == 0);
|
|
|
|
if ((png_ptr->mode & PNG_AFTER_IDAT) != 0)
|
|
{
|
|
/* Zlib doesn't know we are out of data, so this must be
|
|
* done here:
|
|
*/
|
|
png_ptr->zstream_ended = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return original_size; /* bytes written */
|
|
|
|
default:
|
|
/* error */
|
|
break;
|
|
}
|
|
|
|
/* The 'ended' flag should always be set if we get here, the success
|
|
* cases where the LZ stream hasn't reached an end or an error leave
|
|
* the function at the return above.
|
|
*/
|
|
debug(png_ptr->zstream_ended);
|
|
}
|
|
|
|
/* This is the error return case; there was missing data, or an error.
|
|
* Either continue with a warning (once; hence the zstream_error flag)
|
|
* or png_error.
|
|
*/
|
|
if (!png_ptr->zstream_error) /* first time */
|
|
{
|
|
#ifdef PNG_BENIGN_READ_ERRORS_SUPPORTED
|
|
switch (png_ptr->IDAT_error_action)
|
|
{
|
|
case PNG_ERROR:
|
|
if(!strncmp(png_ptr->zstream.msg,"incorrect data check",20))
|
|
{
|
|
if (png_ptr->current_crc != crc_quiet_use)
|
|
png_chunk_warning(png_ptr, "ADLER32 checksum mismatch");
|
|
}
|
|
|
|
else
|
|
{
|
|
png_chunk_error(png_ptr, png_ptr->zstream.msg);
|
|
}
|
|
break;
|
|
|
|
case PNG_WARN:
|
|
png_chunk_warning(png_ptr, png_ptr->zstream.msg);
|
|
break;
|
|
|
|
default: /* ignore */
|
|
/* Keep going */
|
|
break;
|
|
}
|
|
#else
|
|
{
|
|
if(!strncmp(png_ptr->zstream.msg,"incorrect data check",20))
|
|
png_chunk_warning(png_ptr, "ADLER32 checksum mismatch");
|
|
else
|
|
png_chunk_error(png_ptr, png_ptr->zstream.msg);
|
|
}
|
|
#endif /* !BENIGN_ERRORS */
|
|
|
|
/* And prevent the report about too many IDATs on streams with internal
|
|
* LZ errors:
|
|
*/
|
|
png_ptr->zstream_error = 1;
|
|
}
|
|
|
|
/* This is the error recovery case; fill the buffer with zeros. This is
|
|
* safe because it makes the filter byte 'NONE' and the row fairly innocent.
|
|
*/
|
|
memset(output, 0, output_size);
|
|
return original_size;
|
|
}
|
|
|
|
/* SHARED IDAT HANDLING.
|
|
*
|
|
* This is the 1.7+ common read code; shared by both the progressive and
|
|
* sequential readers.
|
|
*/
|
|
/* Initialize the row buffers, etc. */
|
|
void /* PRIVATE */
|
|
png_read_start_IDAT(png_structrp png_ptr)
|
|
{
|
|
# ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
|
|
/* This won't work at all if the app turned on unknown handling for IDAT
|
|
* chunks; the first IDAT has already been consumed!
|
|
*/
|
|
if (png_ptr->known_unknown & 1U)
|
|
png_error(png_ptr, "Attempt to read image with unknown IDAT");
|
|
# endif /* HANDLE_AS_UNKNOWN */
|
|
|
|
/* This is a missing read of the header information; we still haven't
|
|
* countered the first IDAT chunk. This can only happen in the sequential
|
|
* reader if the app didn't call png_read_info.
|
|
*/
|
|
if (png_ptr->chunk_name != png_IDAT)
|
|
png_error(png_ptr, "Missing call to png_read_info");
|
|
|
|
/* Two things need to happen: first work out the effect of any
|
|
* transformations (if supported) on the row size, second, allocate
|
|
* row_buffer and claim the zstream.
|
|
*/
|
|
png_init_row_info(png_ptr);
|
|
|
|
/* Now allocate the row buffer and, if that succeeds, claim the zstream.
|
|
*/
|
|
png_ptr->row_buffer = png_voidcast(png_bytep, png_malloc(png_ptr,
|
|
png_calc_rowbytes(png_ptr, PNG_PIXEL_DEPTH(*png_ptr), png_ptr->width)));
|
|
|
|
if (png_inflate_claim(png_ptr, png_IDAT) != Z_OK)
|
|
png_error(png_ptr, png_ptr->zstream.msg);
|
|
}
|
|
|
|
/* The process function gets called when there is some IDAT data to process
|
|
* and it just does the right thing with it. The zstream must have been claimed
|
|
* (owner png_IDAT) and the input data is in zstream.{next,avail}_in. The
|
|
* output next_{in,out} must not be changed by the caller; it is used
|
|
* internally.
|
|
*
|
|
* Result codes are as follows:
|
|
*
|
|
* png_row_incomplete: Insufficient IDAT data (from zstream) was present to
|
|
* process the next row. zstream.avail_in will be 0.
|
|
* png_row_process: A new row is available in the input buffer, it should be
|
|
* handled before the next call (if any) to this function.
|
|
* png_row_repeat: For interlaced images (only) this row is not in the pass,
|
|
* however the existing buffer may be displayed in lieu; if doing the
|
|
* 'blocky' (not 'sparkle') display the row should be displayed,
|
|
* otherwise treat as:
|
|
* png_row_skip: For interlaced images (only) the interlace pass has no data
|
|
* appropriate to this row, it should be skipped.
|
|
*
|
|
* In both of the two cases zstream.avail_in may be non-0, indicating that some
|
|
* IDAT data at zstream.next_in remains to be consumed. This data must be
|
|
* preserved and preset at the next call to the function.
|
|
*
|
|
* The function may also call png_error if an unrecoverable error occurs.
|
|
*
|
|
* The caller passes in a callback function and parameter to be called when row
|
|
* data is available. The callback is called repeatedly for each row to handle
|
|
* all the transformed row data.
|
|
*/
|
|
png_row_op /*PRIVATE*/
|
|
png_read_process_IDAT(png_structrp png_ptr, png_bytep transformed_row,
|
|
png_bytep display_row, int save_row)
|
|
{
|
|
/* Common sub-expressions. These are all constant across the whole PNG, but
|
|
* are recalculated here each time because this is fast and it only happens
|
|
* once per row + once per block of input data.
|
|
*/
|
|
const unsigned int max_pixels = png_max_pixel_block(png_ptr);
|
|
const unsigned int pixel_depth = png_ptr->row_input_pixel_depth;
|
|
/* The number of input bytes read each time (cannot overflow because it is
|
|
* limited by PNG_ROW_BUFFER_SIZE):
|
|
*/
|
|
const unsigned int input_byte_count = (max_pixels * pixel_depth) / 8U;
|
|
const unsigned int bpp = (pixel_depth+0x7U)>>3;
|
|
const png_uint_32 width = png_ptr->width;
|
|
const unsigned int interlaced = png_ptr->interlaced != PNG_INTERLACE_NONE;
|
|
|
|
png_uint_32 row_number = png_ptr->row_number;
|
|
unsigned int pass = png_ptr->pass;
|
|
enum anonymous {
|
|
start_of_row = 0U, /* at the start of the row; read a filter byte */
|
|
need_row_bytes = 2U, /* reading the row */
|
|
processing_row = 3U /* control returned to caller to process the row */
|
|
} state = png_upcast(enum anonymous, png_ptr->row_state);
|
|
|
|
/* The caller is responsible for calling png_read_start_IDAT: */
|
|
affirm(png_ptr->zowner == png_IDAT);
|
|
|
|
/* Basic sanity checks: */
|
|
affirm(pixel_depth > 0U && pixel_depth <= 64U &&
|
|
input_byte_count <= PNG_ROW_BUFFER_SIZE &&
|
|
pixel_depth <= 8U*PNG_MAX_PIXEL_BYTES);
|
|
|
|
for (;;) switch (state)
|
|
{
|
|
png_alloc_size_t row_bytes_processed;
|
|
png_alloc_size_t bytes_read; /* bytes in pixel_buffer */
|
|
png_uint_32 pass_width;
|
|
png_byte row_filter;
|
|
union
|
|
{
|
|
PNG_ROW_BUFFER_ALIGN_TYPE force_buffer_alignment;
|
|
png_byte buffer[16U];
|
|
} previous_pixels;
|
|
union
|
|
{
|
|
PNG_ROW_BUFFER_ALIGN_TYPE force_buffer_alignment;
|
|
png_byte buffer[PNG_ROW_BUFFER_SIZE];
|
|
} pixel_buffer;
|
|
|
|
case need_row_bytes:
|
|
/* The above variables need to be restored: */
|
|
row_bytes_processed = png_ptr->row_bytes_read;
|
|
bytes_read = row_bytes_processed % input_byte_count;
|
|
row_bytes_processed -= bytes_read;
|
|
|
|
pass_width = width;
|
|
if (interlaced)
|
|
pass_width = PNG_PASS_COLS(pass_width, pass);
|
|
|
|
memcpy(pixel_buffer.buffer, png_ptr->scratch, bytes_read);
|
|
memcpy(previous_pixels.buffer, png_ptr->scratch+bytes_read, 2*bpp);
|
|
row_filter = png_ptr->scratch[bytes_read+2*bpp];
|
|
|
|
goto pixel_loop;
|
|
|
|
case processing_row:
|
|
/* When there was a previous row (not at the start of the image) the
|
|
* row number needs to be updated and, possibly, the pass number.
|
|
*/
|
|
if (++row_number == png_ptr->height)
|
|
{
|
|
affirm(interlaced && pass < 6); /* else too many calls */
|
|
|
|
/* Start a new pass: there never is a pending filter byte so it
|
|
* is always necessary to read the filter byte of the next row.
|
|
*/
|
|
png_ptr->pass = ++pass & 0x7;
|
|
row_number = 0U;
|
|
} /* end of pass */
|
|
|
|
png_ptr->row_number = row_number;
|
|
|
|
/* This is a new row, but it may not be in the pass data so it
|
|
* may be possible to simply return control to the caller to
|
|
* skip it or use the previous row as appropriate.
|
|
*/
|
|
if (interlaced)
|
|
{
|
|
debug(pass <= 6);
|
|
|
|
/* This macro cannot overflow because the PNG width (and height)
|
|
* have already been checked to ensure that they are less than
|
|
* 2^31 (i.e. they are 31-bit values, not 32-bit values.)
|
|
*/
|
|
pass_width = PNG_PASS_COLS(width, pass);
|
|
|
|
/* On average most rows are skipped, so do this first: */
|
|
if (pass_width == 0 ||
|
|
!PNG_ROW_IN_INTERLACE_PASS(row_number, pass))
|
|
{
|
|
/* Using the PNG specification numbering (pass+1), passes 1,
|
|
* 2, 4, 6 contribute to all the rows in 'block' interlaced
|
|
* filling mode. Pass 3 contributes to four rows (5,6,7,8),
|
|
* pass 5 to two rows (3,4 then 7,8) and pass 7 only to one
|
|
* (the one on which it is processed). have_row must be set
|
|
* appropriately; it is set when a row is processed (end of
|
|
* this function) and remains set while the 'block' mode of
|
|
* interlace handling should reuse the previous row for this
|
|
* row.
|
|
*
|
|
* Each pass row can be used in a fixed number of rows, shown
|
|
* in 'rows' below, the '*' indicates that the row is actually
|
|
* in the pass, the '^' that the previous '*' row is used in
|
|
* block display update and the '@' that the pass doesn't
|
|
* contribte at all to that row in block display mode:
|
|
*
|
|
* PASS: 0 1 2 3 4 5 6
|
|
* rows: 8 8 4 4 2 2 1
|
|
* 0: * * @ * @ * @
|
|
* 1: ^ ^ @ ^ @ ^ *
|
|
* 2: ^ ^ @ ^ * * @
|
|
* 3: ^ ^ @ ^ ^ ^ *
|
|
* 4: ^ ^ * * @ * @
|
|
* 5: ^ ^ ^ ^ @ ^ *
|
|
* 6: ^ ^ ^ ^ * * @
|
|
* 7: ^ ^ ^ ^ ^ ^ *
|
|
*
|
|
* The '@' signs are the interesting thing, since we know that
|
|
* this row isn't present in the pass data. Rewriting the
|
|
* above table with '1' for '@', little endian (i.e. row 0 at
|
|
* the LSB end):
|
|
*
|
|
* row: 76543210
|
|
* Pass 0: 00000000 0x00 [bit 3, 0x8 of row unset (always)]
|
|
* Pass 1: 00000000 0x00
|
|
* Pass 2: 00001111 0x0F [bit 2, 0x4 of row unset]
|
|
* Pass 3: 00000000 0x00
|
|
* Pass 4: 00110011 0x33 [bit 1, 0x2 of row unset]
|
|
* Pass 5: 00000000 0x00
|
|
* Pass 6: 01010101 0x55 [bit 0, 0x1 of row unset]
|
|
*
|
|
* PNG_PASS_BLOCK_SKIP(pass, row) can be written two ways;
|
|
*
|
|
* As a shift and a mask:
|
|
* (0x55330F00 >> ((pass >> 1) + (row & 7))) & ~pass & 1
|
|
*
|
|
* And, somewhat simpler, as a bit check on the low bits of
|
|
* row:
|
|
*
|
|
* ~((row) >> (3-(pass >> 1))) & ~pass & 1
|
|
*/
|
|
# define PNG_PASS_BLOCK_SKIP(pass, row)\
|
|
(~((row) >> (3U-((pass) >> 1))) & ~(pass) & 0x1U)
|
|
|
|
/* Hence: */
|
|
debug(png_ptr->row_state == processing_row);
|
|
return pass_width == 0 || PNG_PASS_BLOCK_SKIP(pass,
|
|
row_number) ? png_row_skip : png_row_repeat;
|
|
} /* skipped row */
|
|
|
|
/* processed; fall through to start_of_row */
|
|
} /* interlaced */
|
|
|
|
/* FALL THROUGH */
|
|
case start_of_row:
|
|
{
|
|
/* Read the filter byte for the next row, previous_pixels is just
|
|
* used as a temporary buffer; it is reset below.
|
|
*/
|
|
png_alloc_size_t cb = png_inflate_IDAT(png_ptr, 0/*finish*/,
|
|
previous_pixels.buffer, 1U);
|
|
|
|
/* This can be temporary; it verifies the invariants on how
|
|
* png_inflate_IDAT updates the {next,avail}_out fields:
|
|
*/
|
|
#ifndef __COVERITY__ /* Suppress bogus Coverity complaint */
|
|
debug(png_ptr->zstream.avail_out == 1-cb &&
|
|
png_ptr->zstream.next_out == cb + previous_pixels.buffer);
|
|
#endif
|
|
|
|
/* next_out points to previous_pixels, for security do this: */
|
|
png_ptr->zstream.next_out = NULL;
|
|
png_ptr->zstream.avail_out = 0U;
|
|
|
|
/* One byte, so we either got it or have to get more input data: */
|
|
if (cb != 1U)
|
|
{
|
|
affirm(cb == 0U && png_ptr->zstream.avail_in == 0U);
|
|
png_ptr->row_state = start_of_row;
|
|
return png_row_incomplete;
|
|
}
|
|
}
|
|
|
|
/* Check the filter byte. */
|
|
row_filter = previous_pixels.buffer[0];
|
|
if (row_filter >= PNG_FILTER_VALUE_LAST)
|
|
png_chunk_error(png_ptr, "invalid PNG filter");
|
|
|
|
/* These are needed for the filter check below: */
|
|
pass_width = width;
|
|
if (interlaced)
|
|
pass_width = PNG_PASS_COLS(pass_width, pass);
|
|
|
|
/* The filter is followed by the row data, but first check the
|
|
* filter byte; the spec requires that we invent an empty row
|
|
* if the first row of a pass requires it.
|
|
*
|
|
* Note that row_number is the image row.
|
|
*/
|
|
if (row_number == PNG_PASS_START_ROW(pass)) switch (row_filter)
|
|
{
|
|
case PNG_FILTER_VALUE_UP:
|
|
/* x-0 == x, so do this optimization: */
|
|
row_filter = PNG_FILTER_VALUE_NONE;
|
|
break;
|
|
|
|
case PNG_FILTER_VALUE_PAETH:
|
|
/* The Paeth predictor is always the preceding (leftwards)
|
|
* value, so this is the same as sub:
|
|
*/
|
|
row_filter = PNG_FILTER_VALUE_SUB;
|
|
break;
|
|
|
|
case PNG_FILTER_VALUE_AVG:
|
|
/* It would be possible to 'invent' a new filter that did
|
|
* AVG using only the previous byte; it's 'SUB' of half the
|
|
* preceding value, but this seems pointless. Zero out the
|
|
* row buffer to make AVG work.
|
|
*/
|
|
memset(png_ptr->row_buffer, 0U,
|
|
PNG_ROWBYTES(pixel_depth, pass_width));
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
} /* switch row_filter */
|
|
|
|
/* Always zero the 'previous pixel' out at the start of a row; this
|
|
* allows the filter code to ignore the row start.
|
|
*/
|
|
memset(previous_pixels.buffer, 0U, sizeof previous_pixels.buffer);
|
|
|
|
row_bytes_processed = 0U;
|
|
bytes_read = 0U;
|
|
|
|
pixel_loop:
|
|
/* At this point the following must be set correctly:
|
|
*
|
|
* row_bytes_processed: bytes processed so far
|
|
* pass_width: width of a row in this pass in pixels
|
|
* pixel_depth: depth in bits of a pixel
|
|
* bytes_read: count of filtered bytes in pixel_buffer
|
|
* row_filter: filter byte for this row
|
|
* previous_pixels[0]: pixel 'a' for the filter
|
|
* previous_pixels[1]: pixel 'c' for the filter
|
|
* pixel_buffer[]: bytes_read filtered bytes
|
|
*
|
|
* The code in the loop decompresses PNG_ROW_BUFFER_SIZE filterd pixels
|
|
* from the input, unfilters and transforms them, then saves them to
|
|
* png_struct::row_buffer[row_bytes_processed...].
|
|
*/
|
|
{ /* pixel loop */
|
|
const png_alloc_size_t row_bytes =
|
|
PNG_ROWBYTES(pixel_depth, pass_width);
|
|
png_bytep row_buffer = png_ptr->row_buffer + row_bytes_processed;
|
|
unsigned int pixels;
|
|
png_uint_32 x;
|
|
|
|
/* Sanity check for potential buffer overwrite: */
|
|
affirm(row_bytes > row_bytes_processed);
|
|
|
|
/* Work out the current pixel index of the pixel at the start of the
|
|
* row buffer:
|
|
*/
|
|
switch (pixel_depth)
|
|
{
|
|
case 1U: x = (png_uint_32)/*SAFE*/(row_bytes_processed << 3);
|
|
break;
|
|
case 2U: x = (png_uint_32)/*SAFE*/(row_bytes_processed << 2);
|
|
break;
|
|
case 4U: x = (png_uint_32)/*SAFE*/(row_bytes_processed << 1);
|
|
break;
|
|
case 8U: x = (png_uint_32)/*SAFE*/row_bytes_processed;
|
|
break;
|
|
default: x = (png_uint_32)/*SAFE*/(row_bytes_processed / bpp);
|
|
debug(row_bytes_processed % bpp == 0U);
|
|
break;
|
|
}
|
|
|
|
for (pixels = max_pixels; x < pass_width; x += pixels)
|
|
{
|
|
if (pixels > pass_width - x)
|
|
pixels = (unsigned int)/*SAFE*/(pass_width - x);
|
|
|
|
/* At the end of the image pass Z_FINISH to zlib to optimize the
|
|
* final read (very slightly, is this worth doing?) To do this
|
|
* work out if we are at the end.
|
|
*/
|
|
{
|
|
const png_uint_32 height = png_ptr->height;
|
|
|
|
/* last_pass_row indicates that this is the last row in this
|
|
* pass (the test is optimized for the non-interlaced case):
|
|
*/
|
|
const int last_pass_row = row_number+1 >= height ||
|
|
(interlaced && PNG_LAST_PASS_ROW(row_number,pass,height));
|
|
|
|
/* Set 'finish' if this is the last row in the last pass of
|
|
* the image:
|
|
*/
|
|
const int finish = last_pass_row && (!interlaced ||
|
|
pass >= PNG_LAST_PASS(width, height));
|
|
|
|
const png_alloc_size_t bytes_to_read =
|
|
PNG_ROWBYTES(pixel_depth, pixels);
|
|
|
|
png_alloc_size_t cb;
|
|
|
|
affirm(bytes_to_read > bytes_read);
|
|
cb = png_inflate_IDAT(png_ptr, finish,
|
|
pixel_buffer.buffer + bytes_read,
|
|
bytes_to_read - bytes_read);
|
|
bytes_read += cb;
|
|
|
|
if (bytes_read < bytes_to_read)
|
|
{
|
|
/* Fewer bytes were read than needed: we need to stash all
|
|
* the information required at pixel_loop in png_struct so
|
|
* that the need_row_bytes case can restore it when more
|
|
* input is available.
|
|
*/
|
|
debug(png_ptr->zstream.avail_in == 0U);
|
|
png_ptr->zstream.next_out = NULL;
|
|
png_ptr->zstream.avail_out = 0U;
|
|
|
|
png_ptr->row_bytes_read = row_bytes_processed + bytes_read;
|
|
memcpy(png_ptr->scratch, pixel_buffer.buffer, bytes_read);
|
|
memcpy(png_ptr->scratch+bytes_read, previous_pixels.buffer,
|
|
2*bpp);
|
|
png_ptr->scratch[bytes_read+2*bpp] = row_filter;
|
|
png_ptr->row_state = need_row_bytes;
|
|
return png_row_incomplete;
|
|
}
|
|
|
|
debug(bytes_read == bytes_to_read);
|
|
} /* fill pixel_buffer */
|
|
|
|
/* The buffer is full or the row is complete but the calculation
|
|
* was done using the pixel count, so double check against the
|
|
* byte count here:
|
|
*/
|
|
implies(bytes_read != input_byte_count,
|
|
bytes_read == row_bytes - row_bytes_processed);
|
|
|
|
/* At this point all the required information to process the next
|
|
* block of pixels in the row has been read from the input stream
|
|
* and the original, filtered, row data is held in pixel_buffer.
|
|
*
|
|
* Because the buffer will be transformed after the unfilter
|
|
* operation we require whole pixels:
|
|
*/
|
|
debug(bytes_read >= bpp && bytes_read % bpp == 0);
|
|
|
|
if (row_filter > PNG_FILTER_VALUE_NONE)
|
|
{
|
|
/* This is checked in the read code above: */
|
|
debug(row_filter < PNG_FILTER_VALUE_LAST);
|
|
|
|
/* Lazy init of the read functions, which allows hand crafted
|
|
* optimizations for 'bpp' (which does not change.)
|
|
*/
|
|
if (png_ptr->read_filter[0] == NULL)
|
|
png_init_filter_functions(png_ptr, bpp);
|
|
|
|
/* Pixels 'a' then 'c' are in previous_pixels, pixel 'b' is in
|
|
* row_buffer and pixel 'x' (filtered) is in pixel_buffer.
|
|
*/
|
|
png_ptr->read_filter[row_filter-1](bytes_read, bpp,
|
|
pixel_buffer.buffer, row_buffer, previous_pixels.buffer);
|
|
} /* do the filter */
|
|
|
|
/* Now pixel_buffer.buffer contains the *un*filtered bytes of the
|
|
* current row and row_buffer needs updating with these. First
|
|
* preserve pixels 'a' and 'c' for the next time round the loop
|
|
* (if necessary).
|
|
*/
|
|
if (bytes_read < row_bytes - row_bytes_processed)
|
|
{
|
|
debug(bytes_read == input_byte_count);
|
|
memcpy(previous_pixels.buffer/* pixel 'a' */,
|
|
pixel_buffer.buffer + bytes_read - bpp, bpp);
|
|
memcpy(previous_pixels.buffer+bpp/* pixel 'c' */,
|
|
row_buffer + bytes_read - bpp, bpp);
|
|
}
|
|
|
|
/* Now overwrite the previous row pixels in row_buffer with the
|
|
* current row pixels:
|
|
*/
|
|
memcpy(row_buffer, pixel_buffer.buffer, bytes_read);
|
|
row_buffer += bytes_read;
|
|
row_bytes_processed += bytes_read;
|
|
bytes_read = 0U; /* for next buffer */
|
|
|
|
/* Any transforms can now be performed along with any output
|
|
* handling (copy or interlace handling).
|
|
*/
|
|
# ifdef PNG_TRANSFORM_MECH_SUPPORTED
|
|
if (png_ptr->transform_list != NULL)
|
|
{
|
|
unsigned int max_depth;
|
|
png_transform_control tc;
|
|
|
|
png_init_transform_control(&tc, png_ptr);
|
|
|
|
tc.width = pixels;
|
|
tc.sp = tc.dp = pixel_buffer.buffer;
|
|
|
|
/* Run the list. It is ok if it doesn't end up doing
|
|
* anything; this can happen with a lazy init.
|
|
*
|
|
* NOTE: if the only thing in the list is a palette check
|
|
* function it can remove itself at this point.
|
|
*/
|
|
max_depth = png_run_transform_list_forwards(png_ptr, &tc);
|
|
|
|
/* This is too late, a stack overwrite has already
|
|
* happened, but it may still prevent exploits:
|
|
*/
|
|
affirm(max_depth <= png_ptr->row_max_pixel_depth);
|
|
|
|
/* It is very important that the transform produces the
|
|
* same pixel format as the TC_INIT steps:
|
|
*/
|
|
affirm(png_ptr->row_format == tc.format &&
|
|
png_ptr->row_range == tc.range &&
|
|
png_ptr->row_bit_depth == tc.bit_depth);
|
|
# ifdef PNG_READ_GAMMA_SUPPORTED
|
|
/* This checks the output gamma taking into account the
|
|
* fact that small gamma changes are eliminated.
|
|
*/
|
|
debug(png_ptr->row_gamma == tc.gamma ||
|
|
png_gamma_check(png_ptr, &tc));
|
|
# endif /* READ_GAMMA */
|
|
|
|
/* If the caller needs the row saved (for the progressive
|
|
* read API) or if this PNG is interlaced and this row may
|
|
* be required in a subsequent pass (any pass before the
|
|
* last one) then it is stored in
|
|
* png_struct::transformed_row, and that may need to be
|
|
* allocated here.
|
|
*/
|
|
# if defined(PNG_PROGRESSIVE_READ_SUPPORTED) ||\
|
|
defined(PNG_READ_INTERLACING_SUPPORTED)
|
|
if (png_ptr->transform_list != NULL &&
|
|
(save_row
|
|
# ifdef PNG_READ_INTERLACING_SUPPORTED
|
|
|| (png_ptr->do_interlace && pass < 6U)
|
|
# endif /* READ_INTERLACING */
|
|
))
|
|
{
|
|
if (png_ptr->transformed_row == NULL)
|
|
png_ptr->transformed_row = png_voidcast(png_bytep,
|
|
png_malloc(png_ptr, png_calc_rowbytes(png_ptr,
|
|
png_ptr->row_bit_depth *
|
|
PNG_FORMAT_CHANNELS(png_ptr->row_format),
|
|
save_row ? width : (width+1U)>>1)));
|
|
|
|
copy_row(png_ptr, png_ptr->transformed_row,
|
|
pixel_buffer.buffer, x, pixels, 1/*clear*/);
|
|
}
|
|
# endif /* PROGRESSIVE_READ || READ_INTERLACING */
|
|
} /* transform_list != NULL */
|
|
# endif /* TRANSFORM_MECH */
|
|
|
|
/* There are now 'pixels' possibly transformed pixels starting at
|
|
* row pixel x, where 'x' is an index in the interlaced row if
|
|
* interlacing is happening. Handle this row.
|
|
*/
|
|
if (transformed_row != NULL)
|
|
combine_row(png_ptr, transformed_row, pixel_buffer.buffer,
|
|
x, pixels, 0/*!display*/);
|
|
|
|
if (display_row != NULL)
|
|
combine_row(png_ptr, display_row, pixel_buffer.buffer, x,
|
|
pixels, 1/*display*/);
|
|
} /* for x < pass_width */
|
|
} /* pixel loop */
|
|
|
|
png_ptr->row_state = processing_row;
|
|
return png_row_process;
|
|
|
|
default:
|
|
impossible("bad row state");
|
|
} /* forever switch */
|
|
|
|
PNG_UNUSED(save_row) /* May not be used above */
|
|
}
|
|
|
|
void /* PRIVATE */
|
|
png_read_free_row_buffers(png_structrp png_ptr)
|
|
{
|
|
/* The transformed row only gets saved if needed: */
|
|
# if (defined(PNG_PROGRESSIVE_READ_SUPPORTED) ||\
|
|
defined(PNG_READ_INTERLACING_SUPPORTED)) &&\
|
|
defined(PNG_TRANSFORM_MECH_SUPPORTED)
|
|
if (png_ptr->transformed_row != NULL)
|
|
{
|
|
png_free(png_ptr, png_ptr->transformed_row);
|
|
png_ptr->transformed_row = NULL;
|
|
}
|
|
# endif /* PROGRESSIVE_READ || READ_INTERLACING */
|
|
|
|
if (png_ptr->row_buffer != NULL)
|
|
{
|
|
png_free(png_ptr, png_ptr->row_buffer);
|
|
png_ptr->row_buffer = NULL;
|
|
}
|
|
}
|
|
|
|
/* Complete reading of the IDAT chunks. This returns 0 if more data is to
|
|
* be read, 1 if the zlib stream has terminated. Call this routine with
|
|
* zstream.avail_in greater than zero unless there is no more input data.
|
|
* When zstream_avail_in is 0 on entry and the stream does not terminate
|
|
* an "IDAT truncated" error will be output.
|
|
*/
|
|
int /* PRIVATE */
|
|
png_read_finish_IDAT(png_structrp png_ptr)
|
|
{
|
|
enum
|
|
{
|
|
no_error = 0,
|
|
LZ_too_long,
|
|
IDAT_too_long,
|
|
IDAT_truncated
|
|
} error = no_error;
|
|
|
|
/* Release the rowd buffers first; they can use considerable amounts of
|
|
* memory.
|
|
*/
|
|
png_read_free_row_buffers(png_ptr);
|
|
|
|
affirm(png_ptr->zowner == png_IDAT); /* else this should not be called */
|
|
|
|
/* We don't need any more data and the stream should have ended, however the
|
|
* LZ end code may actually not have been processed. In this case we must
|
|
* read it otherwise stray unread IDAT data or, more likely, an IDAT chunk
|
|
* may still remain to be consumed.
|
|
*/
|
|
if (!png_ptr->zstream_ended)
|
|
{
|
|
int end_of_IDAT = png_ptr->zstream.avail_in == 0;
|
|
png_byte b[1];
|
|
png_alloc_size_t cb = png_inflate_IDAT(png_ptr, 2/*finish*/, b, 1);
|
|
|
|
debug(png_ptr->zstream.avail_out == 1-cb &&
|
|
png_ptr->zstream.next_out == cb + b);
|
|
|
|
/* As above, for safety do this: */
|
|
png_ptr->zstream.next_out = NULL;
|
|
png_ptr->zstream.avail_out = 0;
|
|
|
|
/* No data is expected, either compressed or in the IDAT: */
|
|
if (cb != 0)
|
|
error = LZ_too_long;
|
|
|
|
else if (png_ptr->zstream.avail_in == 0 /* && cb == 0 */)
|
|
{
|
|
/* This is the normal case but there may still be some waiting codes
|
|
* (including the adler32 that follow the LZ77 end code; so we can
|
|
* have at least 5 bytes after the end of the row data before the
|
|
* end of the stream.
|
|
*/
|
|
if (!png_ptr->zstream_ended)
|
|
{
|
|
if (!end_of_IDAT)
|
|
return 0; /* keep reading, no detectable error yet */
|
|
|
|
error = IDAT_truncated;
|
|
}
|
|
|
|
/* Else there may still be an error; too much IDAT, but we can't
|
|
* tell.
|
|
*/
|
|
}
|
|
}
|
|
|
|
/* If there is still pending zstream input then there was too much IDAT
|
|
* data:
|
|
*/
|
|
if (!error && png_ptr->zstream.avail_in > 0)
|
|
error = IDAT_too_long;
|
|
|
|
/* Either this is the success case or an error has been detected and
|
|
* warned about.
|
|
*/
|
|
{
|
|
int ret = inflateEnd(&png_ptr->zstream);
|
|
|
|
/* In fact we expect this to always succeed, so it is a good idea to
|
|
* catch it in pre-release builds:
|
|
*/
|
|
debug_handled(ret == Z_OK);
|
|
|
|
if (ret != Z_OK)
|
|
{
|
|
/* This is just a warning; it's safe, and the zstream_error flag is
|
|
* not set.
|
|
*/
|
|
png_zstream_error(&png_ptr->zstream, ret);
|
|
png_chunk_warning(png_ptr, png_ptr->zstream.msg);
|
|
}
|
|
}
|
|
|
|
/* Output an error message if required: */
|
|
if (error && !png_ptr->zstream_error)
|
|
{
|
|
switch (error)
|
|
{
|
|
case LZ_too_long:
|
|
png_benign_error(png_ptr, "compressed data too long");
|
|
break;
|
|
|
|
case IDAT_too_long:
|
|
png_benign_error(png_ptr, "uncompressed data too long");
|
|
break;
|
|
|
|
case IDAT_truncated:
|
|
png_benign_error(png_ptr, "data truncated");
|
|
break;
|
|
|
|
default:
|
|
case no_error: /* Satisfy the compiler */
|
|
break;
|
|
}
|
|
|
|
png_ptr->zstream_error = 1;
|
|
}
|
|
|
|
/* WARNING: leave {next,avail}_in set here, the progressive reader uses these
|
|
* to complete the PNG chunk CRC calculation.
|
|
*/
|
|
png_ptr->zstream_ended = 1;
|
|
png_ptr->zowner = 0;
|
|
|
|
return 1; /* end of stream */
|
|
}
|
|
|
|
/* Optional call to update the users info_ptr structure, can be used from both
|
|
* the progressive and sequential reader, but the app must call it.
|
|
*/
|
|
void PNGAPI
|
|
png_read_update_info(png_structrp png_ptr, png_inforp info_ptr)
|
|
{
|
|
png_debug(1, "in png_read_update_info");
|
|
|
|
if (png_ptr != NULL)
|
|
{
|
|
if (png_ptr->zowner != png_IDAT)
|
|
{
|
|
png_read_start_IDAT(png_ptr);
|
|
|
|
# ifdef PNG_READ_TRANSFORMS_SUPPORTED
|
|
png_read_transform_info(png_ptr, info_ptr);
|
|
# else
|
|
PNG_UNUSED(info_ptr)
|
|
# endif
|
|
}
|
|
|
|
/* New in 1.6.0 this avoids the bug of doing the initializations twice */
|
|
else
|
|
png_app_error(png_ptr,
|
|
"png_read_update_info/png_start_read_image: duplicate call");
|
|
}
|
|
}
|
|
|
|
png_int_32 /* PRIVATE */
|
|
png_read_setting(png_structrp png_ptr, png_uint_32 setting,
|
|
png_uint_32 parameter, png_int_32 value)
|
|
{
|
|
/* Caller checks the arguments for basic validity */
|
|
int only_get = (setting & PNG_SF_GET) != 0U;
|
|
|
|
if (only_get) /* spurious: in case it isn't used */
|
|
setting &= ~PNG_SF_GET;
|
|
|
|
switch (setting)
|
|
{
|
|
# ifdef PNG_SEQUENTIAL_READ_SUPPORTED
|
|
case PNG_SR_COMPRESS_buffer_size:
|
|
if (parameter > 0 && parameter <= ZLIB_IO_MAX)
|
|
{
|
|
png_ptr->IDAT_size = parameter;
|
|
return 0; /* Cannot return a 32-bit value */
|
|
}
|
|
|
|
else
|
|
return PNG_EINVAL;
|
|
# endif /* SEQUENTIAL_READ */
|
|
|
|
# ifdef PNG_READ_GAMMA_SUPPORTED
|
|
case PNG_SR_GAMMA_threshold:
|
|
if (parameter <= 0xFFFF)
|
|
{
|
|
if (!only_get)
|
|
png_ptr->gamma_threshold = PNG_UINT_16(parameter);
|
|
|
|
return (png_int_32)/*SAFE*/parameter;
|
|
}
|
|
|
|
return PNG_EDOM;
|
|
|
|
#if 0 /*NYI*/
|
|
case PNG_SR_GAMMA_accuracy:
|
|
if (parameter <= 1600)
|
|
{
|
|
if (!only_get)
|
|
png_ptr->gamma_accuracy = parameter;
|
|
|
|
return (png_int_32)/*SAFE*/parameter;
|
|
}
|
|
|
|
return PNG_EDOM;
|
|
#endif /*NYI*/
|
|
# endif /* READ_GAMMA */
|
|
|
|
case PNG_SR_CRC_ACTION:
|
|
/* Tell libpng how we react to CRC errors in critical chunks */
|
|
switch (parameter)
|
|
{
|
|
case PNG_CRC_NO_CHANGE: /* Leave setting as is */
|
|
break;
|
|
|
|
case PNG_CRC_WARN_USE: /* Warn/use data */
|
|
png_ptr->critical_crc = crc_warn_use;
|
|
break;
|
|
|
|
case PNG_CRC_QUIET_USE: /* Quiet/use data */
|
|
png_ptr->critical_crc = crc_quiet_use;
|
|
break;
|
|
|
|
default:
|
|
case PNG_CRC_WARN_DISCARD: /* Not valid for critical data */
|
|
return PNG_EINVAL;
|
|
|
|
case PNG_CRC_ERROR_QUIT: /* Error/quit */
|
|
case PNG_CRC_DEFAULT:
|
|
png_ptr->critical_crc = crc_error_quit;
|
|
break;
|
|
}
|
|
|
|
/* Tell libpng how we react to CRC errors in ancillary chunks */
|
|
switch (value)
|
|
{
|
|
case PNG_CRC_NO_CHANGE: /* Leave setting as is */
|
|
break;
|
|
|
|
case PNG_CRC_WARN_USE: /* Warn/use data */
|
|
png_ptr->ancillary_crc = crc_warn_use;
|
|
break;
|
|
|
|
case PNG_CRC_QUIET_USE: /* Quiet/use data */
|
|
png_ptr->ancillary_crc = crc_quiet_use;
|
|
break;
|
|
|
|
case PNG_CRC_ERROR_QUIT: /* Error/quit */
|
|
png_ptr->ancillary_crc = crc_error_quit;
|
|
break;
|
|
|
|
case PNG_CRC_WARN_DISCARD: /* Warn/discard data */
|
|
case PNG_CRC_DEFAULT:
|
|
png_ptr->ancillary_crc = crc_warn_discard;
|
|
break;
|
|
|
|
default:
|
|
return PNG_EINVAL;
|
|
}
|
|
|
|
return 0; /* success */
|
|
|
|
# ifdef PNG_SET_OPTION_SUPPORTED
|
|
case PNG_SRW_OPTION:
|
|
switch (parameter)
|
|
{
|
|
case PNG_MAXIMUM_INFLATE_WINDOW:
|
|
if (png_ptr->maximum_inflate_window)
|
|
{
|
|
if (!value && !only_get)
|
|
png_ptr->maximum_inflate_window = 0U;
|
|
return PNG_OPTION_ON;
|
|
}
|
|
|
|
else
|
|
{
|
|
if (value && !only_get)
|
|
png_ptr->maximum_inflate_window = 1U;
|
|
return PNG_OPTION_OFF;
|
|
}
|
|
|
|
default:
|
|
return PNG_OPTION_UNSET;
|
|
}
|
|
# endif /* SET_OPTION */
|
|
|
|
# ifdef PNG_READ_CHECK_FOR_INVALID_INDEX_SUPPORTED
|
|
case PNG_SRW_CHECK_FOR_INVALID_INDEX:
|
|
/* The 'enabled' value is a FORTRAN style three-state: */
|
|
if (value > 0)
|
|
png_ptr->palette_index_check = PNG_PALETTE_CHECK_ON;
|
|
|
|
else if (value < 0)
|
|
png_ptr->palette_index_check = PNG_PALETTE_CHECK_OFF;
|
|
|
|
else
|
|
png_ptr->palette_index_check = PNG_PALETTE_CHECK_DEFAULT;
|
|
|
|
return 0;
|
|
# endif /* READ_CHECK_FOR_INVALID_INDEX */
|
|
|
|
# ifdef PNG_BENIGN_READ_ERRORS_SUPPORTED
|
|
case PNG_SRW_ERROR_HANDLING:
|
|
/* The parameter is a bit mask of what to set, the value is what to
|
|
* set it to.
|
|
*/
|
|
if (value >= PNG_IGNORE && value <= PNG_ERROR &&
|
|
parameter <= PNG_ALL_ERRORS)
|
|
{
|
|
if ((parameter & PNG_BENIGN_ERRORS) != 0U)
|
|
png_ptr->benign_error_action = value & 0x3U;
|
|
|
|
if ((parameter & PNG_APP_WARNINGS) != 0U)
|
|
png_ptr->app_warning_action = value & 0x3U;
|
|
|
|
if ((parameter & PNG_APP_ERRORS) != 0U)
|
|
png_ptr->app_error_action = value & 0x3U;
|
|
|
|
if ((parameter & PNG_IDAT_ERRORS) != 0U)
|
|
png_ptr->IDAT_error_action = value & 0x3U;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return PNG_EINVAL;
|
|
# endif /* BENIGN_READ_ERRORS */
|
|
|
|
default:
|
|
return PNG_ENOSYS; /* not supported (whatever it is) */
|
|
}
|
|
}
|
|
#endif /* READ */
|