ppsspp/GPU/Common/PresentationCommon.cpp
2022-08-03 22:23:07 +02:00

857 lines
31 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cmath>
#include <set>
#include <cstdint>
#include "Common/GPU/thin3d.h"
#include "Common/System/Display.h"
#include "Common/System/System.h"
#include "Common/File/VFS/VFS.h"
#include "Common/Log.h"
#include "Common/TimeUtil.h"
#include "Core/Config.h"
#include "Core/ConfigValues.h"
#include "Core/Host.h"
#include "Core/System.h"
#include "Core/HW/Display.h"
#include "GPU/Common/PostShader.h"
#include "GPU/Common/PresentationCommon.h"
#include "Common/GPU/ShaderTranslation.h"
struct Vertex {
float x, y, z;
float u, v;
uint32_t rgba;
};
FRect GetScreenFrame(float pixelWidth, float pixelHeight) {
FRect rc = FRect{
0.0f,
0.0f,
pixelWidth,
pixelHeight,
};
bool applyInset = !g_Config.bIgnoreScreenInsets;
if (applyInset) {
// Remove the DPI scale to get back to pixels.
float left = System_GetPropertyFloat(SYSPROP_DISPLAY_SAFE_INSET_LEFT) / g_dpi_scale_x;
float right = System_GetPropertyFloat(SYSPROP_DISPLAY_SAFE_INSET_RIGHT) / g_dpi_scale_x;
float top = System_GetPropertyFloat(SYSPROP_DISPLAY_SAFE_INSET_TOP) / g_dpi_scale_y;
float bottom = System_GetPropertyFloat(SYSPROP_DISPLAY_SAFE_INSET_BOTTOM) / g_dpi_scale_y;
// Adjust left edge to compensate for cutouts (notches) if any.
rc.x += left;
rc.w -= (left + right);
rc.y += top;
rc.h -= (top + bottom);
}
return rc;
}
void CenterDisplayOutputRect(FRect *rc, float origW, float origH, const FRect &frame, int rotation) {
float outW;
float outH;
bool rotated = rotation == ROTATION_LOCKED_VERTICAL || rotation == ROTATION_LOCKED_VERTICAL180;
if (g_Config.iSmallDisplayZoomType == (int)SmallDisplayZoom::STRETCH) {
outW = frame.w;
outH = frame.h;
} else {
if (g_Config.iSmallDisplayZoomType == (int)SmallDisplayZoom::MANUAL) {
float offsetX = (g_Config.fSmallDisplayOffsetX - 0.5f) * 2.0f * frame.w + frame.x;
float offsetY = (g_Config.fSmallDisplayOffsetY - 0.5f) * 2.0f * frame.h + frame.y;
// Have to invert Y for GL
if (GetGPUBackend() == GPUBackend::OPENGL) {
offsetY = offsetY * -1.0f;
}
float customZoom = g_Config.fSmallDisplayZoomLevel;
float smallDisplayW = origW * customZoom;
float smallDisplayH = origH * customZoom;
if (!rotated) {
rc->x = floorf(((frame.w - smallDisplayW) / 2.0f) + offsetX);
rc->y = floorf(((frame.h - smallDisplayH) / 2.0f) + offsetY);
rc->w = floorf(smallDisplayW);
rc->h = floorf(smallDisplayH);
return;
} else {
rc->x = floorf(((frame.w - smallDisplayH) / 2.0f) + offsetX);
rc->y = floorf(((frame.h - smallDisplayW) / 2.0f) + offsetY);
rc->w = floorf(smallDisplayH);
rc->h = floorf(smallDisplayW);
return;
}
} else if (g_Config.iSmallDisplayZoomType == (int)SmallDisplayZoom::AUTO) {
// Stretch to 1080 for 272*4. But don't distort if not widescreen (i.e. ultrawide of halfwide.)
float pixelCrop = frame.h / 270.0f;
float resCommonWidescreen = pixelCrop - floor(pixelCrop);
if (!rotated && resCommonWidescreen == 0.0f && frame.w >= pixelCrop * 480.0f) {
rc->x = floorf((frame.w - pixelCrop * 480.0f) * 0.5f + frame.x);
rc->y = floorf(-pixelCrop + frame.y);
rc->w = floorf(pixelCrop * 480.0f);
rc->h = floorf(pixelCrop * 272.0f);
return;
}
}
float origRatio = !rotated ? origW / origH : origH / origW;
float frameRatio = frame.w / frame.h;
if (origRatio > frameRatio) {
// Image is wider than frame. Center vertically.
outW = frame.w;
outH = frame.w / origRatio;
// Stretch a little bit
if (!rotated && g_Config.iSmallDisplayZoomType == (int)SmallDisplayZoom::PARTIAL_STRETCH)
outH = (frame.h + outH) / 2.0f; // (408 + 720) / 2 = 564
} else {
// Image is taller than frame. Center horizontally.
outW = frame.h * origRatio;
outH = frame.h;
if (rotated && g_Config.iSmallDisplayZoomType == (int)SmallDisplayZoom::PARTIAL_STRETCH)
outW = (frame.h + outH) / 2.0f; // (408 + 720) / 2 = 564
}
}
rc->x = floorf((frame.w - outW) / 2.0f + frame.x);
rc->y = floorf((frame.h - outH) / 2.0f + frame.y);
rc->w = floorf(outW);
rc->h = floorf(outH);
}
PresentationCommon::PresentationCommon(Draw::DrawContext *draw) : draw_(draw) {
CreateDeviceObjects();
}
PresentationCommon::~PresentationCommon() {
DestroyDeviceObjects();
}
void PresentationCommon::GetCardboardSettings(CardboardSettings *cardboardSettings) {
if (!g_Config.bEnableCardboardVR) {
cardboardSettings->enabled = false;
return;
}
// Calculate Cardboard Settings
float cardboardScreenScale = g_Config.iCardboardScreenSize / 100.0f;
float cardboardScreenWidth = pixelWidth_ / 2.0f * cardboardScreenScale;
float cardboardScreenHeight = pixelHeight_ * cardboardScreenScale;
float cardboardMaxXShift = (pixelWidth_ / 2.0f - cardboardScreenWidth) / 2.0f;
float cardboardUserXShift = g_Config.iCardboardXShift / 100.0f * cardboardMaxXShift;
float cardboardLeftEyeX = cardboardMaxXShift + cardboardUserXShift;
float cardboardRightEyeX = pixelWidth_ / 2.0f + cardboardMaxXShift - cardboardUserXShift;
float cardboardMaxYShift = pixelHeight_ / 2.0f - cardboardScreenHeight / 2.0f;
float cardboardUserYShift = g_Config.iCardboardYShift / 100.0f * cardboardMaxYShift;
float cardboardScreenY = cardboardMaxYShift + cardboardUserYShift;
cardboardSettings->enabled = true;
cardboardSettings->leftEyeXPosition = cardboardLeftEyeX;
cardboardSettings->rightEyeXPosition = cardboardRightEyeX;
cardboardSettings->screenYPosition = cardboardScreenY;
cardboardSettings->screenWidth = cardboardScreenWidth;
cardboardSettings->screenHeight = cardboardScreenHeight;
}
void PresentationCommon::CalculatePostShaderUniforms(int bufferWidth, int bufferHeight, int targetWidth, int targetHeight, const ShaderInfo *shaderInfo, PostShaderUniforms *uniforms) {
float u_delta = 1.0f / bufferWidth;
float v_delta = 1.0f / bufferHeight;
float u_pixel_delta = 1.0f / targetWidth;
float v_pixel_delta = 1.0f / targetHeight;
int flipCount = __DisplayGetFlipCount();
int vCount = __DisplayGetVCount();
float time[4] = { (float)time_now_d(), (vCount % 60) * 1.0f / 60.0f, (float)vCount, (float)(flipCount % 60) };
uniforms->texelDelta[0] = u_delta;
uniforms->texelDelta[1] = v_delta;
uniforms->pixelDelta[0] = u_pixel_delta;
uniforms->pixelDelta[1] = v_pixel_delta;
memcpy(uniforms->time, time, 4 * sizeof(float));
uniforms->timeDelta[0] = time[0] - previousUniforms_.time[0];
uniforms->timeDelta[1] = (time[2] - previousUniforms_.time[2]) * (1.0f / 60.0f);
uniforms->timeDelta[2] = time[2] - previousUniforms_.time[2];
uniforms->timeDelta[3] = time[3] != previousUniforms_.time[3] ? 1.0f : 0.0f;
uniforms->video = hasVideo_ ? 1.0f : 0.0f;
// The shader translator tacks this onto our shaders, if we don't set it they render garbage.
uniforms->gl_HalfPixel[0] = u_pixel_delta * 0.5f;
uniforms->gl_HalfPixel[1] = v_pixel_delta * 0.5f;
uniforms->setting[0] = g_Config.mPostShaderSetting[shaderInfo->section + "SettingValue1"];;
uniforms->setting[1] = g_Config.mPostShaderSetting[shaderInfo->section + "SettingValue2"];
uniforms->setting[2] = g_Config.mPostShaderSetting[shaderInfo->section + "SettingValue3"];
uniforms->setting[3] = g_Config.mPostShaderSetting[shaderInfo->section + "SettingValue4"];
}
static std::string ReadShaderSrc(const Path &filename) {
size_t sz = 0;
char *data = (char *)VFSReadFile(filename.c_str(), &sz);
if (!data) {
return "";
}
std::string src(data, sz);
delete[] data;
return src;
}
// Note: called on resize and settings changes.
bool PresentationCommon::UpdatePostShader() {
std::vector<const ShaderInfo *> shaderInfo;
if (!g_Config.vPostShaderNames.empty()) {
ReloadAllPostShaderInfo(draw_);
shaderInfo = GetFullPostShadersChain(g_Config.vPostShaderNames);
}
DestroyPostShader();
if (shaderInfo.empty())
return false;
bool usePreviousFrame = false;
bool usePreviousAtOutputResolution = false;
for (size_t i = 0; i < shaderInfo.size(); ++i) {
const ShaderInfo *next = i + 1 < shaderInfo.size() ? shaderInfo[i + 1] : nullptr;
if (!BuildPostShader(shaderInfo[i], next)) {
DestroyPostShader();
return false;
}
if (shaderInfo[i]->usePreviousFrame) {
usePreviousFrame = true;
usePreviousAtOutputResolution = shaderInfo[i]->outputResolution;
}
}
if (usePreviousFrame) {
int w = usePreviousAtOutputResolution ? pixelWidth_ : renderWidth_;
int h = usePreviousAtOutputResolution ? pixelHeight_ : renderHeight_;
static constexpr int FRAMES = 2;
previousFramebuffers_.resize(FRAMES);
previousIndex_ = 0;
for (int i = 0; i < FRAMES; ++i) {
previousFramebuffers_[i] = draw_->CreateFramebuffer({ w, h, 1, 1, false, "inter_presentation" });
if (!previousFramebuffers_[i]) {
DestroyPostShader();
return false;
}
}
}
usePostShader_ = true;
return true;
}
bool PresentationCommon::BuildPostShader(const ShaderInfo *shaderInfo, const ShaderInfo *next) {
std::string vsSourceGLSL = ReadShaderSrc(shaderInfo->vertexShaderFile);
std::string fsSourceGLSL = ReadShaderSrc(shaderInfo->fragmentShaderFile);
if (vsSourceGLSL.empty() || fsSourceGLSL.empty()) {
return false;
}
std::string vsError;
std::string fsError;
// All post shaders are written in GLSL 1.0 so that's what we pass in here as a "from" language.
Draw::ShaderModule *vs = CompileShaderModule(ShaderStage::Vertex, GLSL_1xx, vsSourceGLSL, &vsError);
Draw::ShaderModule *fs = CompileShaderModule(ShaderStage::Fragment, GLSL_1xx, fsSourceGLSL, &fsError);
// Don't worry, CompileShaderModule makes sure they get freed if one succeeded.
if (!fs || !vs) {
std::string errorString = vsError + "\n" + fsError;
// DO NOT turn this into an ERROR_LOG_REPORT, as it will pollute our logs with all kinds of
// user shader experiments.
ERROR_LOG(FRAMEBUF, "Failed to build post-processing program from %s and %s!\n%s", shaderInfo->vertexShaderFile.c_str(), shaderInfo->fragmentShaderFile.c_str(), errorString.c_str());
ShowPostShaderError(errorString);
return false;
}
UniformBufferDesc postShaderDesc{ sizeof(PostShaderUniforms), {
{ "gl_HalfPixel", 0, -1, UniformType::FLOAT4, offsetof(PostShaderUniforms, gl_HalfPixel) },
{ "u_texelDelta", 1, 1, UniformType::FLOAT2, offsetof(PostShaderUniforms, texelDelta) },
{ "u_pixelDelta", 2, 2, UniformType::FLOAT2, offsetof(PostShaderUniforms, pixelDelta) },
{ "u_time", 3, 3, UniformType::FLOAT4, offsetof(PostShaderUniforms, time) },
{ "u_timeDelta", 4, 4, UniformType::FLOAT4, offsetof(PostShaderUniforms, timeDelta) },
{ "u_setting", 5, 5, UniformType::FLOAT4, offsetof(PostShaderUniforms, setting) },
{ "u_video", 6, 6, UniformType::FLOAT1, offsetof(PostShaderUniforms, video) },
} };
Draw::Pipeline *pipeline = CreatePipeline({ vs, fs }, true, &postShaderDesc);
if (!pipeline)
return false;
if (!shaderInfo->outputResolution || next) {
int nextWidth = renderWidth_;
int nextHeight = renderHeight_;
// When chaining, we use the previous resolution as a base, rather than the render resolution.
if (!postShaderFramebuffers_.empty())
draw_->GetFramebufferDimensions(postShaderFramebuffers_.back(), &nextWidth, &nextHeight);
if (next && next->isUpscalingFilter) {
// Force 1x for this shader, so the next can upscale.
const bool isPortrait = g_Config.IsPortrait();
nextWidth = isPortrait ? 272 : 480;
nextHeight = isPortrait ? 480 : 272;
} else if (next && next->SSAAFilterLevel >= 2) {
// Increase the resolution this shader outputs for the next to SSAA.
nextWidth *= next->SSAAFilterLevel;
nextHeight *= next->SSAAFilterLevel;
} else if (shaderInfo->outputResolution) {
// If the current shader uses output res (not next), we will use output res for it.
FRect rc;
FRect frame = GetScreenFrame((float)pixelWidth_, (float)pixelHeight_);
CenterDisplayOutputRect(&rc, 480.0f, 272.0f, frame, g_Config.iInternalScreenRotation);
nextWidth = (int)rc.w;
nextHeight = (int)rc.h;
}
if (!AllocateFramebuffer(nextWidth, nextHeight)) {
pipeline->Release();
return false;
}
}
postShaderPipelines_.push_back(pipeline);
postShaderInfo_.push_back(*shaderInfo);
return true;
}
bool PresentationCommon::AllocateFramebuffer(int w, int h) {
using namespace Draw;
// First, let's try to find a framebuffer of the right size that is NOT the most recent.
Framebuffer *last = postShaderFramebuffers_.empty() ? nullptr : postShaderFramebuffers_.back();
for (const auto &prev : postShaderFBOUsage_) {
if (prev.w == w && prev.h == h && prev.fbo != last) {
// Great, this one's perfect. Ref it for when we release.
prev.fbo->AddRef();
postShaderFramebuffers_.push_back(prev.fbo);
return true;
}
}
// No depth/stencil for post processing
Draw::Framebuffer *fbo = draw_->CreateFramebuffer({ w, h, 1, 1, false, "presentation" });
if (!fbo) {
return false;
}
postShaderFBOUsage_.push_back({ fbo, w, h });
postShaderFramebuffers_.push_back(fbo);
return true;
}
void PresentationCommon::ShowPostShaderError(const std::string &errorString) {
// let's show the first line of the error string as an OSM.
std::set<std::string> blacklistedLines;
// These aren't useful to show, skip to the first interesting line.
blacklistedLines.insert("Fragment shader failed to compile with the following errors:");
blacklistedLines.insert("Vertex shader failed to compile with the following errors:");
blacklistedLines.insert("Compile failed.");
blacklistedLines.insert("");
std::string firstLine;
size_t start = 0;
for (size_t i = 0; i < errorString.size(); i++) {
if (errorString[i] == '\n' && i == start) {
start = i + 1;
} else if (errorString[i] == '\n') {
firstLine = errorString.substr(start, i - start);
if (blacklistedLines.find(firstLine) == blacklistedLines.end()) {
break;
}
start = i + 1;
firstLine.clear();
}
}
if (!firstLine.empty()) {
host->NotifyUserMessage("Post-shader error: " + firstLine + "...:\n" + errorString, 10.0f, 0xFF3090FF);
} else {
host->NotifyUserMessage("Post-shader error, see log for details", 10.0f, 0xFF3090FF);
}
}
void PresentationCommon::DeviceLost() {
DestroyDeviceObjects();
}
void PresentationCommon::DeviceRestore(Draw::DrawContext *draw) {
draw_ = draw;
CreateDeviceObjects();
}
Draw::Pipeline *PresentationCommon::CreatePipeline(std::vector<Draw::ShaderModule *> shaders, bool postShader, const UniformBufferDesc *uniformDesc) {
using namespace Draw;
Semantic pos = SEM_POSITION;
Semantic tc = SEM_TEXCOORD0;
// Shader translation marks these both as "TEXCOORDs" on HLSL...
if (postShader && (lang_ == HLSL_D3D11 || lang_ == HLSL_D3D9)) {
pos = SEM_TEXCOORD0;
tc = SEM_TEXCOORD1;
}
// TODO: Maybe get rid of color0.
InputLayoutDesc inputDesc = {
{
{ sizeof(Vertex), false },
},
{
{ 0, pos, DataFormat::R32G32B32_FLOAT, 0 },
{ 0, tc, DataFormat::R32G32_FLOAT, 12 },
{ 0, SEM_COLOR0, DataFormat::R8G8B8A8_UNORM, 20 },
},
};
InputLayout *inputLayout = draw_->CreateInputLayout(inputDesc);
DepthStencilState *depth = draw_->CreateDepthStencilState({ false, false, Comparison::LESS });
BlendState *blendstateOff = draw_->CreateBlendState({ false, 0xF });
RasterState *rasterNoCull = draw_->CreateRasterState({});
PipelineDesc pipelineDesc{ Primitive::TRIANGLE_LIST, shaders, inputLayout, depth, blendstateOff, rasterNoCull, uniformDesc };
Pipeline *pipeline = draw_->CreateGraphicsPipeline(pipelineDesc);
inputLayout->Release();
depth->Release();
blendstateOff->Release();
rasterNoCull->Release();
return pipeline;
}
void PresentationCommon::CreateDeviceObjects() {
using namespace Draw;
_assert_(vdata_ == nullptr);
vdata_ = draw_->CreateBuffer(sizeof(Vertex) * 8, BufferUsageFlag::DYNAMIC | BufferUsageFlag::VERTEXDATA);
// TODO: Use a triangle strip? Makes the UV rotation slightly more complex.
idata_ = draw_->CreateBuffer(sizeof(uint16_t) * 6, BufferUsageFlag::DYNAMIC | BufferUsageFlag::INDEXDATA);
uint16_t indexes[] = { 0, 1, 2, 0, 2, 3 };
draw_->UpdateBuffer(idata_, (const uint8_t *)indexes, 0, sizeof(indexes), Draw::UPDATE_DISCARD);
samplerNearest_ = draw_->CreateSamplerState({ TextureFilter::NEAREST, TextureFilter::NEAREST, TextureFilter::NEAREST, 0.0f, TextureAddressMode::CLAMP_TO_EDGE, TextureAddressMode::CLAMP_TO_EDGE, TextureAddressMode::CLAMP_TO_EDGE });
samplerLinear_ = draw_->CreateSamplerState({ TextureFilter::LINEAR, TextureFilter::LINEAR, TextureFilter::LINEAR, 0.0f, TextureAddressMode::CLAMP_TO_EDGE, TextureAddressMode::CLAMP_TO_EDGE, TextureAddressMode::CLAMP_TO_EDGE });
texColor_ = CreatePipeline({ draw_->GetVshaderPreset(VS_TEXTURE_COLOR_2D), draw_->GetFshaderPreset(FS_TEXTURE_COLOR_2D) }, false, &vsTexColBufDesc);
texColorRBSwizzle_ = CreatePipeline({ draw_->GetVshaderPreset(VS_TEXTURE_COLOR_2D), draw_->GetFshaderPreset(FS_TEXTURE_COLOR_2D_RB_SWIZZLE) }, false, &vsTexColBufDesc);
if (restorePostShader_)
UpdatePostShader();
restorePostShader_ = false;
}
template <typename T>
static void DoRelease(T *&obj) {
if (obj)
obj->Release();
obj = nullptr;
}
template <typename T>
static void DoReleaseVector(std::vector<T *> &list) {
for (auto &obj : list)
obj->Release();
list.clear();
}
void PresentationCommon::DestroyDeviceObjects() {
DoRelease(texColor_);
DoRelease(texColorRBSwizzle_);
DoRelease(samplerNearest_);
DoRelease(samplerLinear_);
DoRelease(vdata_);
DoRelease(idata_);
DoRelease(srcTexture_);
DoRelease(srcFramebuffer_);
restorePostShader_ = usePostShader_;
DestroyPostShader();
}
void PresentationCommon::DestroyPostShader() {
usePostShader_ = false;
DoReleaseVector(postShaderModules_);
DoReleaseVector(postShaderPipelines_);
DoReleaseVector(postShaderFramebuffers_);
DoReleaseVector(previousFramebuffers_);
postShaderInfo_.clear();
postShaderFBOUsage_.clear();
}
Draw::ShaderModule *PresentationCommon::CompileShaderModule(ShaderStage stage, ShaderLanguage lang, const std::string &src, std::string *errorString) {
std::string translated = src;
if (lang != lang_) {
// Gonna have to upconvert the shader.
if (!TranslateShader(&translated, lang_, draw_->GetShaderLanguageDesc(), nullptr, src, lang, stage, errorString)) {
ERROR_LOG(FRAMEBUF, "Failed to translate post-shader. Error string: '%s'\nSource code:\n%s\n", errorString->c_str(), src.c_str());
return nullptr;
}
}
Draw::ShaderModule *shader = draw_->CreateShaderModule(stage, lang_, (const uint8_t *)translated.c_str(), translated.size(), "postshader");
if (shader)
postShaderModules_.push_back(shader);
return shader;
}
void PresentationCommon::SourceTexture(Draw::Texture *texture, int bufferWidth, int bufferHeight) {
DoRelease(srcTexture_);
DoRelease(srcFramebuffer_);
texture->AddRef();
srcTexture_ = texture;
srcWidth_ = bufferWidth;
srcHeight_ = bufferHeight;
}
void PresentationCommon::SourceFramebuffer(Draw::Framebuffer *fb, int bufferWidth, int bufferHeight) {
DoRelease(srcTexture_);
DoRelease(srcFramebuffer_);
fb->AddRef();
srcFramebuffer_ = fb;
srcWidth_ = bufferWidth;
srcHeight_ = bufferHeight;
}
void PresentationCommon::BindSource(int binding) {
if (srcTexture_) {
draw_->BindTexture(binding, srcTexture_);
} else if (srcFramebuffer_) {
draw_->BindFramebufferAsTexture(srcFramebuffer_, binding, Draw::FB_COLOR_BIT, 0);
} else {
_assert_(false);
}
}
void PresentationCommon::UpdateUniforms(bool hasVideo) {
hasVideo_ = hasVideo;
}
void PresentationCommon::CopyToOutput(OutputFlags flags, int uvRotation, float u0, float v0, float u1, float v1) {
draw_->InvalidateCachedState();
// TODO: If shader objects have been created by now, we might have received errors.
// GLES can have the shader fail later, shader->failed / shader->error.
// This should auto-disable usePostShader_ and call ShowPostShaderError().
bool useNearest = flags & OutputFlags::NEAREST;
const bool usePostShader = usePostShader_ && !(flags & OutputFlags::RB_SWIZZLE);
const bool isFinalAtOutputResolution = usePostShader && postShaderFramebuffers_.size() < postShaderPipelines_.size();
Draw::Framebuffer *postShaderOutput = nullptr;
int lastWidth = srcWidth_;
int lastHeight = srcHeight_;
int pixelWidth = pixelWidth_;
int pixelHeight = pixelHeight_;
// These are the output coordinates.
FRect frame = GetScreenFrame((float)pixelWidth, (float)pixelHeight);
// Note: In cardboard mode, we halve the width here to compensate
// for splitting the window in half, while still reusing normal centering.
if (g_Config.bEnableCardboardVR) {
frame.w /= 2.0;
pixelWidth /= 2;
}
FRect rc;
CenterDisplayOutputRect(&rc, 480.0f, 272.0f, frame, uvRotation);
if (GetGPUBackend() == GPUBackend::DIRECT3D9) {
rc.x -= 0.5f;
// This is plus because the top is larger y.
rc.y += 0.5f;
}
if ((flags & OutputFlags::BACKBUFFER_FLIPPED) || (flags & OutputFlags::POSITION_FLIPPED)) {
std::swap(v0, v1);
}
// To make buffer updates easier, we use one array of verts.
int postVertsOffset = (int)sizeof(Vertex) * 4;
Vertex verts[8] = {
{ rc.x, rc.y, 0, u0, v0, 0xFFFFFFFF }, // TL
{ rc.x, rc.y + rc.h, 0, u0, v1, 0xFFFFFFFF }, // BL
{ rc.x + rc.w, rc.y + rc.h, 0, u1, v1, 0xFFFFFFFF }, // BR
{ rc.x + rc.w, rc.y, 0, u1, v0, 0xFFFFFFFF }, // TR
};
float invDestW = 2.0f / pixelWidth;
float invDestH = 2.0f / pixelHeight;
for (int i = 0; i < 4; i++) {
verts[i].x = verts[i].x * invDestW - 1.0f;
verts[i].y = verts[i].y * invDestH - 1.0f;
}
if (uvRotation != ROTATION_LOCKED_HORIZONTAL) {
struct {
float u;
float v;
} temp[4];
int rotation = 0;
// Vertical and Vertical180 needed swapping after we changed the coordinate system.
switch (uvRotation) {
case ROTATION_LOCKED_HORIZONTAL180: rotation = 2; break;
case ROTATION_LOCKED_VERTICAL: rotation = 3; break;
case ROTATION_LOCKED_VERTICAL180: rotation = 1; break;
}
// If we flipped, we rotate the other way.
if ((flags & OutputFlags::BACKBUFFER_FLIPPED) || (flags & OutputFlags::POSITION_FLIPPED)) {
if ((rotation & 1) != 0)
rotation ^= 2;
}
for (int i = 0; i < 4; i++) {
temp[i].u = verts[(i + rotation) & 3].u;
temp[i].v = verts[(i + rotation) & 3].v;
}
for (int i = 0; i < 4; i++) {
verts[i].u = temp[i].u;
verts[i].v = temp[i].v;
}
}
if (isFinalAtOutputResolution) {
// In this mode, we ignore the g_display_rot_matrix. Apply manually.
if (g_display_rotation != DisplayRotation::ROTATE_0) {
for (int i = 0; i < 4; i++) {
Lin::Vec3 v(verts[i].x, verts[i].y, verts[i].z);
// Backwards notation, should fix that...
v = v * g_display_rot_matrix;
verts[i].x = v.x;
verts[i].y = v.y;
}
}
}
if (flags & OutputFlags::PILLARBOX) {
for (int i = 0; i < 4; i++) {
// Looks about right.
verts[i].x *= 0.75f;
}
}
// Grab the previous framebuffer early so we can change previousIndex_ when we want.
Draw::Framebuffer *previousFramebuffer = previousFramebuffers_.empty() ? nullptr : previousFramebuffers_[previousIndex_];
PostShaderUniforms uniforms;
const auto performShaderPass = [&](const ShaderInfo *shaderInfo, Draw::Framebuffer *postShaderFramebuffer, Draw::Pipeline *postShaderPipeline) {
if (postShaderOutput) {
draw_->BindFramebufferAsTexture(postShaderOutput, 0, Draw::FB_COLOR_BIT, 0);
} else {
BindSource(0);
}
BindSource(1);
if (shaderInfo->usePreviousFrame)
draw_->BindFramebufferAsTexture(previousFramebuffer, 2, Draw::FB_COLOR_BIT, 0);
int nextWidth, nextHeight;
draw_->GetFramebufferDimensions(postShaderFramebuffer, &nextWidth, &nextHeight);
Draw::Viewport viewport{ 0, 0, (float)nextWidth, (float)nextHeight, 0.0f, 1.0f };
draw_->SetViewports(1, &viewport);
draw_->SetScissorRect(0, 0, nextWidth, nextHeight);
CalculatePostShaderUniforms(lastWidth, lastHeight, nextWidth, nextHeight, shaderInfo, &uniforms);
draw_->BindPipeline(postShaderPipeline);
draw_->UpdateDynamicUniformBuffer(&uniforms, sizeof(uniforms));
Draw::SamplerState *sampler = useNearest || shaderInfo->isUpscalingFilter ? samplerNearest_ : samplerLinear_;
draw_->BindSamplerStates(0, 1, &sampler);
draw_->BindSamplerStates(1, 1, &sampler);
if (shaderInfo->usePreviousFrame)
draw_->BindSamplerStates(2, 1, &sampler);
draw_->BindVertexBuffers(0, 1, &vdata_, &postVertsOffset);
draw_->BindIndexBuffer(idata_, 0);
draw_->DrawIndexed(6, 0);
draw_->BindIndexBuffer(nullptr, 0);
postShaderOutput = postShaderFramebuffer;
lastWidth = nextWidth;
lastHeight = nextHeight;
};
if (usePostShader) {
bool flipped = flags & OutputFlags::POSITION_FLIPPED;
float post_v0 = !flipped ? 1.0f : 0.0f;
float post_v1 = !flipped ? 0.0f : 1.0f;
verts[4] = { -1, -1, 0, 0, post_v1, 0xFFFFFFFF }; // TL
verts[5] = { -1, 1, 0, 0, post_v0, 0xFFFFFFFF }; // BL
verts[6] = { 1, 1, 0, 1, post_v0, 0xFFFFFFFF }; // BR
verts[7] = { 1, -1, 0, 1, post_v1, 0xFFFFFFFF }; // TR
draw_->UpdateBuffer(vdata_, (const uint8_t *)verts, 0, sizeof(verts), Draw::UPDATE_DISCARD);
for (size_t i = 0; i < postShaderFramebuffers_.size(); ++i) {
Draw::Pipeline *postShaderPipeline = postShaderPipelines_[i];
const ShaderInfo *shaderInfo = &postShaderInfo_[i];
Draw::Framebuffer *postShaderFramebuffer = postShaderFramebuffers_[i];
if (!isFinalAtOutputResolution && i == postShaderFramebuffers_.size() - 1 && !previousFramebuffers_.empty()) {
// This is the last pass and we're going direct to the backbuffer after this.
// Redirect output to a separate framebuffer to keep the previous frame.
previousIndex_++;
if (previousIndex_ >= (int)previousFramebuffers_.size())
previousIndex_ = 0;
postShaderFramebuffer = previousFramebuffers_[previousIndex_];
}
draw_->BindFramebufferAsRenderTarget(postShaderFramebuffer, { Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE }, "PostShader");
performShaderPass(shaderInfo, postShaderFramebuffer, postShaderPipeline);
}
if (isFinalAtOutputResolution && postShaderInfo_.back().isUpscalingFilter)
useNearest = true;
} else {
draw_->UpdateBuffer(vdata_, (const uint8_t *)verts, 0, postVertsOffset, Draw::UPDATE_DISCARD);
}
// If we need to save the previous frame, we have to save any final pass in a framebuffer.
if (isFinalAtOutputResolution && !previousFramebuffers_.empty()) {
Draw::Pipeline *postShaderPipeline = postShaderPipelines_.back();
const ShaderInfo *shaderInfo = &postShaderInfo_.back();
// Pick the next to render to.
previousIndex_++;
if (previousIndex_ >= (int)previousFramebuffers_.size())
previousIndex_ = 0;
Draw::Framebuffer *postShaderFramebuffer = previousFramebuffers_[previousIndex_];
draw_->BindFramebufferAsRenderTarget(postShaderFramebuffer, { Draw::RPAction::CLEAR, Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE }, "InterFrameBlit");
performShaderPass(shaderInfo, postShaderFramebuffer, postShaderPipeline);
}
Draw::Pipeline *pipeline = (flags & OutputFlags::RB_SWIZZLE) ? texColorRBSwizzle_ : texColor_;
if (isFinalAtOutputResolution && previousFramebuffers_.empty()) {
pipeline = postShaderPipelines_.back();
}
draw_->BindFramebufferAsRenderTarget(nullptr, { Draw::RPAction::CLEAR, Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE }, "FinalBlit");
draw_->SetScissorRect(0, 0, pixelWidth_, pixelHeight_);
draw_->BindPipeline(pipeline);
if (postShaderOutput) {
draw_->BindFramebufferAsTexture(postShaderOutput, 0, Draw::FB_COLOR_BIT, 0);
} else {
BindSource(0);
}
BindSource(1);
if (isFinalAtOutputResolution && previousFramebuffers_.empty()) {
CalculatePostShaderUniforms(lastWidth, lastHeight, (int)rc.w, (int)rc.h, &postShaderInfo_.back(), &uniforms);
draw_->UpdateDynamicUniformBuffer(&uniforms, sizeof(uniforms));
} else {
Draw::VsTexColUB ub{};
memcpy(ub.WorldViewProj, g_display_rot_matrix.m, sizeof(float) * 16);
draw_->UpdateDynamicUniformBuffer(&ub, sizeof(ub));
}
draw_->BindVertexBuffers(0, 1, &vdata_, nullptr);
draw_->BindIndexBuffer(idata_, 0);
Draw::SamplerState *sampler = useNearest ? samplerNearest_ : samplerLinear_;
draw_->BindSamplerStates(0, 1, &sampler);
draw_->BindSamplerStates(1, 1, &sampler);
auto setViewport = [&](float x, float y, float w, float h) {
Draw::Viewport viewport{ x, y, w, h, 0.0f, 1.0f };
draw_->SetViewports(1, &viewport);
};
CardboardSettings cardboardSettings;
GetCardboardSettings(&cardboardSettings);
if (cardboardSettings.enabled) {
// This is what the left eye sees.
setViewport(cardboardSettings.leftEyeXPosition, cardboardSettings.screenYPosition, cardboardSettings.screenWidth, cardboardSettings.screenHeight);
draw_->DrawIndexed(6, 0);
// And this is the right eye, unless they're a pirate.
setViewport(cardboardSettings.rightEyeXPosition, cardboardSettings.screenYPosition, cardboardSettings.screenWidth, cardboardSettings.screenHeight);
draw_->DrawIndexed(6, 0);
} else {
setViewport(0.0f, 0.0f, (float)pixelWidth_, (float)pixelHeight_);
draw_->DrawIndexed(6, 0);
}
DoRelease(srcFramebuffer_);
DoRelease(srcTexture_);
// Unbinds all textures and samplers too, needed since sometimes a MakePixelTexture is deleted etc.
draw_->InvalidateCachedState();
previousUniforms_ = uniforms;
}
void PresentationCommon::CalculateRenderResolution(int *width, int *height, int *scaleFactor, bool *upscaling, bool *ssaa) {
// Check if postprocessing shader is doing upscaling as it requires native resolution
std::vector<const ShaderInfo *> shaderInfo;
if (!g_Config.vPostShaderNames.empty()) {
ReloadAllPostShaderInfo(draw_);
shaderInfo = GetFullPostShadersChain(g_Config.vPostShaderNames);
}
bool firstIsUpscalingFilter = shaderInfo.empty() ? false : shaderInfo.front()->isUpscalingFilter;
int firstSSAAFilterLevel = shaderInfo.empty() ? 0 : shaderInfo.front()->SSAAFilterLevel;
// Actually, auto mode should be more granular...
// Round up to a zoom factor for the render size.
int zoom = g_Config.iInternalResolution;
if (zoom == 0 || firstSSAAFilterLevel >= 2) {
// auto mode, use the longest dimension
if (!g_Config.IsPortrait()) {
zoom = (PSP_CoreParameter().pixelWidth + 479) / 480;
} else {
zoom = (PSP_CoreParameter().pixelHeight + 479) / 480;
}
if (firstSSAAFilterLevel >= 2)
zoom *= firstSSAAFilterLevel;
}
if (zoom <= 1 || firstIsUpscalingFilter)
zoom = 1;
if (upscaling) {
*upscaling = firstIsUpscalingFilter;
for (auto &info : shaderInfo) {
*upscaling = *upscaling || info->isUpscalingFilter;
}
}
if (ssaa) {
*ssaa = firstSSAAFilterLevel >= 2;
for (auto &info : shaderInfo) {
*ssaa = *ssaa || info->SSAAFilterLevel >= 2;
}
}
if (g_Config.IsPortrait()) {
*width = 272 * zoom;
*height = 480 * zoom;
} else {
*width = 480 * zoom;
*height = 272 * zoom;
}
*scaleFactor = zoom;
}