ppsspp/Common/Hashmaps.h
2017-08-31 17:15:22 +02:00

309 lines
7.1 KiB
C++

#pragma once
#include <cstring>
#include <vector>
#include "ext/xxhash.h"
#include "Common/CommonFuncs.h"
// Whatever random value.
const uint32_t hashmapSeed = 0x23B58532;
// TODO: Try hardware CRC. Unfortunately not available on older Intels or ARM32.
// Seems to be ubiquitous on ARM64 though.
template<class K>
inline uint32_t HashKey(const K &k) {
return XXH32(&k, sizeof(k), hashmapSeed);
}
template<class K>
inline bool KeyEquals(const K &a, const K &b) {
return !memcmp(&a, &b, sizeof(K));
}
enum class BucketState {
FREE,
TAKEN,
REMOVED, // for linear probing to work (and removal during deletion) we need tombstones
};
// Uses linear probing for cache-friendliness. Not segregating values from keys because
// we always use very small values, so it's probably better to have them in the same
// cache-line as the corresponding key.
// Enforces that value are pointers to make sure that combined storage makes sense.
template <class Key, class Value, Value NullValue>
class DenseHashMap {
public:
DenseHashMap(int initialCapacity) : capacity_(initialCapacity) {
map.resize(initialCapacity);
}
// Returns nullptr if no entry was found.
Value Get(const Key &key) {
uint32_t mask = capacity_ - 1;
uint32_t pos = HashKey(key) & mask;
// No? Let's go into search mode. Linear probing.
uint32_t p = pos;
while (true) {
if (map[p].state == BucketState::TAKEN && KeyEquals(key, map[p].key))
return map[p].value;
else if (map[p].state == BucketState::FREE)
return NullValue;
p = (p + 1) & mask; // If the state is REMOVED, we just keep on walking.
if (p == pos)
Crash();
}
return NullValue;
}
// Returns false if we already had the key! Which is a bit different.
bool Insert(const Key &key, Value value) {
// Check load factor, resize if necessary. We never shrink.
if (count_ > capacity_ / 2) {
Grow(2);
}
uint32_t mask = capacity_ - 1;
uint32_t pos = HashKey(key) & mask;
uint32_t p = pos;
while (true) {
if (map[p].state == BucketState::TAKEN) {
if (KeyEquals(key, map[p].key)) {
Crash(); // Bad! We already got this one. Let's avoid this case.
return false;
}
// continue looking....
} else {
// Got a place, either removed or FREE.
break;
}
p = (p + 1) & mask;
if (p == pos) {
// FULL! Error. Should not happen thanks to Grow().
Crash();
}
}
if (map[p].state == BucketState::REMOVED) {
removedCount_--;
}
map[p].state = BucketState::TAKEN;
map[p].key = key;
map[p].value = value;
count_++;
return true;
}
bool Remove(const Key &key) {
uint32_t mask = capacity_ - 1;
uint32_t pos = HashKey(key) & mask;
uint32_t p = pos;
while (map[p].state != BucketState::FREE) {
if (map[p].state == BucketState::TAKEN && KeyEquals(key, map[p].key)) {
// Got it! Mark it as removed.
map[p].state = BucketState::REMOVED;
removedCount_++;
count_--;
return true;
}
p = (p + 1) & mask;
if (p == pos) {
// FULL! Error. Should not happen.
Crash();
}
}
return false;
}
size_t size() const {
return count_;
}
template<class T>
inline void Iterate(T func) {
for (auto &iter : map) {
if (iter.state == BucketState::TAKEN) {
func(iter.key, iter.value);
}
}
}
void Clear() {
// TODO: Speedup?
map.clear();
map.resize(capacity_);
}
void Rebuild() {
Grow(1);
}
void Maintain() {
// Heuristic
if (removedCount_ >= capacity_ / 4) {
Rebuild();
}
}
private:
void Grow(int factor) {
// We simply move out the existing data, then we re-insert the old.
// This is extremely non-atomic and will need synchronization.
std::vector<Pair> old = std::move(map);
capacity_ *= factor;
map.clear();
map.resize(capacity_);
count_ = 0; // Insert will update it.
removedCount_ = 0;
for (auto &iter : old) {
if (iter.state == BucketState::TAKEN) {
Insert(iter.key, iter.value);
}
}
}
struct Pair {
BucketState state;
Key key;
Value value;
};
std::vector<Pair> map;
int capacity_;
int count_ = 0;
int removedCount_ = 0;
};
// Like the above, uses linear probing for cache-friendliness.
// Does not perform hashing at all so expects well-distributed keys.
template <class Value, Value NullValue>
class PrehashMap {
public:
PrehashMap(int initialCapacity) : capacity_(initialCapacity) {
map.resize(initialCapacity);
}
// Returns nullptr if no entry was found.
Value Get(uint32_t hash) {
uint32_t mask = capacity_ - 1;
uint32_t pos = hash & mask;
// No? Let's go into search mode. Linear probing.
uint32_t p = pos;
while (true) {
if (map[p].state == BucketState::TAKEN && hash == map[p].hash)
return map[p].value;
else if (map[p].state == BucketState::FREE)
return NullValue;
p = (p + 1) & mask; // If the state is REMOVED, we just keep on walking.
if (p == pos)
Crash();
}
return NullValue;
}
// Returns false if we already had the key! Which is a bit different.
bool Insert(uint32_t hash, Value value) {
// Check load factor, resize if necessary. We never shrink.
if (count_ > capacity_ / 2) {
Grow(2);
}
uint32_t mask = capacity_ - 1;
uint32_t pos = hash & mask;
uint32_t p = pos;
while (map[p].state != BucketState::FREE) {
if (map[p].state == BucketState::TAKEN) {
if (hash == map[p].hash)
return false; // Bad!
} else {
// Got a place, either removed or FREE.
break;
}
p = (p + 1) & mask;
if (p == pos) {
// FULL! Error. Should not happen thanks to Grow().
Crash();
}
}
if (map[p].state == BucketState::REMOVED) {
removedCount_--;
}
map[p].state = BucketState::TAKEN;
map[p].hash = hash;
map[p].value = value;
count_++;
return true;
}
bool Remove(uint32_t hash) {
uint32_t mask = capacity_ - 1;
uint32_t pos = hash & mask;
uint32_t p = pos;
while (map[p].state != BucketState::FREE) {
if (map[p].state == BucketState::TAKEN && hash == map[p].hash) {
// Got it!
map[p].state = BucketState::REMOVED;
removedCount_++;
count_--;
return true;
}
p = (p + 1) & mask;
if (p == pos) {
Crash();
}
}
return false;
}
size_t size() {
return count_;
}
template<class T>
void Iterate(T func) {
for (auto &iter : map) {
if (iter.state == BucketState::TAKEN) {
func(iter.hash, iter.value);
}
}
}
void Clear() {
// TODO: Speedup?
map.clear();
map.resize(capacity_);
}
// Gets rid of REMOVED tombstones, making lookups somewhat more efficient.
void Rebuild() {
Grow(1);
}
void Maintain() {
// Heuristic
if (removedCount_ >= capacity_ / 4) {
Rebuild();
}
}
private:
void Grow(int factor) {
// We simply move out the existing data, then we re-insert the old.
// This is extremely non-atomic and will need synchronization.
std::vector<Pair> old = std::move(map);
capacity_ *= factor;
map.clear();
map.resize(capacity_);
count_ = 0; // Insert will update it.
removedCount_ = 0;
for (auto &iter : old) {
if (iter.state == BucketState::TAKEN) {
Insert(iter.hash, iter.value);
}
}
}
struct Pair {
BucketState state;
uint32_t hash;
Value value;
};
std::vector<Pair> map;
int capacity_;
int count_ = 0;
int removedCount_ = 0;
};