mirror of
https://github.com/hrydgard/ppsspp.git
synced 2025-02-25 00:22:10 +00:00
1737 lines
69 KiB
C++
1737 lines
69 KiB
C++
#include <unordered_map>
|
|
|
|
#include "DataFormat.h"
|
|
#include "Common/Log.h"
|
|
#include "Common/TimeUtil.h"
|
|
#include "VulkanQueueRunner.h"
|
|
#include "VulkanRenderManager.h"
|
|
|
|
// Debug help: adb logcat -s DEBUG PPSSPPNativeActivity PPSSPP NativeGLView NativeRenderer NativeSurfaceView PowerSaveModeReceiver InputDeviceState
|
|
|
|
void VulkanQueueRunner::CreateDeviceObjects() {
|
|
INFO_LOG(G3D, "VulkanQueueRunner::CreateDeviceObjects");
|
|
InitBackbufferRenderPass();
|
|
|
|
framebufferRenderPass_ = GetRenderPass(VKRRenderPassAction::CLEAR, VKRRenderPassAction::CLEAR, VKRRenderPassAction::CLEAR,
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
|
|
|
|
#if 0
|
|
// Just to check whether it makes sense to split some of these. drawidx is way bigger than the others...
|
|
// We should probably just move to variable-size data in a raw buffer anyway...
|
|
VkRenderData rd;
|
|
INFO_LOG(G3D, "sizeof(pipeline): %d", (int)sizeof(rd.pipeline));
|
|
INFO_LOG(G3D, "sizeof(draw): %d", (int)sizeof(rd.draw));
|
|
INFO_LOG(G3D, "sizeof(drawidx): %d", (int)sizeof(rd.drawIndexed));
|
|
INFO_LOG(G3D, "sizeof(clear): %d", (int)sizeof(rd.clear));
|
|
INFO_LOG(G3D, "sizeof(viewport): %d", (int)sizeof(rd.viewport));
|
|
INFO_LOG(G3D, "sizeof(scissor): %d", (int)sizeof(rd.scissor));
|
|
INFO_LOG(G3D, "sizeof(blendColor): %d", (int)sizeof(rd.blendColor));
|
|
INFO_LOG(G3D, "sizeof(push): %d", (int)sizeof(rd.push));
|
|
#endif
|
|
}
|
|
|
|
void VulkanQueueRunner::ResizeReadbackBuffer(VkDeviceSize requiredSize) {
|
|
if (readbackBuffer_ && requiredSize <= readbackBufferSize_) {
|
|
return;
|
|
}
|
|
if (readbackMemory_) {
|
|
vulkan_->Delete().QueueDeleteDeviceMemory(readbackMemory_);
|
|
}
|
|
if (readbackBuffer_) {
|
|
vulkan_->Delete().QueueDeleteBuffer(readbackBuffer_);
|
|
}
|
|
|
|
readbackBufferSize_ = requiredSize;
|
|
|
|
VkDevice device = vulkan_->GetDevice();
|
|
|
|
VkBufferCreateInfo buf{ VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
buf.size = readbackBufferSize_;
|
|
buf.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
vkCreateBuffer(device, &buf, nullptr, &readbackBuffer_);
|
|
|
|
VkMemoryRequirements reqs{};
|
|
vkGetBufferMemoryRequirements(device, readbackBuffer_, &reqs);
|
|
|
|
VkMemoryAllocateInfo allocInfo{ VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
|
|
allocInfo.allocationSize = reqs.size;
|
|
|
|
// For speedy readbacks, we want the CPU cache to be enabled. However on most hardware we then have to
|
|
// sacrifice coherency, which means manual flushing. But try to find such memory first! If no cached
|
|
// memory type is available we fall back to just coherent.
|
|
const VkFlags desiredTypes[] = {
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
};
|
|
VkFlags successTypeReqs = 0;
|
|
for (VkFlags typeReqs : desiredTypes) {
|
|
if (vulkan_->MemoryTypeFromProperties(reqs.memoryTypeBits, typeReqs, &allocInfo.memoryTypeIndex)) {
|
|
successTypeReqs = typeReqs;
|
|
break;
|
|
}
|
|
}
|
|
_assert_(successTypeReqs != 0);
|
|
readbackBufferIsCoherent_ = (successTypeReqs & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0;
|
|
|
|
VkResult res = vkAllocateMemory(device, &allocInfo, nullptr, &readbackMemory_);
|
|
if (res != VK_SUCCESS) {
|
|
readbackMemory_ = VK_NULL_HANDLE;
|
|
vkDestroyBuffer(device, readbackBuffer_, nullptr);
|
|
readbackBuffer_ = VK_NULL_HANDLE;
|
|
return;
|
|
}
|
|
uint32_t offset = 0;
|
|
vkBindBufferMemory(device, readbackBuffer_, readbackMemory_, offset);
|
|
}
|
|
|
|
void VulkanQueueRunner::DestroyDeviceObjects() {
|
|
INFO_LOG(G3D, "VulkanQueueRunner::DestroyDeviceObjects");
|
|
vulkan_->Delete().QueueDeleteDeviceMemory(readbackMemory_);
|
|
vulkan_->Delete().QueueDeleteBuffer(readbackBuffer_);
|
|
readbackBufferSize_ = 0;
|
|
|
|
renderPasses_.Iterate([&](const RPKey &rpkey, VkRenderPass rp) {
|
|
_assert_(rp != VK_NULL_HANDLE);
|
|
vulkan_->Delete().QueueDeleteRenderPass(rp);
|
|
});
|
|
renderPasses_.Clear();
|
|
|
|
_assert_(backbufferRenderPass_ != VK_NULL_HANDLE);
|
|
vulkan_->Delete().QueueDeleteRenderPass(backbufferRenderPass_);
|
|
backbufferRenderPass_ = VK_NULL_HANDLE;
|
|
}
|
|
|
|
void VulkanQueueRunner::InitBackbufferRenderPass() {
|
|
VkAttachmentDescription attachments[2];
|
|
attachments[0].format = vulkan_->GetSwapchainFormat();
|
|
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
|
|
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
|
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // We don't want to preserve the backbuffer between frames so we really don't care.
|
|
attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; // We only render once to the backbuffer per frame so we can do this here.
|
|
attachments[0].flags = 0;
|
|
|
|
attachments[1].format = vulkan_->GetDeviceInfo().preferredDepthStencilFormat; // must use this same format later for the back depth buffer.
|
|
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
|
|
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // Don't care about storing backbuffer Z - we clear it anyway.
|
|
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_DEPTH_STENCIL
|
|
attachments[1].initialLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
attachments[1].finalLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
#else
|
|
attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
#endif
|
|
attachments[1].flags = 0;
|
|
|
|
VkAttachmentReference color_reference{};
|
|
color_reference.attachment = 0;
|
|
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_COLOR
|
|
color_reference.layout = VK_IMAGE_LAYOUT_GENERAL;
|
|
#else
|
|
color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
#endif
|
|
|
|
VkAttachmentReference depth_reference{};
|
|
depth_reference.attachment = 1;
|
|
depth_reference.layout = attachments[1].finalLayout;
|
|
|
|
VkSubpassDescription subpass{};
|
|
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
|
subpass.flags = 0;
|
|
subpass.inputAttachmentCount = 0;
|
|
subpass.pInputAttachments = nullptr;
|
|
subpass.colorAttachmentCount = 1;
|
|
subpass.pColorAttachments = &color_reference;
|
|
subpass.pResolveAttachments = nullptr;
|
|
subpass.pDepthStencilAttachment = &depth_reference;
|
|
subpass.preserveAttachmentCount = 0;
|
|
subpass.pPreserveAttachments = nullptr;
|
|
|
|
// For the built-in layout transitions.
|
|
VkSubpassDependency dep{};
|
|
dep.srcSubpass = VK_SUBPASS_EXTERNAL;
|
|
dep.dstSubpass = 0;
|
|
dep.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dep.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dep.srcAccessMask = 0;
|
|
dep.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
|
|
VkRenderPassCreateInfo rp_info{ VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO };
|
|
rp_info.attachmentCount = 2;
|
|
rp_info.pAttachments = attachments;
|
|
rp_info.subpassCount = 1;
|
|
rp_info.pSubpasses = &subpass;
|
|
rp_info.dependencyCount = 1;
|
|
rp_info.pDependencies = &dep;
|
|
|
|
VkResult res = vkCreateRenderPass(vulkan_->GetDevice(), &rp_info, nullptr, &backbufferRenderPass_);
|
|
_assert_(res == VK_SUCCESS);
|
|
}
|
|
|
|
VkRenderPass VulkanQueueRunner::GetRenderPass(const RPKey &key) {
|
|
auto pass = renderPasses_.Get(key);
|
|
if (pass) {
|
|
return pass;
|
|
}
|
|
|
|
VkAttachmentDescription attachments[2] = {};
|
|
attachments[0].format = VK_FORMAT_R8G8B8A8_UNORM;
|
|
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
|
|
switch (key.colorLoadAction) {
|
|
case VKRRenderPassAction::CLEAR:
|
|
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
break;
|
|
case VKRRenderPassAction::KEEP:
|
|
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
|
|
break;
|
|
case VKRRenderPassAction::DONT_CARE:
|
|
default:
|
|
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
break;
|
|
}
|
|
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
|
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_COLOR
|
|
attachments[0].initialLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
attachments[0].finalLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
#else
|
|
attachments[0].initialLayout = key.prevColorLayout;
|
|
attachments[0].finalLayout = key.finalColorLayout;
|
|
#endif
|
|
attachments[0].flags = 0;
|
|
|
|
attachments[1].format = vulkan_->GetDeviceInfo().preferredDepthStencilFormat;
|
|
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
|
|
switch (key.depthLoadAction) {
|
|
case VKRRenderPassAction::CLEAR:
|
|
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
break;
|
|
case VKRRenderPassAction::KEEP:
|
|
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
|
|
break;
|
|
case VKRRenderPassAction::DONT_CARE:
|
|
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
break;
|
|
}
|
|
switch (key.stencilLoadAction) {
|
|
case VKRRenderPassAction::CLEAR:
|
|
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
break;
|
|
case VKRRenderPassAction::KEEP:
|
|
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
|
|
break;
|
|
case VKRRenderPassAction::DONT_CARE:
|
|
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
break;
|
|
}
|
|
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
|
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
|
|
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_DEPTH_STENCIL
|
|
attachments[1].initialLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
attachments[1].finalLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
#else
|
|
attachments[1].initialLayout = key.prevDepthLayout;
|
|
attachments[1].finalLayout = key.finalDepthStencilLayout;
|
|
#endif
|
|
attachments[1].flags = 0;
|
|
|
|
VkAttachmentReference color_reference{};
|
|
color_reference.attachment = 0;
|
|
color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
|
|
VkAttachmentReference depth_reference{};
|
|
depth_reference.attachment = 1;
|
|
depth_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
|
|
VkSubpassDescription subpass{};
|
|
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
|
subpass.flags = 0;
|
|
subpass.inputAttachmentCount = 0;
|
|
subpass.pInputAttachments = nullptr;
|
|
subpass.colorAttachmentCount = 1;
|
|
subpass.pColorAttachments = &color_reference;
|
|
subpass.pResolveAttachments = nullptr;
|
|
subpass.pDepthStencilAttachment = &depth_reference;
|
|
subpass.preserveAttachmentCount = 0;
|
|
subpass.pPreserveAttachments = nullptr;
|
|
|
|
VkSubpassDependency deps[2]{};
|
|
int numDeps = 0;
|
|
switch (key.prevColorLayout) {
|
|
case VK_IMAGE_LAYOUT_UNDEFINED:
|
|
// No need to specify stage or access.
|
|
break;
|
|
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
|
|
// Already the right color layout. Unclear that we need to do a lot here..
|
|
break;
|
|
case VK_IMAGE_LAYOUT_GENERAL:
|
|
// We came from the Mali workaround, and are transitioning back to COLOR_ATTACHMENT_OPTIMAL.
|
|
deps[numDeps].srcAccessMask |= VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
|
|
deps[numDeps].srcAccessMask |= VK_ACCESS_SHADER_READ_BIT;
|
|
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
|
|
deps[numDeps].srcAccessMask |= VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
|
|
deps[numDeps].srcAccessMask |= VK_ACCESS_TRANSFER_READ_BIT;
|
|
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
break;
|
|
default:
|
|
_dbg_assert_msg_(false, "GetRenderPass: Unexpected color layout %d", (int)key.prevColorLayout);
|
|
break;
|
|
}
|
|
|
|
switch (key.prevDepthLayout) {
|
|
case VK_IMAGE_LAYOUT_UNDEFINED:
|
|
// No need to specify stage or access.
|
|
break;
|
|
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
|
|
// Already the right depth layout. Unclear that we need to do a lot here..
|
|
break;
|
|
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
|
|
deps[numDeps].srcAccessMask |= VK_ACCESS_SHADER_READ_BIT;
|
|
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
|
|
deps[numDeps].srcAccessMask |= VK_ACCESS_TRANSFER_READ_BIT;
|
|
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
|
|
deps[numDeps].srcAccessMask |= VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
break;
|
|
default:
|
|
_dbg_assert_msg_(false, "PerformBindRT: Unexpected depth layout %d", (int)key.prevDepthLayout);
|
|
break;
|
|
}
|
|
|
|
if (deps[numDeps].srcAccessMask) {
|
|
deps[numDeps].srcSubpass = VK_SUBPASS_EXTERNAL;
|
|
deps[numDeps].dstSubpass = 0;
|
|
deps[numDeps].dependencyFlags = 0;
|
|
deps[numDeps].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
|
|
deps[numDeps].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
numDeps++;
|
|
}
|
|
|
|
// And the final transition.
|
|
// Don't need to transition it if VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL.
|
|
switch (key.finalColorLayout) {
|
|
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
|
|
deps[numDeps].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
deps[numDeps].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
|
|
deps[numDeps].dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
|
|
deps[numDeps].dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
|
|
deps[numDeps].dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
|
|
deps[numDeps].dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_UNDEFINED:
|
|
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
|
|
// Nothing to do.
|
|
break;
|
|
default:
|
|
_dbg_assert_msg_(false, "GetRenderPass: Unexpected final color layout %d", (int)key.finalColorLayout);
|
|
break;
|
|
}
|
|
|
|
if (deps[numDeps].dstAccessMask) {
|
|
deps[numDeps].srcSubpass = 0;
|
|
deps[numDeps].dstSubpass = VK_SUBPASS_EXTERNAL;
|
|
deps[numDeps].dependencyFlags = 0;
|
|
deps[numDeps].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
deps[numDeps].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
numDeps++;
|
|
}
|
|
|
|
VkRenderPassCreateInfo rp{ VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO };
|
|
rp.attachmentCount = 2;
|
|
rp.pAttachments = attachments;
|
|
rp.subpassCount = 1;
|
|
rp.pSubpasses = &subpass;
|
|
|
|
if (numDeps) {
|
|
rp.dependencyCount = numDeps;
|
|
rp.pDependencies = deps;
|
|
}
|
|
|
|
VkResult res = vkCreateRenderPass(vulkan_->GetDevice(), &rp, nullptr, &pass);
|
|
_assert_(res == VK_SUCCESS);
|
|
_assert_(pass != VK_NULL_HANDLE);
|
|
renderPasses_.Insert(key, pass);
|
|
return pass;
|
|
}
|
|
|
|
void VulkanQueueRunner::RunSteps(VkCommandBuffer cmd, std::vector<VKRStep *> &steps, QueueProfileContext *profile) {
|
|
if (profile)
|
|
profile->cpuStartTime = real_time_now();
|
|
// Optimizes renderpasses, then sequences them.
|
|
// Planned optimizations:
|
|
// * Create copies of render target that are rendered to multiple times and textured from in sequence, and push those render passes
|
|
// as early as possible in the frame (Wipeout billboards).
|
|
|
|
for (int j = 0; j < (int)steps.size(); j++) {
|
|
if (steps[j]->stepType == VKRStepType::RENDER &&
|
|
steps[j]->render.framebuffer) {
|
|
if (steps[j]->render.finalColorLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
|
|
steps[j]->render.finalColorLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
}
|
|
if (steps[j]->render.finalDepthStencilLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
|
|
steps[j]->render.finalDepthStencilLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < (int)steps.size() - 1; j++) {
|
|
// Push down empty "Clear/Store" renderpasses, and merge them with the first "Load/Store" to the same framebuffer.
|
|
if (steps.size() > 1 && steps[j]->stepType == VKRStepType::RENDER &&
|
|
steps[j]->render.numDraws == 0 &&
|
|
steps[j]->render.numReads == 0 &&
|
|
steps[j]->render.color == VKRRenderPassAction::CLEAR &&
|
|
steps[j]->render.stencil == VKRRenderPassAction::CLEAR &&
|
|
steps[j]->render.depth == VKRRenderPassAction::CLEAR) {
|
|
|
|
// Drop the clear step, and merge it into the next step that touches the same framebuffer.
|
|
for (int i = j + 1; i < (int)steps.size(); i++) {
|
|
if (steps[i]->stepType == VKRStepType::RENDER &&
|
|
steps[i]->render.framebuffer == steps[j]->render.framebuffer) {
|
|
if (steps[i]->render.color != VKRRenderPassAction::CLEAR) {
|
|
steps[i]->render.color = VKRRenderPassAction::CLEAR;
|
|
steps[i]->render.clearColor = steps[j]->render.clearColor;
|
|
}
|
|
if (steps[i]->render.depth != VKRRenderPassAction::CLEAR) {
|
|
steps[i]->render.depth = VKRRenderPassAction::CLEAR;
|
|
steps[i]->render.clearDepth = steps[j]->render.clearDepth;
|
|
}
|
|
if (steps[i]->render.stencil != VKRRenderPassAction::CLEAR) {
|
|
steps[i]->render.stencil = VKRRenderPassAction::CLEAR;
|
|
steps[i]->render.clearStencil = steps[j]->render.clearStencil;
|
|
}
|
|
// Cheaply skip the first step.
|
|
steps[j]->stepType = VKRStepType::RENDER_SKIP;
|
|
break;
|
|
} else if (steps[i]->stepType == VKRStepType::COPY &&
|
|
steps[i]->copy.src == steps[j]->render.framebuffer) {
|
|
// Can't eliminate the clear if a game copies from it before it's
|
|
// rendered to. However this should be rare.
|
|
// TODO: This should never happen when we check numReads now.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Queue hacks.
|
|
if (hacksEnabled_) {
|
|
if (hacksEnabled_ & QUEUE_HACK_MGS2_ACID) {
|
|
// Massive speedup.
|
|
ApplyMGSHack(steps);
|
|
}
|
|
if (hacksEnabled_ & QUEUE_HACK_SONIC) {
|
|
ApplySonicHack(steps);
|
|
}
|
|
if (hacksEnabled_ & QUEUE_HACK_RENDERPASS_MERGE) {
|
|
ApplyRenderPassMerge(steps);
|
|
}
|
|
}
|
|
|
|
bool emitLabels = vulkan_->Extensions().EXT_debug_utils;
|
|
for (size_t i = 0; i < steps.size(); i++) {
|
|
const VKRStep &step = *steps[i];
|
|
|
|
if (emitLabels) {
|
|
VkDebugUtilsLabelEXT labelInfo{ VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT };
|
|
labelInfo.pLabelName = step.tag;
|
|
vkCmdBeginDebugUtilsLabelEXT(cmd, &labelInfo);
|
|
}
|
|
|
|
switch (step.stepType) {
|
|
case VKRStepType::RENDER:
|
|
PerformRenderPass(step, cmd);
|
|
break;
|
|
case VKRStepType::COPY:
|
|
PerformCopy(step, cmd);
|
|
break;
|
|
case VKRStepType::BLIT:
|
|
PerformBlit(step, cmd);
|
|
break;
|
|
case VKRStepType::READBACK:
|
|
PerformReadback(step, cmd);
|
|
break;
|
|
case VKRStepType::READBACK_IMAGE:
|
|
PerformReadbackImage(step, cmd);
|
|
break;
|
|
case VKRStepType::RENDER_SKIP:
|
|
break;
|
|
}
|
|
|
|
if (profile && profile->timestampDescriptions.size() + 1 < MAX_TIMESTAMP_QUERIES) {
|
|
vkCmdWriteTimestamp(cmd, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, profile->queryPool, (uint32_t)profile->timestampDescriptions.size());
|
|
profile->timestampDescriptions.push_back(StepToString(step));
|
|
}
|
|
|
|
if (emitLabels) {
|
|
vkCmdEndDebugUtilsLabelEXT(cmd);
|
|
}
|
|
}
|
|
|
|
// Deleting all in one go should be easier on the instruction cache than deleting
|
|
// them as we go - and easier to debug because we can look backwards in the frame.
|
|
for (size_t i = 0; i < steps.size(); i++) {
|
|
delete steps[i];
|
|
}
|
|
|
|
if (profile)
|
|
profile->cpuEndTime = real_time_now();
|
|
}
|
|
|
|
void VulkanQueueRunner::ApplyMGSHack(std::vector<VKRStep *> &steps) {
|
|
// Really need a sane way to express transforms of steps.
|
|
|
|
// We want to turn a sequence of copy,render(1),copy,render(1),copy,render(1) to copy,copy,copy,render(n).
|
|
|
|
for (int i = 0; i < (int)steps.size() - 3; i++) {
|
|
int last = -1;
|
|
if (!(steps[i]->stepType == VKRStepType::COPY &&
|
|
steps[i + 1]->stepType == VKRStepType::RENDER &&
|
|
steps[i + 2]->stepType == VKRStepType::COPY &&
|
|
steps[i + 1]->render.numDraws == 1 &&
|
|
steps[i]->copy.dst == steps[i + 2]->copy.dst))
|
|
continue;
|
|
// Looks promising! Let's start by finding the last one.
|
|
for (int j = i; j < (int)steps.size(); j++) {
|
|
switch (steps[j]->stepType) {
|
|
case VKRStepType::RENDER:
|
|
if (steps[j]->render.numDraws > 1)
|
|
last = j - 1;
|
|
// should really also check descriptor sets...
|
|
if (steps[j]->commands.size()) {
|
|
VkRenderData &cmd = steps[j]->commands.back();
|
|
if (cmd.cmd == VKRRenderCommand::DRAW_INDEXED && cmd.draw.count != 6)
|
|
last = j - 1;
|
|
}
|
|
break;
|
|
case VKRStepType::COPY:
|
|
if (steps[j]->copy.dst != steps[i]->copy.dst)
|
|
last = j - 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (last != -1)
|
|
break;
|
|
}
|
|
|
|
if (last != -1) {
|
|
// We've got a sequence from i to last that needs reordering.
|
|
// First, let's sort it, keeping the same length.
|
|
std::vector<VKRStep *> copies;
|
|
std::vector<VKRStep *> renders;
|
|
copies.reserve((last - i) / 2);
|
|
renders.reserve((last - i) / 2);
|
|
for (int n = i; n <= last; n++) {
|
|
if (steps[n]->stepType == VKRStepType::COPY)
|
|
copies.push_back(steps[n]);
|
|
else if (steps[n]->stepType == VKRStepType::RENDER)
|
|
renders.push_back(steps[n]);
|
|
}
|
|
// Write the copies back. TODO: Combine them too.
|
|
for (int j = 0; j < (int)copies.size(); j++) {
|
|
steps[i + j] = copies[j];
|
|
}
|
|
// Write the renders back (so they will be deleted properly).
|
|
for (int j = 0; j < (int)renders.size(); j++) {
|
|
steps[i + j + copies.size()] = renders[j];
|
|
}
|
|
_assert_(steps[i + copies.size()]->stepType == VKRStepType::RENDER);
|
|
// Combine the renders.
|
|
for (int j = 1; j < (int)renders.size(); j++) {
|
|
for (int k = 0; k < (int)renders[j]->commands.size(); k++) {
|
|
steps[i + copies.size()]->commands.push_back(renders[j]->commands[k]);
|
|
}
|
|
steps[i + copies.size() + j]->stepType = VKRStepType::RENDER_SKIP;
|
|
}
|
|
// We're done.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// There's also a post processing effect using depals that's just brutal in some parts
|
|
// of the game.
|
|
for (int i = 0; i < (int)steps.size() - 3; i++) {
|
|
int last = -1;
|
|
if (!(steps[i]->stepType == VKRStepType::RENDER &&
|
|
steps[i + 1]->stepType == VKRStepType::RENDER &&
|
|
steps[i + 2]->stepType == VKRStepType::RENDER &&
|
|
steps[i]->render.numDraws == 1 &&
|
|
steps[i + 1]->render.numDraws == 1 &&
|
|
steps[i + 2]->render.numDraws == 1 &&
|
|
steps[i]->render.color == VKRRenderPassAction::DONT_CARE &&
|
|
steps[i + 1]->render.color == VKRRenderPassAction::KEEP &&
|
|
steps[i + 2]->render.color == VKRRenderPassAction::DONT_CARE))
|
|
continue;
|
|
VKRFramebuffer *depalFramebuffer = steps[i]->render.framebuffer;
|
|
VKRFramebuffer *targetFramebuffer = steps[i + 1]->render.framebuffer;
|
|
// OK, found the start of a post-process sequence. Let's scan until we find the end.
|
|
for (int j = i; j < steps.size() - 3; j++) {
|
|
if (((j - i) & 1) == 0) {
|
|
// This should be a depal draw.
|
|
if (steps[j]->render.numDraws != 1)
|
|
break;
|
|
if (steps[j]->render.color != VKRRenderPassAction::DONT_CARE)
|
|
break;
|
|
if (steps[j]->render.framebuffer != depalFramebuffer)
|
|
break;
|
|
last = j;
|
|
} else {
|
|
// This should be a target draw.
|
|
if (steps[j]->render.numDraws != 1)
|
|
break;
|
|
if (steps[j]->render.color != VKRRenderPassAction::KEEP)
|
|
break;
|
|
if (steps[j]->render.framebuffer != targetFramebuffer)
|
|
break;
|
|
last = j;
|
|
}
|
|
}
|
|
|
|
if (last == -1)
|
|
continue;
|
|
|
|
// Combine the depal renders.
|
|
for (int j = i + 2; j <= last + 1; j += 2) {
|
|
for (int k = 0; k < (int)steps[j]->commands.size(); k++) {
|
|
switch (steps[j]->commands[k].cmd) {
|
|
case VKRRenderCommand::DRAW:
|
|
case VKRRenderCommand::DRAW_INDEXED:
|
|
steps[i]->commands.push_back(steps[j]->commands[k]);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
steps[j]->stepType = VKRStepType::RENDER_SKIP;
|
|
}
|
|
|
|
// Combine the target renders.
|
|
for (int j = i + 3; j <= last; j += 2) {
|
|
for (int k = 0; k < (int)steps[j]->commands.size(); k++) {
|
|
switch (steps[j]->commands[k].cmd) {
|
|
case VKRRenderCommand::DRAW:
|
|
case VKRRenderCommand::DRAW_INDEXED:
|
|
steps[i + 1]->commands.push_back(steps[j]->commands[k]);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
steps[j]->stepType = VKRStepType::RENDER_SKIP;
|
|
}
|
|
|
|
// We're done - we only expect one of these sequences per frame.
|
|
break;
|
|
}
|
|
}
|
|
|
|
void VulkanQueueRunner::ApplySonicHack(std::vector<VKRStep *> &steps) {
|
|
// We want to turn a sequence of render(3),render(1),render(6),render(1),render(6),render(1),render(3) to
|
|
// render(1), render(1), render(1), render(6), render(6), render(6)
|
|
|
|
for (int i = 0; i < (int)steps.size() - 4; i++) {
|
|
int last = -1;
|
|
if (!(steps[i]->stepType == VKRStepType::RENDER &&
|
|
steps[i + 1]->stepType == VKRStepType::RENDER &&
|
|
steps[i + 2]->stepType == VKRStepType::RENDER &&
|
|
steps[i + 3]->stepType == VKRStepType::RENDER &&
|
|
steps[i]->render.numDraws == 3 &&
|
|
steps[i + 1]->render.numDraws == 1 &&
|
|
steps[i + 2]->render.numDraws == 6 &&
|
|
steps[i + 3]->render.numDraws == 1 &&
|
|
steps[i]->render.framebuffer == steps[i + 2]->render.framebuffer &&
|
|
steps[i + 1]->render.framebuffer == steps[i + 3]->render.framebuffer))
|
|
continue;
|
|
// Looks promising! Let's start by finding the last one.
|
|
for (int j = i; j < (int)steps.size(); j++) {
|
|
switch (steps[j]->stepType) {
|
|
case VKRStepType::RENDER:
|
|
if ((j - i) & 1) {
|
|
if (steps[j]->render.framebuffer != steps[i + 1]->render.framebuffer)
|
|
last = j - 1;
|
|
if (steps[j]->render.numDraws != 1)
|
|
last = j - 1;
|
|
} else {
|
|
if (steps[j]->render.framebuffer != steps[i]->render.framebuffer)
|
|
last = j - 1;
|
|
if (steps[j]->render.numDraws != 3 && steps[j]->render.numDraws != 6)
|
|
last = j - 1;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (last != -1)
|
|
break;
|
|
}
|
|
|
|
if (last != -1) {
|
|
// We've got a sequence from i to last that needs reordering.
|
|
// First, let's sort it, keeping the same length.
|
|
std::vector<VKRStep *> type1;
|
|
std::vector<VKRStep *> type2;
|
|
type1.reserve((last - i) / 2);
|
|
type2.reserve((last - i) / 2);
|
|
for (int n = i; n <= last; n++) {
|
|
if (steps[n]->render.framebuffer == steps[i]->render.framebuffer)
|
|
type1.push_back(steps[n]);
|
|
else
|
|
type2.push_back(steps[n]);
|
|
}
|
|
|
|
// Write the renders back in order. Same amount, so deletion will work fine.
|
|
for (int j = 0; j < (int)type1.size(); j++) {
|
|
steps[i + j] = type1[j];
|
|
}
|
|
for (int j = 0; j < (int)type2.size(); j++) {
|
|
steps[i + j + type1.size()] = type2[j];
|
|
}
|
|
|
|
// Combine the renders.
|
|
for (int j = 1; j < (int)type1.size(); j++) {
|
|
for (int k = 0; k < (int)type1[j]->commands.size(); k++) {
|
|
steps[i]->commands.push_back(type1[j]->commands[k]);
|
|
}
|
|
steps[i + j]->stepType = VKRStepType::RENDER_SKIP;
|
|
}
|
|
for (int j = 1; j < (int)type2.size(); j++) {
|
|
for (int k = 0; k < (int)type2[j]->commands.size(); k++) {
|
|
steps[i + type1.size()]->commands.push_back(type2[j]->commands[k]);
|
|
}
|
|
steps[i + j + type1.size()]->stepType = VKRStepType::RENDER_SKIP;
|
|
}
|
|
// We're done.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string VulkanQueueRunner::StepToString(const VKRStep &step) const {
|
|
char buffer[256];
|
|
switch (step.stepType) {
|
|
case VKRStepType::RENDER:
|
|
{
|
|
int w = step.render.framebuffer ? step.render.framebuffer->width : vulkan_->GetBackbufferWidth();
|
|
int h = step.render.framebuffer ? step.render.framebuffer->height : vulkan_->GetBackbufferHeight();
|
|
snprintf(buffer, sizeof(buffer), "RenderPass %s (draws: %d, %dx%d, fb: %p, )", step.tag, step.render.numDraws, w, h, step.render.framebuffer);
|
|
break;
|
|
}
|
|
case VKRStepType::COPY:
|
|
snprintf(buffer, sizeof(buffer), "Copy '%s' (%dx%d)", step.tag, step.copy.srcRect.extent.width, step.copy.srcRect.extent.height);
|
|
break;
|
|
case VKRStepType::BLIT:
|
|
snprintf(buffer, sizeof(buffer), "Blit '%s' (%dx%d->%dx%d)", step.tag, step.blit.srcRect.extent.width, step.blit.srcRect.extent.height, step.blit.dstRect.extent.width, step.blit.dstRect.extent.height);
|
|
break;
|
|
case VKRStepType::READBACK:
|
|
snprintf(buffer, sizeof(buffer), "Readback '%s' (%dx%d, fb: %p)", step.tag, step.readback.srcRect.extent.width, step.readback.srcRect.extent.height, step.readback.src);
|
|
break;
|
|
case VKRStepType::READBACK_IMAGE:
|
|
snprintf(buffer, sizeof(buffer), "ReadbackImage '%s' (%dx%d)", step.tag, step.readback_image.srcRect.extent.width, step.readback_image.srcRect.extent.height);
|
|
break;
|
|
case VKRStepType::RENDER_SKIP:
|
|
snprintf(buffer, sizeof(buffer), "(SKIPPED RenderPass) %s", step.tag);
|
|
break;
|
|
default:
|
|
buffer[0] = 0;
|
|
break;
|
|
}
|
|
return std::string(buffer);
|
|
}
|
|
|
|
// Ideally, this should be cheap enough to be applied to all games. At least on mobile, it's pretty
|
|
// much a guaranteed neutral or win in terms of GPU power. However, dependency calculation really
|
|
// must be perfect!
|
|
void VulkanQueueRunner::ApplyRenderPassMerge(std::vector<VKRStep *> &steps) {
|
|
// First let's count how many times each framebuffer is rendered to.
|
|
// If it's more than one, let's do our best to merge them. This can help God of War quite a bit.
|
|
std::unordered_map<VKRFramebuffer *, int> counts;
|
|
for (int i = 0; i < (int)steps.size(); i++) {
|
|
if (steps[i]->stepType == VKRStepType::RENDER) {
|
|
counts[steps[i]->render.framebuffer]++;
|
|
}
|
|
}
|
|
|
|
auto mergeRenderSteps = [](VKRStep *dst, VKRStep *src) {
|
|
// OK. Now, if it's a render, slurp up all the commands and kill the step.
|
|
// Also slurp up any pretransitions.
|
|
dst->preTransitions.insert(dst->preTransitions.end(), src->preTransitions.begin(), src->preTransitions.end());
|
|
dst->commands.insert(dst->commands.end(), src->commands.begin(), src->commands.end());
|
|
// So we don't consider it for other things, maybe doesn't matter.
|
|
src->dependencies.clear();
|
|
src->stepType = VKRStepType::RENDER_SKIP;
|
|
};
|
|
auto renderHasClear = [](const VKRStep *step) {
|
|
const auto &r = step->render;
|
|
return r.color == VKRRenderPassAction::CLEAR || r.depth == VKRRenderPassAction::CLEAR || r.stencil == VKRRenderPassAction::CLEAR;
|
|
};
|
|
|
|
// Now, let's go through the steps. If we find one that is rendered to more than once,
|
|
// we'll scan forward and slurp up any rendering that can be merged across.
|
|
for (int i = 0; i < (int)steps.size(); i++) {
|
|
if (steps[i]->stepType == VKRStepType::RENDER && counts[steps[i]->render.framebuffer] > 1) {
|
|
auto fb = steps[i]->render.framebuffer;
|
|
TinySet<VKRFramebuffer *, 8> touchedFramebuffers; // must be the same fast-size as the dependencies TinySet for annoying reasons.
|
|
for (int j = i + 1; j < (int)steps.size(); j++) {
|
|
// If any other passes are reading from this framebuffer as-is, we cancel the scan.
|
|
if (steps[j]->dependencies.contains(fb)) {
|
|
// Reading from itself means a KEEP, which is okay.
|
|
if (steps[j]->stepType != VKRStepType::RENDER || steps[j]->render.framebuffer != fb)
|
|
break;
|
|
}
|
|
switch (steps[j]->stepType) {
|
|
case VKRStepType::RENDER:
|
|
if (steps[j]->render.framebuffer == fb) {
|
|
// Prevent Unknown's example case from https://github.com/hrydgard/ppsspp/pull/12242
|
|
if (renderHasClear(steps[j]) || steps[j]->dependencies.contains(touchedFramebuffers)) {
|
|
goto done_fb;
|
|
} else {
|
|
// Safe to merge, great.
|
|
mergeRenderSteps(steps[i], steps[j]);
|
|
}
|
|
} else {
|
|
// Remember the framebuffer this wrote to. We can't merge with later passes that depend on these.
|
|
touchedFramebuffers.insert(steps[j]->render.framebuffer);
|
|
}
|
|
break;
|
|
case VKRStepType::COPY:
|
|
if (steps[j]->copy.dst == fb) {
|
|
// Without framebuffer "renaming", we can't merge past a clobbered fb.
|
|
goto done_fb;
|
|
}
|
|
touchedFramebuffers.insert(steps[j]->copy.dst);
|
|
break;
|
|
case VKRStepType::BLIT:
|
|
if (steps[j]->blit.dst == fb) {
|
|
// Without framebuffer "renaming", we can't merge past a clobbered fb.
|
|
goto done_fb;
|
|
}
|
|
touchedFramebuffers.insert(steps[j]->blit.dst);
|
|
break;
|
|
case VKRStepType::READBACK:
|
|
// Not sure this has much effect, when executed READBACK is always the last step
|
|
// since we stall the GPU and wait immediately after.
|
|
break;
|
|
case VKRStepType::RENDER_SKIP:
|
|
case VKRStepType::READBACK_IMAGE:
|
|
break;
|
|
default:
|
|
// We added a new step? Might be unsafe.
|
|
goto done_fb;
|
|
}
|
|
}
|
|
done_fb:
|
|
;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VulkanQueueRunner::LogSteps(const std::vector<VKRStep *> &steps) {
|
|
INFO_LOG(G3D, "=======================================");
|
|
for (size_t i = 0; i < steps.size(); i++) {
|
|
const VKRStep &step = *steps[i];
|
|
INFO_LOG(G3D, "%s", StepToString(step).c_str());
|
|
switch (step.stepType) {
|
|
case VKRStepType::RENDER:
|
|
LogRenderPass(step);
|
|
break;
|
|
case VKRStepType::COPY:
|
|
LogCopy(step);
|
|
break;
|
|
case VKRStepType::BLIT:
|
|
LogBlit(step);
|
|
break;
|
|
case VKRStepType::READBACK:
|
|
LogReadback(step);
|
|
break;
|
|
case VKRStepType::READBACK_IMAGE:
|
|
LogReadbackImage(step);
|
|
break;
|
|
case VKRStepType::RENDER_SKIP:
|
|
INFO_LOG(G3D, "(skipped render pass)");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
const char *RenderPassActionName(VKRRenderPassAction a) {
|
|
switch (a) {
|
|
case VKRRenderPassAction::CLEAR:
|
|
return "CLEAR";
|
|
case VKRRenderPassAction::DONT_CARE:
|
|
return "DONT_CARE";
|
|
case VKRRenderPassAction::KEEP:
|
|
return "KEEP";
|
|
}
|
|
return "?";
|
|
}
|
|
|
|
void VulkanQueueRunner::LogRenderPass(const VKRStep &pass) {
|
|
const auto &r = pass.render;
|
|
int fb = (int)(intptr_t)(r.framebuffer ? r.framebuffer->framebuf : 0);
|
|
INFO_LOG(G3D, "RenderPass Begin(%x, %s, %s, %s)", fb, RenderPassActionName(r.color), RenderPassActionName(r.depth), RenderPassActionName(r.stencil));
|
|
for (auto &cmd : pass.commands) {
|
|
switch (cmd.cmd) {
|
|
case VKRRenderCommand::REMOVED:
|
|
INFO_LOG(G3D, " (Removed)");
|
|
break;
|
|
|
|
case VKRRenderCommand::BIND_PIPELINE:
|
|
INFO_LOG(G3D, " BindPipeline(%x)", (int)(intptr_t)cmd.pipeline.pipeline);
|
|
break;
|
|
case VKRRenderCommand::BLEND:
|
|
INFO_LOG(G3D, " BlendColor(%08x)", cmd.blendColor.color);
|
|
break;
|
|
case VKRRenderCommand::CLEAR:
|
|
INFO_LOG(G3D, " Clear");
|
|
break;
|
|
case VKRRenderCommand::DRAW:
|
|
INFO_LOG(G3D, " Draw(%d)", cmd.draw.count);
|
|
break;
|
|
case VKRRenderCommand::DRAW_INDEXED:
|
|
INFO_LOG(G3D, " DrawIndexed(%d)", cmd.drawIndexed.count);
|
|
break;
|
|
case VKRRenderCommand::SCISSOR:
|
|
INFO_LOG(G3D, " Scissor(%d, %d, %d, %d)", (int)cmd.scissor.scissor.offset.x, (int)cmd.scissor.scissor.offset.y, (int)cmd.scissor.scissor.extent.width, (int)cmd.scissor.scissor.extent.height);
|
|
break;
|
|
case VKRRenderCommand::STENCIL:
|
|
INFO_LOG(G3D, " Stencil(ref=%d, compare=%d, write=%d)", cmd.stencil.stencilRef, cmd.stencil.stencilCompareMask, cmd.stencil.stencilWriteMask);
|
|
break;
|
|
case VKRRenderCommand::VIEWPORT:
|
|
INFO_LOG(G3D, " Viewport(%f, %f, %f, %f, %f, %f)", cmd.viewport.vp.x, cmd.viewport.vp.y, cmd.viewport.vp.width, cmd.viewport.vp.height, cmd.viewport.vp.minDepth, cmd.viewport.vp.maxDepth);
|
|
break;
|
|
case VKRRenderCommand::PUSH_CONSTANTS:
|
|
INFO_LOG(G3D, " PushConstants(%d)", cmd.push.size);
|
|
break;
|
|
|
|
case VKRRenderCommand::NUM_RENDER_COMMANDS:
|
|
break;
|
|
}
|
|
}
|
|
INFO_LOG(G3D, "RenderPass End(%x)", fb);
|
|
}
|
|
|
|
void VulkanQueueRunner::LogCopy(const VKRStep &step) {
|
|
INFO_LOG(G3D, "%s", StepToString(step).c_str());
|
|
}
|
|
|
|
void VulkanQueueRunner::LogBlit(const VKRStep &step) {
|
|
INFO_LOG(G3D, "%s", StepToString(step).c_str());
|
|
}
|
|
|
|
void VulkanQueueRunner::LogReadback(const VKRStep &step) {
|
|
INFO_LOG(G3D, "%s", StepToString(step).c_str());
|
|
}
|
|
|
|
void VulkanQueueRunner::LogReadbackImage(const VKRStep &step) {
|
|
INFO_LOG(G3D, "%s", StepToString(step).c_str());
|
|
}
|
|
|
|
void VulkanQueueRunner::PerformRenderPass(const VKRStep &step, VkCommandBuffer cmd) {
|
|
// TODO: If there are multiple, we can transition them together.
|
|
for (const auto &iter : step.preTransitions) {
|
|
if (iter.aspect == VK_IMAGE_ASPECT_COLOR_BIT && iter.fb->color.layout != iter.targetLayout) {
|
|
VkImageMemoryBarrier barrier{ VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER };
|
|
barrier.oldLayout = iter.fb->color.layout;
|
|
barrier.subresourceRange.layerCount = 1;
|
|
barrier.subresourceRange.levelCount = 1;
|
|
barrier.image = iter.fb->color.image;
|
|
VkPipelineStageFlags srcStage{};
|
|
VkPipelineStageFlags dstStage{};
|
|
switch (barrier.oldLayout) {
|
|
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
|
|
srcStage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_UNDEFINED:
|
|
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
|
|
srcStage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
|
|
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
break;
|
|
default:
|
|
_assert_msg_(false, "PerformRenderPass: Unexpected oldLayout: %d", (int)barrier.oldLayout);
|
|
break;
|
|
}
|
|
barrier.newLayout = iter.targetLayout;
|
|
switch (barrier.newLayout) {
|
|
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
|
|
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
dstStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
break;
|
|
default:
|
|
_assert_msg_(false, "PerformRenderPass: Unexpected newLayout: %d", (int)barrier.newLayout);
|
|
break;
|
|
}
|
|
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
vkCmdPipelineBarrier(cmd, srcStage, dstStage, 0, 0, nullptr, 0, nullptr, 1, &barrier);
|
|
iter.fb->color.layout = barrier.newLayout;
|
|
} else if (iter.aspect == VK_IMAGE_ASPECT_DEPTH_BIT && iter.fb->depth.layout != iter.targetLayout) {
|
|
VkImageMemoryBarrier barrier{ VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER };
|
|
barrier.oldLayout = iter.fb->depth.layout;
|
|
barrier.subresourceRange.layerCount = 1;
|
|
barrier.subresourceRange.levelCount = 1;
|
|
barrier.image = iter.fb->depth.image;
|
|
barrier.srcAccessMask = 0;
|
|
VkPipelineStageFlags srcStage;
|
|
VkPipelineStageFlags dstStage;
|
|
switch (barrier.oldLayout) {
|
|
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
|
|
srcStage = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
|
|
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
break;
|
|
default:
|
|
Crash();
|
|
break;
|
|
}
|
|
barrier.newLayout = iter.targetLayout;
|
|
switch (barrier.newLayout) {
|
|
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
|
|
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
dstStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
break;
|
|
default:
|
|
Crash();
|
|
break;
|
|
}
|
|
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
vkCmdPipelineBarrier(cmd, srcStage, dstStage, 0, 0, nullptr, 0, nullptr, 1, &barrier);
|
|
iter.fb->depth.layout = barrier.newLayout;
|
|
}
|
|
}
|
|
|
|
// Don't execute empty renderpasses that keep the contents.
|
|
if (step.commands.empty() && step.render.color == VKRRenderPassAction::KEEP && step.render.depth == VKRRenderPassAction::KEEP && step.render.stencil == VKRRenderPassAction::KEEP) {
|
|
// Nothing to do.
|
|
return;
|
|
}
|
|
|
|
// Write-after-write hazards. Fixed flicker in God of War on ARM (before we added another fix that removed these).
|
|
if (step.render.framebuffer) {
|
|
int n = 0;
|
|
int stage = 0;
|
|
VkImageMemoryBarrier barriers[2]{};
|
|
if (step.render.framebuffer->color.layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
|
|
barriers[n].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
barriers[n].oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
barriers[n].newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
barriers[n].subresourceRange.layerCount = 1;
|
|
barriers[n].subresourceRange.levelCount = 1;
|
|
barriers[n].image = step.render.framebuffer->color.image;
|
|
barriers[n].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
barriers[n].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
|
|
barriers[n].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
barriers[n].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
barriers[n].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
stage |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
n++;
|
|
}
|
|
if (step.render.framebuffer->depth.layout == VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL) {
|
|
barriers[n].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
barriers[n].oldLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL;
|
|
barriers[n].newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
barriers[n].subresourceRange.layerCount = 1;
|
|
barriers[n].subresourceRange.levelCount = 1;
|
|
barriers[n].image = step.render.framebuffer->depth.image;
|
|
barriers[n].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
|
|
barriers[n].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
|
|
barriers[n].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
barriers[n].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
barriers[n].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
stage |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
|
|
n++;
|
|
}
|
|
if (stage) {
|
|
vkCmdPipelineBarrier(cmd, stage, stage, 0, 0, nullptr, 0, nullptr, n, barriers);
|
|
}
|
|
}
|
|
|
|
// This is supposed to bind a vulkan render pass to the command buffer.
|
|
PerformBindFramebufferAsRenderTarget(step, cmd);
|
|
|
|
int curWidth = step.render.framebuffer ? step.render.framebuffer->width : vulkan_->GetBackbufferWidth();
|
|
int curHeight = step.render.framebuffer ? step.render.framebuffer->height : vulkan_->GetBackbufferHeight();
|
|
|
|
VKRFramebuffer *fb = step.render.framebuffer;
|
|
|
|
VkPipeline lastPipeline = VK_NULL_HANDLE;
|
|
|
|
auto &commands = step.commands;
|
|
|
|
// We can do a little bit of state tracking here to eliminate some calls into the driver.
|
|
// The stencil ones are very commonly mostly redundant so let's eliminate them where possible.
|
|
int lastStencilWriteMask = -1;
|
|
int lastStencilCompareMask = -1;
|
|
int lastStencilReference = -1;
|
|
|
|
for (const auto &c : commands) {
|
|
switch (c.cmd) {
|
|
case VKRRenderCommand::REMOVED:
|
|
break;
|
|
|
|
case VKRRenderCommand::BIND_PIPELINE:
|
|
if (c.pipeline.pipeline != lastPipeline) {
|
|
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, c.pipeline.pipeline);
|
|
lastPipeline = c.pipeline.pipeline;
|
|
// Reset dynamic state so it gets refreshed with the new pipeline.
|
|
lastStencilWriteMask = -1;
|
|
lastStencilCompareMask = -1;
|
|
lastStencilReference = -1;
|
|
}
|
|
break;
|
|
|
|
case VKRRenderCommand::VIEWPORT:
|
|
if (fb != nullptr) {
|
|
vkCmdSetViewport(cmd, 0, 1, &c.viewport.vp);
|
|
} else {
|
|
const VkViewport &vp = c.viewport.vp;
|
|
DisplayRect<float> rc{ vp.x, vp.y, vp.width, vp.height };
|
|
RotateRectToDisplay(rc, (float)vulkan_->GetBackbufferWidth(), (float)vulkan_->GetBackbufferHeight());
|
|
VkViewport final_vp;
|
|
final_vp.x = rc.x;
|
|
final_vp.y = rc.y;
|
|
final_vp.width = rc.w;
|
|
final_vp.height = rc.h;
|
|
final_vp.maxDepth = vp.maxDepth;
|
|
final_vp.minDepth = vp.minDepth;
|
|
vkCmdSetViewport(cmd, 0, 1, &final_vp);
|
|
}
|
|
break;
|
|
|
|
case VKRRenderCommand::SCISSOR:
|
|
{
|
|
if (fb != nullptr) {
|
|
vkCmdSetScissor(cmd, 0, 1, &c.scissor.scissor);
|
|
} else {
|
|
// Rendering to backbuffer. Might need to rotate.
|
|
const VkRect2D &rc = c.scissor.scissor;
|
|
DisplayRect<int> rotated_rc{ rc.offset.x, rc.offset.y, (int)rc.extent.width, (int)rc.extent.height };
|
|
RotateRectToDisplay(rotated_rc, vulkan_->GetBackbufferWidth(), vulkan_->GetBackbufferHeight());
|
|
_dbg_assert_(rotated_rc.x >= 0);
|
|
_dbg_assert_(rotated_rc.y >= 0);
|
|
VkRect2D finalRect = VkRect2D{ { rotated_rc.x, rotated_rc.y }, { (uint32_t)rotated_rc.w, (uint32_t)rotated_rc.h} };
|
|
vkCmdSetScissor(cmd, 0, 1, &finalRect);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case VKRRenderCommand::BLEND:
|
|
{
|
|
float bc[4];
|
|
Uint8x4ToFloat4(bc, c.blendColor.color);
|
|
vkCmdSetBlendConstants(cmd, bc);
|
|
break;
|
|
}
|
|
|
|
case VKRRenderCommand::PUSH_CONSTANTS:
|
|
vkCmdPushConstants(cmd, c.push.pipelineLayout, c.push.stages, c.push.offset, c.push.size, c.push.data);
|
|
break;
|
|
|
|
case VKRRenderCommand::STENCIL:
|
|
if (lastStencilWriteMask != c.stencil.stencilWriteMask) {
|
|
lastStencilWriteMask = (int)c.stencil.stencilWriteMask;
|
|
vkCmdSetStencilWriteMask(cmd, VK_STENCIL_FRONT_AND_BACK, c.stencil.stencilWriteMask);
|
|
}
|
|
if (lastStencilCompareMask != c.stencil.stencilCompareMask) {
|
|
lastStencilCompareMask = c.stencil.stencilCompareMask;
|
|
vkCmdSetStencilCompareMask(cmd, VK_STENCIL_FRONT_AND_BACK, c.stencil.stencilCompareMask);
|
|
}
|
|
if (lastStencilReference != c.stencil.stencilRef) {
|
|
lastStencilReference = c.stencil.stencilRef;
|
|
vkCmdSetStencilReference(cmd, VK_STENCIL_FRONT_AND_BACK, c.stencil.stencilRef);
|
|
}
|
|
break;
|
|
|
|
case VKRRenderCommand::DRAW_INDEXED:
|
|
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, c.drawIndexed.pipelineLayout, 0, 1, &c.drawIndexed.ds, c.drawIndexed.numUboOffsets, c.drawIndexed.uboOffsets);
|
|
vkCmdBindIndexBuffer(cmd, c.drawIndexed.ibuffer, c.drawIndexed.ioffset, c.drawIndexed.indexType);
|
|
vkCmdBindVertexBuffers(cmd, 0, 1, &c.drawIndexed.vbuffer, &c.drawIndexed.voffset);
|
|
vkCmdDrawIndexed(cmd, c.drawIndexed.count, c.drawIndexed.instances, 0, 0, 0);
|
|
break;
|
|
|
|
case VKRRenderCommand::DRAW:
|
|
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, c.draw.pipelineLayout, 0, 1, &c.draw.ds, c.draw.numUboOffsets, c.draw.uboOffsets);
|
|
if (c.draw.vbuffer) {
|
|
vkCmdBindVertexBuffers(cmd, 0, 1, &c.draw.vbuffer, &c.draw.voffset);
|
|
}
|
|
vkCmdDraw(cmd, c.draw.count, 1, c.draw.offset, 0);
|
|
break;
|
|
|
|
case VKRRenderCommand::CLEAR:
|
|
{
|
|
// If we get here, we failed to merge a clear into a render pass load op. This is bad for perf.
|
|
int numAttachments = 0;
|
|
VkClearRect rc{};
|
|
rc.baseArrayLayer = 0;
|
|
rc.layerCount = 1;
|
|
rc.rect.extent.width = (uint32_t)curWidth;
|
|
rc.rect.extent.height = (uint32_t)curHeight;
|
|
VkClearAttachment attachments[2]{};
|
|
if (c.clear.clearMask & VK_IMAGE_ASPECT_COLOR_BIT) {
|
|
VkClearAttachment &attachment = attachments[numAttachments++];
|
|
attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
attachment.colorAttachment = 0;
|
|
Uint8x4ToFloat4(attachment.clearValue.color.float32, c.clear.clearColor);
|
|
}
|
|
if (c.clear.clearMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
|
|
VkClearAttachment &attachment = attachments[numAttachments++];
|
|
attachment.aspectMask = 0;
|
|
if (c.clear.clearMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
|
|
attachment.clearValue.depthStencil.depth = c.clear.clearZ;
|
|
attachment.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
}
|
|
if (c.clear.clearMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
|
|
attachment.clearValue.depthStencil.stencil = (uint32_t)c.clear.clearStencil;
|
|
attachment.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
}
|
|
}
|
|
if (numAttachments) {
|
|
vkCmdClearAttachments(cmd, numAttachments, attachments, 1, &rc);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
ERROR_LOG(G3D, "Unimpl queue command");
|
|
;
|
|
}
|
|
}
|
|
vkCmdEndRenderPass(cmd);
|
|
|
|
// The renderpass handles the layout transition.
|
|
if (fb) {
|
|
fb->color.layout = step.render.finalColorLayout;
|
|
fb->depth.layout = step.render.finalDepthStencilLayout;
|
|
}
|
|
}
|
|
|
|
void VulkanQueueRunner::PerformBindFramebufferAsRenderTarget(const VKRStep &step, VkCommandBuffer cmd) {
|
|
VkRenderPass renderPass;
|
|
int numClearVals = 0;
|
|
VkClearValue clearVal[2]{};
|
|
VkFramebuffer framebuf;
|
|
int w;
|
|
int h;
|
|
if (step.render.framebuffer) {
|
|
_dbg_assert_(step.render.finalColorLayout != VK_IMAGE_LAYOUT_UNDEFINED);
|
|
_dbg_assert_(step.render.finalDepthStencilLayout != VK_IMAGE_LAYOUT_UNDEFINED);
|
|
|
|
VKRFramebuffer *fb = step.render.framebuffer;
|
|
framebuf = fb->framebuf;
|
|
w = fb->width;
|
|
h = fb->height;
|
|
|
|
// Mali driver on S8 (Android O) and S9 mishandles renderpasses that do just a clear
|
|
// and then no draw calls. Memory transaction elimination gets mis-flagged or something.
|
|
// To avoid this, we transition to GENERAL and back in this case (ARM-approved workaround).
|
|
// See pull request #10723.
|
|
bool maliBugWorkaround = step.render.numDraws == 0 &&
|
|
step.render.color == VKRRenderPassAction::CLEAR &&
|
|
vulkan_->GetPhysicalDeviceProperties().properties.driverVersion == 0xaa9c4b29;
|
|
if (maliBugWorkaround) {
|
|
TransitionImageLayout2(cmd, step.render.framebuffer->color.image, 0, 1, VK_IMAGE_ASPECT_COLOR_BIT,
|
|
fb->color.layout, VK_IMAGE_LAYOUT_GENERAL,
|
|
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
|
|
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
|
|
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT);
|
|
fb->color.layout = VK_IMAGE_LAYOUT_GENERAL;
|
|
}
|
|
|
|
renderPass = GetRenderPass(
|
|
step.render.color, step.render.depth, step.render.stencil,
|
|
fb->color.layout, fb->depth.layout,
|
|
step.render.finalColorLayout,
|
|
step.render.finalDepthStencilLayout);
|
|
|
|
// We now do any layout pretransitions as part of the render pass.
|
|
fb->color.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
fb->depth.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
|
|
if (step.render.color == VKRRenderPassAction::CLEAR) {
|
|
Uint8x4ToFloat4(clearVal[0].color.float32, step.render.clearColor);
|
|
numClearVals = 1;
|
|
}
|
|
if (step.render.depth == VKRRenderPassAction::CLEAR || step.render.stencil == VKRRenderPassAction::CLEAR) {
|
|
clearVal[1].depthStencil.depth = step.render.clearDepth;
|
|
clearVal[1].depthStencil.stencil = step.render.clearStencil;
|
|
numClearVals = 2;
|
|
}
|
|
} else {
|
|
framebuf = backbuffer_;
|
|
w = vulkan_->GetBackbufferWidth();
|
|
h = vulkan_->GetBackbufferHeight();
|
|
renderPass = GetBackbufferRenderPass();
|
|
Uint8x4ToFloat4(clearVal[0].color.float32, step.render.clearColor);
|
|
numClearVals = 2; // We don't bother with a depth buffer here.
|
|
clearVal[1].depthStencil.depth = 0.0f;
|
|
clearVal[1].depthStencil.stencil = 0;
|
|
}
|
|
|
|
VkRenderPassBeginInfo rp_begin = { VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO };
|
|
rp_begin.renderPass = renderPass;
|
|
rp_begin.framebuffer = framebuf;
|
|
rp_begin.renderArea.offset.x = 0;
|
|
rp_begin.renderArea.offset.y = 0;
|
|
rp_begin.renderArea.extent.width = w;
|
|
rp_begin.renderArea.extent.height = h;
|
|
rp_begin.clearValueCount = numClearVals;
|
|
rp_begin.pClearValues = numClearVals ? clearVal : nullptr;
|
|
vkCmdBeginRenderPass(cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);
|
|
}
|
|
|
|
void VulkanQueueRunner::PerformCopy(const VKRStep &step, VkCommandBuffer cmd) {
|
|
VKRFramebuffer *src = step.copy.src;
|
|
VKRFramebuffer *dst = step.copy.dst;
|
|
|
|
VkImageCopy copy{};
|
|
copy.srcOffset.x = step.copy.srcRect.offset.x;
|
|
copy.srcOffset.y = step.copy.srcRect.offset.y;
|
|
copy.srcOffset.z = 0;
|
|
copy.srcSubresource.mipLevel = 0;
|
|
copy.srcSubresource.layerCount = 1;
|
|
copy.dstOffset.x = step.copy.dstPos.x;
|
|
copy.dstOffset.y = step.copy.dstPos.y;
|
|
copy.dstOffset.z = 0;
|
|
copy.dstSubresource.mipLevel = 0;
|
|
copy.dstSubresource.layerCount = 1;
|
|
copy.extent.width = step.copy.srcRect.extent.width;
|
|
copy.extent.height = step.copy.srcRect.extent.height;
|
|
copy.extent.depth = 1;
|
|
|
|
VkImageMemoryBarrier srcBarriers[2]{};
|
|
VkImageMemoryBarrier dstBarriers[2]{};
|
|
int srcCount = 0;
|
|
int dstCount = 0;
|
|
|
|
VkPipelineStageFlags srcStage = 0;
|
|
VkPipelineStageFlags dstStage = 0;
|
|
// First source barriers.
|
|
if (step.copy.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
|
|
if (src->color.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
|
|
SetupTransitionToTransferSrc(src->color, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_COLOR_BIT);
|
|
}
|
|
if (dst->color.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
|
|
SetupTransitionToTransferDst(dst->color, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_COLOR_BIT);
|
|
}
|
|
}
|
|
|
|
// We can't copy only depth or only stencil unfortunately.
|
|
if (step.copy.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
|
|
if (src->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
|
|
SetupTransitionToTransferSrc(src->depth, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
|
|
}
|
|
if (dst->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
|
|
SetupTransitionToTransferDst(dst->depth, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
|
|
}
|
|
}
|
|
|
|
if (srcCount) {
|
|
vkCmdPipelineBarrier(cmd, srcStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, srcCount, srcBarriers);
|
|
}
|
|
if (dstCount) {
|
|
vkCmdPipelineBarrier(cmd, dstStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, dstCount, dstBarriers);
|
|
}
|
|
|
|
if (step.copy.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
|
|
copy.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
copy.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
vkCmdCopyImage(cmd, src->color.image, src->color.layout, dst->color.image, dst->color.layout, 1, ©);
|
|
}
|
|
if (step.copy.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
|
|
copy.srcSubresource.aspectMask = 0;
|
|
copy.dstSubresource.aspectMask = 0;
|
|
if (step.copy.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
|
|
copy.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
copy.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
}
|
|
if (step.copy.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
|
|
copy.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
copy.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
}
|
|
vkCmdCopyImage(cmd, src->depth.image, src->depth.layout, dst->depth.image, dst->depth.layout, 1, ©);
|
|
}
|
|
}
|
|
|
|
void VulkanQueueRunner::PerformBlit(const VKRStep &step, VkCommandBuffer cmd) {
|
|
VkImageMemoryBarrier srcBarriers[2]{};
|
|
VkImageMemoryBarrier dstBarriers[2]{};
|
|
|
|
VKRFramebuffer *src = step.blit.src;
|
|
VKRFramebuffer *dst = step.blit.dst;
|
|
|
|
// If any validation needs to be performed here, it should probably have been done
|
|
// already when the blit was queued. So don't validate here.
|
|
VkImageBlit blit{};
|
|
blit.srcOffsets[0].x = step.blit.srcRect.offset.x;
|
|
blit.srcOffsets[0].y = step.blit.srcRect.offset.y;
|
|
blit.srcOffsets[0].z = 0;
|
|
blit.srcOffsets[1].x = step.blit.srcRect.offset.x + step.blit.srcRect.extent.width;
|
|
blit.srcOffsets[1].y = step.blit.srcRect.offset.y + step.blit.srcRect.extent.height;
|
|
blit.srcOffsets[1].z = 1;
|
|
blit.srcSubresource.mipLevel = 0;
|
|
blit.srcSubresource.layerCount = 1;
|
|
blit.dstOffsets[0].x = step.blit.dstRect.offset.x;
|
|
blit.dstOffsets[0].y = step.blit.dstRect.offset.y;
|
|
blit.dstOffsets[0].z = 0;
|
|
blit.dstOffsets[1].x = step.blit.dstRect.offset.x + step.blit.dstRect.extent.width;
|
|
blit.dstOffsets[1].y = step.blit.dstRect.offset.y + step.blit.dstRect.extent.height;
|
|
blit.dstOffsets[1].z = 1;
|
|
blit.dstSubresource.mipLevel = 0;
|
|
blit.dstSubresource.layerCount = 1;
|
|
|
|
VkPipelineStageFlags srcStage = 0;
|
|
VkPipelineStageFlags dstStage = 0;
|
|
|
|
int srcCount = 0;
|
|
int dstCount = 0;
|
|
|
|
// First source barriers.
|
|
if (step.blit.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
|
|
if (src->color.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
|
|
SetupTransitionToTransferSrc(src->color, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_COLOR_BIT);
|
|
}
|
|
if (dst->color.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
|
|
SetupTransitionToTransferDst(dst->color, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_COLOR_BIT);
|
|
}
|
|
}
|
|
|
|
// We can't copy only depth or only stencil unfortunately.
|
|
if (step.blit.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
|
|
if (src->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
|
|
SetupTransitionToTransferSrc(src->depth, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
|
|
}
|
|
if (dst->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
|
|
SetupTransitionToTransferDst(dst->depth, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
|
|
}
|
|
}
|
|
|
|
if (srcCount) {
|
|
vkCmdPipelineBarrier(cmd, srcStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, srcCount, srcBarriers);
|
|
}
|
|
if (dstCount) {
|
|
vkCmdPipelineBarrier(cmd, dstStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, dstCount, dstBarriers);
|
|
}
|
|
|
|
if (step.blit.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
|
|
blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
vkCmdBlitImage(cmd, src->color.image, src->color.layout, dst->color.image, dst->color.layout, 1, &blit, step.blit.filter);
|
|
}
|
|
|
|
// TODO: Need to check if the depth format is blittable.
|
|
// Actually, we should probably almost always use copies rather than blits for depth buffers.
|
|
if (step.blit.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
|
|
blit.srcSubresource.aspectMask = 0;
|
|
blit.dstSubresource.aspectMask = 0;
|
|
if (step.blit.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
|
|
blit.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
blit.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
}
|
|
if (step.blit.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
|
|
blit.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
blit.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
}
|
|
vkCmdBlitImage(cmd, src->depth.image, src->depth.layout, dst->depth.image, dst->depth.layout, 1, &blit, step.blit.filter);
|
|
}
|
|
}
|
|
|
|
void VulkanQueueRunner::SetupTransitionToTransferSrc(VKRImage &img, VkImageMemoryBarrier &barrier, VkPipelineStageFlags &stage, VkImageAspectFlags aspect) {
|
|
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
barrier.oldLayout = img.layout;
|
|
barrier.subresourceRange.layerCount = 1;
|
|
barrier.subresourceRange.levelCount = 1;
|
|
barrier.image = img.image;
|
|
barrier.srcAccessMask = 0;
|
|
switch (img.layout) {
|
|
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
|
|
stage |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
|
|
stage |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
stage |= VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
stage |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
break;
|
|
default:
|
|
_dbg_assert_msg_(false, "Transition from this layout to transfer src not supported (%d)", (int)img.layout);
|
|
break;
|
|
}
|
|
barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
|
|
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
|
|
if (img.format == VK_FORMAT_D16_UNORM_S8_UINT || img.format == VK_FORMAT_D24_UNORM_S8_UINT || img.format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
|
|
// Barrier must specify both for combined depth/stencil buffers.
|
|
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
} else {
|
|
barrier.subresourceRange.aspectMask = aspect;
|
|
}
|
|
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
img.layout = barrier.newLayout;
|
|
|
|
// NOTE: Must do this AFTER updating img.layout to avoid behaviour differences.
|
|
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_COLOR
|
|
if (aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
|
|
if (barrier.oldLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL || barrier.oldLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
|
|
barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
if (barrier.newLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL || barrier.newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
|
|
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
}
|
|
#endif
|
|
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_DEPTH_STENCIL
|
|
if (aspect != VK_IMAGE_ASPECT_COLOR_BIT) {
|
|
if (barrier.oldLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || barrier.oldLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
|
|
barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
if (barrier.newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || barrier.newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
|
|
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void VulkanQueueRunner::SetupTransitionToTransferDst(VKRImage &img, VkImageMemoryBarrier &barrier, VkPipelineStageFlags &stage, VkImageAspectFlags aspect) {
|
|
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
barrier.oldLayout = img.layout;
|
|
barrier.subresourceRange.layerCount = 1;
|
|
barrier.subresourceRange.levelCount = 1;
|
|
barrier.image = img.image;
|
|
barrier.srcAccessMask = 0;
|
|
switch (img.layout) {
|
|
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
stage |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
|
|
stage |= VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
|
|
stage |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
|
|
break;
|
|
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
|
|
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
stage |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
break;
|
|
default:
|
|
_dbg_assert_msg_(false, "Transition from this layout to transfer dst not supported (%d)", (int)img.layout);
|
|
break;
|
|
}
|
|
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
|
|
if (img.format == VK_FORMAT_D16_UNORM_S8_UINT || img.format == VK_FORMAT_D24_UNORM_S8_UINT || img.format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
|
|
// Barrier must specify both for combined depth/stencil buffers.
|
|
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
} else {
|
|
barrier.subresourceRange.aspectMask = aspect;
|
|
}
|
|
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
img.layout = barrier.newLayout;
|
|
|
|
// NOTE: Must do this AFTER updating img.layout to avoid behaviour differences.
|
|
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_COLOR
|
|
if (aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
|
|
if (barrier.oldLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL || barrier.oldLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
|
|
barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
if (barrier.newLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL || barrier.newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
|
|
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
}
|
|
#endif
|
|
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_DEPTH_STENCIL
|
|
if (aspect != VK_IMAGE_ASPECT_COLOR_BIT) {
|
|
if (barrier.oldLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || barrier.oldLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
|
|
barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
if (barrier.newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || barrier.newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
|
|
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void VulkanQueueRunner::PerformReadback(const VKRStep &step, VkCommandBuffer cmd) {
|
|
ResizeReadbackBuffer(sizeof(uint32_t) * step.readback.srcRect.extent.width * step.readback.srcRect.extent.height);
|
|
|
|
VkBufferImageCopy region{};
|
|
region.imageOffset = { step.readback.srcRect.offset.x, step.readback.srcRect.offset.y, 0 };
|
|
region.imageExtent = { step.readback.srcRect.extent.width, step.readback.srcRect.extent.height, 1 };
|
|
region.imageSubresource.aspectMask = step.readback.aspectMask;
|
|
region.imageSubresource.layerCount = 1;
|
|
region.bufferOffset = 0;
|
|
region.bufferRowLength = step.readback.srcRect.extent.width;
|
|
region.bufferImageHeight = step.readback.srcRect.extent.height;
|
|
|
|
VkImage image;
|
|
VkImageLayout copyLayout;
|
|
// Special case for backbuffer readbacks.
|
|
if (step.readback.src == nullptr) {
|
|
// We only take screenshots after the main render pass (anything else would be stupid) so we need to transition out of PRESENT,
|
|
// and then back into it.
|
|
TransitionImageLayout2(cmd, backbufferImage_, 0, 1, VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
0, VK_ACCESS_TRANSFER_READ_BIT);
|
|
copyLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
|
|
image = backbufferImage_;
|
|
} else {
|
|
VKRImage *srcImage;
|
|
if (step.readback.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
|
|
srcImage = &step.readback.src->color;
|
|
} else if (step.readback.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
|
|
srcImage = &step.readback.src->depth;
|
|
} else {
|
|
_dbg_assert_msg_(false, "No image aspect to readback?");
|
|
return;
|
|
}
|
|
|
|
VkImageMemoryBarrier barrier{ VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER };
|
|
VkPipelineStageFlags stage = 0;
|
|
if (srcImage->layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
|
|
SetupTransitionToTransferSrc(*srcImage, barrier, stage, step.readback.aspectMask);
|
|
vkCmdPipelineBarrier(cmd, stage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier);
|
|
}
|
|
image = srcImage->image;
|
|
copyLayout = srcImage->layout;
|
|
}
|
|
|
|
vkCmdCopyImageToBuffer(cmd, image, copyLayout, readbackBuffer_, 1, ®ion);
|
|
|
|
// NOTE: Can't read the buffer using the CPU here - need to sync first.
|
|
|
|
// If we copied from the backbuffer, transition it back.
|
|
if (step.readback.src == nullptr) {
|
|
// We only take screenshots after the main render pass (anything else would be stupid) so we need to transition out of PRESENT,
|
|
// and then back into it.
|
|
TransitionImageLayout2(cmd, backbufferImage_, 0, 1, VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
|
|
VK_ACCESS_TRANSFER_READ_BIT, 0);
|
|
copyLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
|
|
}
|
|
}
|
|
|
|
void VulkanQueueRunner::PerformReadbackImage(const VKRStep &step, VkCommandBuffer cmd) {
|
|
// TODO: Clean this up - just reusing `SetupTransitionToTransferSrc`.
|
|
VKRImage srcImage{};
|
|
srcImage.image = step.readback_image.image;
|
|
srcImage.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
|
|
VkImageMemoryBarrier barrier{ VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER };
|
|
VkPipelineStageFlags stage = 0;
|
|
SetupTransitionToTransferSrc(srcImage, barrier, stage, VK_IMAGE_ASPECT_COLOR_BIT);
|
|
vkCmdPipelineBarrier(cmd, stage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier);
|
|
|
|
ResizeReadbackBuffer(sizeof(uint32_t) * step.readback_image.srcRect.extent.width * step.readback_image.srcRect.extent.height);
|
|
|
|
VkBufferImageCopy region{};
|
|
region.imageOffset = { step.readback_image.srcRect.offset.x, step.readback_image.srcRect.offset.y, 0 };
|
|
region.imageExtent = { step.readback_image.srcRect.extent.width, step.readback_image.srcRect.extent.height, 1 };
|
|
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
region.imageSubresource.layerCount = 1;
|
|
region.imageSubresource.mipLevel = step.readback_image.mipLevel;
|
|
region.bufferOffset = 0;
|
|
region.bufferRowLength = step.readback_image.srcRect.extent.width;
|
|
region.bufferImageHeight = step.readback_image.srcRect.extent.height;
|
|
vkCmdCopyImageToBuffer(cmd, step.readback_image.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, readbackBuffer_, 1, ®ion);
|
|
|
|
// Now transfer it back to a texture.
|
|
TransitionImageLayout2(cmd, step.readback_image.image, 0, 1,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
VK_ACCESS_TRANSFER_READ_BIT, VK_ACCESS_SHADER_READ_BIT);
|
|
|
|
// NOTE: Can't read the buffer using the CPU here - need to sync first.
|
|
// Doing that will also act like a heavyweight barrier ensuring that device writes are visible on the host.
|
|
}
|
|
|
|
void VulkanQueueRunner::CopyReadbackBuffer(int width, int height, Draw::DataFormat srcFormat, Draw::DataFormat destFormat, int pixelStride, uint8_t *pixels) {
|
|
if (!readbackMemory_)
|
|
return; // Something has gone really wrong.
|
|
|
|
// Read back to the requested address in ram from buffer.
|
|
void *mappedData;
|
|
const size_t srcPixelSize = DataFormatSizeInBytes(srcFormat);
|
|
|
|
VkResult res = vkMapMemory(vulkan_->GetDevice(), readbackMemory_, 0, width * height * srcPixelSize, 0, &mappedData);
|
|
if (!readbackBufferIsCoherent_) {
|
|
VkMappedMemoryRange range{};
|
|
range.memory = readbackMemory_;
|
|
range.offset = 0;
|
|
range.size = width * height * srcPixelSize;
|
|
vkInvalidateMappedMemoryRanges(vulkan_->GetDevice(), 1, &range);
|
|
}
|
|
|
|
if (res != VK_SUCCESS) {
|
|
ERROR_LOG(G3D, "CopyReadbackBuffer: vkMapMemory failed! result=%d", (int)res);
|
|
return;
|
|
}
|
|
|
|
// TODO: Perform these conversions in a compute shader on the GPU.
|
|
if (srcFormat == Draw::DataFormat::R8G8B8A8_UNORM) {
|
|
ConvertFromRGBA8888(pixels, (const uint8_t *)mappedData, pixelStride, width, width, height, destFormat);
|
|
} else if (srcFormat == Draw::DataFormat::B8G8R8A8_UNORM) {
|
|
ConvertFromBGRA8888(pixels, (const uint8_t *)mappedData, pixelStride, width, width, height, destFormat);
|
|
} else if (srcFormat == destFormat) {
|
|
// Can just memcpy when it matches no matter the format!
|
|
uint8_t *dst = pixels;
|
|
const uint8_t *src = (const uint8_t *)mappedData;
|
|
for (int y = 0; y < height; ++y) {
|
|
memcpy(dst, src, width * srcPixelSize);
|
|
src += width * srcPixelSize;
|
|
dst += pixelStride * srcPixelSize;
|
|
}
|
|
} else if (destFormat == Draw::DataFormat::D32F) {
|
|
ConvertToD32F(pixels, (const uint8_t *)mappedData, pixelStride, width, width, height, srcFormat);
|
|
} else {
|
|
// TODO: Maybe a depth conversion or something?
|
|
ERROR_LOG(G3D, "CopyReadbackBuffer: Unknown format");
|
|
_assert_msg_(false, "CopyReadbackBuffer: Unknown src format %d", (int)srcFormat);
|
|
}
|
|
vkUnmapMemory(vulkan_->GetDevice(), readbackMemory_);
|
|
}
|