ppsspp/GPU/Common/VertexShaderGenerator.cpp
2023-12-29 14:09:45 +01:00

1388 lines
54 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cstdio>
#include <cstdlib>
#include <locale.h>
#include "Common/StringUtils.h"
#include "Common/GPU/OpenGL/GLFeatures.h"
#include "Common/GPU/ShaderWriter.h"
#include "Common/GPU/thin3d.h"
#include "Core/Config.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h"
#include "GPU/Common/ShaderId.h"
#include "GPU/Common/ShaderUniforms.h"
#include "GPU/Common/VertexDecoderCommon.h"
#include "GPU/Common/VertexShaderGenerator.h"
#include "GPU/Vulkan/DrawEngineVulkan.h"
#undef WRITE
#define WRITE(p, ...) p.F(__VA_ARGS__)
static const char * const boneWeightAttrDecl[9] = {
"#ERROR#",
"attribute mediump float w1;\n",
"attribute mediump vec2 w1;\n",
"attribute mediump vec3 w1;\n",
"attribute mediump vec4 w1;\n",
"attribute mediump vec4 w1;\nattribute mediump float w2;\n",
"attribute mediump vec4 w1;\nattribute mediump vec2 w2;\n",
"attribute mediump vec4 w1;\nattribute mediump vec3 w2;\n",
"attribute mediump vec4 w1, w2;\n",
};
static const char * const boneWeightInDecl[9] = {
"#ERROR#",
"in mediump float w1;\n",
"in mediump vec2 w1;\n",
"in mediump vec3 w1;\n",
"in mediump vec4 w1;\n",
"in mediump vec4 w1;\nin mediump float w2;\n",
"in mediump vec4 w1;\nin mediump vec2 w2;\n",
"in mediump vec4 w1;\nin mediump vec3 w2;\n",
"in mediump vec4 w1, w2;\n",
};
const char *boneWeightAttrDeclHLSL[9] = {
"#ERROR boneWeightAttrDecl#\n",
"float a_w1:TEXCOORD1;\n",
"vec2 a_w1:TEXCOORD1;\n",
"vec3 a_w1:TEXCOORD1;\n",
"vec4 a_w1:TEXCOORD1;\n",
"vec4 a_w1:TEXCOORD1;\n float a_w2:TEXCOORD2;\n",
"vec4 a_w1:TEXCOORD1;\n vec2 a_w2:TEXCOORD2;\n",
"vec4 a_w1:TEXCOORD1;\n vec3 a_w2:TEXCOORD2;\n",
"vec4 a_w1:TEXCOORD1;\n vec4 a_w2:TEXCOORD2;\n",
};
const char *boneWeightAttrInitHLSL[9] = {
" #ERROR#\n",
" vec4 w1 = vec4(In.a_w1, 0.0, 0.0, 0.0);\n",
" vec4 w1 = vec4(In.a_w1.xy, 0.0, 0.0);\n",
" vec4 w1 = vec4(In.a_w1.xyz, 0.0);\n",
" vec4 w1 = In.a_w1;\n",
" vec4 w1 = In.a_w1;\n vec4 w2 = vec4(In.a_w2, 0.0, 0.0, 0.0);\n",
" vec4 w1 = In.a_w1;\n vec4 w2 = vec4(In.a_w2.xy, 0.0, 0.0);\n",
" vec4 w1 = In.a_w1;\n vec4 w2 = vec4(In.a_w2.xyz, 0.0);\n",
" vec4 w1 = In.a_w1;\n vec4 w2 = In.a_w2;\n",
};
// Depth range and viewport
//
// After the multiplication with the projection matrix, we have a 4D vector in clip space.
// In OpenGL, Z is from -1 to 1, while in D3D, Z is from 0 to 1.
// PSP appears to use the OpenGL convention. As Z is from -1 to 1, and the viewport is represented
// by a center and a scale, to find the final Z value, all we need to do is to multiply by ZScale and
// add ZCenter - these are properly scaled to directly give a Z value in [0, 65535].
//
// z = vec.z * ViewportZScale + ViewportZCenter;
//
// That will give us the final value between 0 and 65535, which we can simply floor to simulate
// the limited precision of the PSP's depth buffer. Then we convert it back:
// z = floor(z);
//
// vec.z = (z - ViewportZCenter) / ViewportZScale;
//
// Now, the regular machinery will take over and do the calculation again.
//
// Depth is not clipped to the viewport, but does clip to "minz" and "maxz". It may also be clamped
// to 0 and 65535 if a depth clamping/clipping flag is set (x/y clipping is performed only if depth
// needs to be clamped.)
//
// Additionally, depth is clipped to negative z based on vec.z (before viewport), at -1.
//
// All this above is for full transform mode.
// In through mode, the Z coordinate just goes straight through and there is no perspective division.
// We simulate this of course with pretty much an identity matrix. Rounding Z becomes very easy.
//
// TODO: Skip all this if we can actually get a 16-bit depth buffer along with stencil, which
// is a bit of a rare configuration, although quite common on mobile.
static const char * const boneWeightDecl[9] = {
"#ERROR#",
"layout(location = 3) in float w1;\n",
"layout(location = 3) in vec2 w1;\n",
"layout(location = 3) in vec3 w1;\n",
"layout(location = 3) in vec4 w1;\n",
"layout(location = 3) in vec4 w1;\nlayout(location = 4) in float w2;\n",
"layout(location = 3) in vec4 w1;\nlayout(location = 4) in vec2 w2;\n",
"layout(location = 3) in vec4 w1;\nlayout(location = 4) in vec3 w2;\n",
"layout(location = 3) in vec4 w1;\nlayout(location = 4) in vec4 w2;\n",
};
bool GenerateVertexShader(const VShaderID &id, char *buffer, const ShaderLanguageDesc &compat, Draw::Bugs bugs, uint32_t *attrMask, uint64_t *uniformMask, VertexShaderFlags *vertexShaderFlags, std::string *errorString) {
*attrMask = 0;
*uniformMask = 0;
*vertexShaderFlags = (VertexShaderFlags)0;
bool highpFog = false;
bool highpTexcoord = false;
std::vector<const char*> extensions;
extensions.reserve(6);
if (ShaderLanguageIsOpenGL(compat.shaderLanguage)) {
if (gl_extensions.EXT_gpu_shader4) {
extensions.push_back("#extension GL_EXT_gpu_shader4 : enable");
}
bool useClamp = gstate_c.Use(GPU_USE_DEPTH_CLAMP) && !id.Bit(VS_BIT_IS_THROUGH);
if (gl_extensions.EXT_clip_cull_distance && (id.Bit(VS_BIT_VERTEX_RANGE_CULLING) || useClamp)) {
extensions.push_back("#extension GL_EXT_clip_cull_distance : enable");
}
if (gl_extensions.APPLE_clip_distance && (id.Bit(VS_BIT_VERTEX_RANGE_CULLING) || useClamp)) {
extensions.push_back("#extension GL_APPLE_clip_distance : enable");
}
if (gl_extensions.ARB_cull_distance && id.Bit(VS_BIT_VERTEX_RANGE_CULLING)) {
extensions.push_back("#extension GL_ARB_cull_distance : enable");
}
if (gstate_c.Use(GPU_USE_VIRTUAL_REALITY) && gstate_c.Use(GPU_USE_SINGLE_PASS_STEREO)) {
extensions.push_back("#extension GL_OVR_multiview2 : enable\nlayout(num_views=2) in;");
}
}
bool useSimpleStereo = id.Bit(VS_BIT_SIMPLE_STEREO);
if (useSimpleStereo) {
if (compat.shaderLanguage != ShaderLanguage::GLSL_VULKAN) {
*errorString = "Multiview only supported with Vulkan for now";
return false;
}
extensions.push_back("#extension GL_EXT_multiview : enable");
}
ShaderWriter p(buffer, compat, ShaderStage::Vertex, extensions);
p.F("// %s\n", VertexShaderDesc(id).c_str());
bool isModeThrough = id.Bit(VS_BIT_IS_THROUGH);
bool lmode = id.Bit(VS_BIT_LMODE);
GETexMapMode uvGenMode = static_cast<GETexMapMode>(id.Bits(VS_BIT_UVGEN_MODE, 2));
bool doTextureTransform = uvGenMode == GE_TEXMAP_TEXTURE_MATRIX;
// this is only valid for some settings of uvGenMode
GETexProjMapMode uvProjMode = static_cast<GETexProjMapMode>(id.Bits(VS_BIT_UVPROJ_MODE, 2));
bool doShadeMapping = uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP;
bool flatBug = bugs.Has(Draw::Bugs::BROKEN_FLAT_IN_SHADER) && g_Config.bVendorBugChecksEnabled;
bool needsZWHack = bugs.Has(Draw::Bugs::EQUAL_WZ_CORRUPTS_DEPTH) && g_Config.bVendorBugChecksEnabled;
bool doFlatShading = id.Bit(VS_BIT_FLATSHADE) && !flatBug;
bool useHWTransform = id.Bit(VS_BIT_USE_HW_TRANSFORM);
bool hasColor = id.Bit(VS_BIT_HAS_COLOR) || !useHWTransform;
bool hasNormal = id.Bit(VS_BIT_HAS_NORMAL) && useHWTransform;
bool hasTexcoord = id.Bit(VS_BIT_HAS_TEXCOORD) || !useHWTransform;
bool flipNormal = id.Bit(VS_BIT_NORM_REVERSE);
int ls0 = id.Bits(VS_BIT_LS0, 2);
int ls1 = id.Bits(VS_BIT_LS1, 2);
bool enableBones = id.Bit(VS_BIT_ENABLE_BONES) && useHWTransform;
bool enableLighting = id.Bit(VS_BIT_LIGHTING_ENABLE);
int matUpdate = id.Bits(VS_BIT_MATERIAL_UPDATE, 3);
bool lightUberShader = id.Bit(VS_BIT_LIGHT_UBERSHADER) && enableLighting; // checking lighting here for the shader test's benefit, in reality if ubershader is set, lighting is set.
if (lightUberShader && !compat.bitwiseOps) {
*errorString = "Light ubershader requires bitwise ops in shader language";
return false;
}
// Apparently we don't support bezier/spline together with bones.
bool doBezier = id.Bit(VS_BIT_BEZIER) && !enableBones && useHWTransform;
bool doSpline = id.Bit(VS_BIT_SPLINE) && !enableBones && useHWTransform;
if (doBezier || doSpline) {
if (!hasNormal) {
// Bad usage.
*errorString = "Invalid flags - tess requires normal.";
return false;
}
if (compat.shaderLanguage == HLSL_D3D9 || compat.texelFetch == nullptr) {
*errorString = "Tess not supported on this shader language version";
return false;
}
}
bool hasColorTess = id.Bit(VS_BIT_HAS_COLOR_TESS);
bool hasTexcoordTess = id.Bit(VS_BIT_HAS_TEXCOORD_TESS);
bool hasNormalTess = id.Bit(VS_BIT_HAS_NORMAL_TESS);
bool flipNormalTess = id.Bit(VS_BIT_NORM_REVERSE_TESS);
const char *shading = "";
if (compat.glslES30 || compat.shaderLanguage == GLSL_VULKAN)
shading = doFlatShading ? "flat " : "";
DoLightComputation doLight[4] = { LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF };
if (useHWTransform) {
int shadeLight0 = doShadeMapping ? ls0 : -1;
int shadeLight1 = doShadeMapping ? ls1 : -1;
for (int i = 0; i < 4; i++) {
if (i == shadeLight0 || i == shadeLight1)
doLight[i] = LIGHT_SHADE;
if (enableLighting && id.Bit(VS_BIT_LIGHT0_ENABLE + i))
doLight[i] = LIGHT_FULL;
}
}
int numBoneWeights = 0;
int boneWeightScale = id.Bits(VS_BIT_WEIGHT_FMTSCALE, 2);
if (enableBones) {
numBoneWeights = 1 + id.Bits(VS_BIT_BONES, 3);
}
bool texCoordInVec3 = false;
bool vertexRangeCulling = id.Bit(VS_BIT_VERTEX_RANGE_CULLING) && !isModeThrough;
bool clipClampedDepth = !isModeThrough && gstate_c.Use(GPU_USE_DEPTH_CLAMP) && gstate_c.Use(GPU_USE_CLIP_DISTANCE);
const char *clipClampedDepthSuffix = "[0]";
const char *vertexRangeClipSuffix = clipClampedDepth ? "[1]" : "[0]";
if (compat.shaderLanguage == GLSL_VULKAN) {
WRITE(p, "\n");
WRITE(p, "layout (std140, set = 0, binding = %d) uniform baseVars {\n%s};\n", DRAW_BINDING_DYNUBO_BASE, ub_baseStr);
if (enableLighting || doShadeMapping)
WRITE(p, "layout (std140, set = 0, binding = %d) uniform lightVars {\n%s};\n", DRAW_BINDING_DYNUBO_LIGHT, ub_vs_lightsStr);
if (enableBones)
WRITE(p, "layout (std140, set = 0, binding = %d) uniform boneVars {\n%s};\n", DRAW_BINDING_DYNUBO_BONE, ub_vs_bonesStr);
if (enableBones) {
WRITE(p, "%s", boneWeightDecl[numBoneWeights]);
}
if (useHWTransform)
WRITE(p, "layout (location = %d) in vec3 position;\n", (int)PspAttributeLocation::POSITION);
else
WRITE(p, "layout (location = %d) in vec4 position;\n", (int)PspAttributeLocation::POSITION);
if (useHWTransform && hasNormal)
WRITE(p, "layout (location = %d) in vec3 normal;\n", (int)PspAttributeLocation::NORMAL);
if (!useHWTransform)
WRITE(p, "layout (location = %d) in float fog;\n", (int)PspAttributeLocation::NORMAL);
if (hasTexcoord) {
if (!useHWTransform && doTextureTransform && !isModeThrough) {
WRITE(p, "layout (location = %d) in vec3 texcoord;\n", (int)PspAttributeLocation::TEXCOORD);
texCoordInVec3 = true;
} else {
WRITE(p, "layout (location = %d) in vec2 texcoord;\n", (int)PspAttributeLocation::TEXCOORD);
}
}
if (hasColor) {
WRITE(p, "layout (location = %d) in vec4 color0;\n", (int)PspAttributeLocation::COLOR0);
if (lmode && !useHWTransform) // only software transform supplies color1 as vertex data
WRITE(p, "layout (location = %d) in vec3 color1;\n", (int)PspAttributeLocation::COLOR1);
}
WRITE(p, "layout (location = 1) %sout lowp vec4 v_color0;\n", shading);
if (lmode) {
WRITE(p, "layout (location = 2) %sout lowp vec3 v_color1;\n", shading);
}
WRITE(p, "layout (location = 0) out highp vec3 v_texcoord;\n");
WRITE(p, "layout (location = 3) out highp float v_fogdepth;\n");
WRITE(p, "invariant gl_Position;\n");
} else if (compat.shaderLanguage == HLSL_D3D11 || compat.shaderLanguage == HLSL_D3D9) {
// Note: These two share some code after this hellishly large if/else.
if (compat.shaderLanguage == HLSL_D3D11) {
WRITE(p, "cbuffer base : register(b0) {\n%s};\n", ub_baseStr);
WRITE(p, "cbuffer lights: register(b1) {\n%s};\n", ub_vs_lightsStr);
WRITE(p, "cbuffer bones : register(b2) {\n%s};\n", ub_vs_bonesStr);
} else {
WRITE(p, "#pragma warning( disable : 3571 )\n");
if (isModeThrough) {
WRITE(p, "mat4 u_proj_through : register(c%i);\n", CONST_VS_PROJ_THROUGH);
} else if (useHWTransform) {
WRITE(p, "mat4 u_proj : register(c%i);\n", CONST_VS_PROJ);
} else {
WRITE(p, "float u_rotation : register(c%i);\n", CONST_VS_ROTATION);
}
if (useHWTransform)
WRITE(p, "vec2 u_fogcoef : register(c%i);\n", CONST_VS_FOGCOEF);
if (useHWTransform || !hasColor)
WRITE(p, "vec4 u_matambientalpha : register(c%i);\n", CONST_VS_MATAMBIENTALPHA); // matambient + matalpha
if (useHWTransform) {
WRITE(p, "mat3x4 u_world : register(c%i);\n", CONST_VS_WORLD);
WRITE(p, "mat3x4 u_view : register(c%i);\n", CONST_VS_VIEW);
if (doTextureTransform)
WRITE(p, "mat3x4 u_texmtx : register(c%i);\n", CONST_VS_TEXMTX);
if (enableBones) {
#ifdef USE_BONE_ARRAY
WRITE(p, "mat3x4 u_bone[%i] : register(c%i);\n", numBones, CONST_VS_BONE0);
#else
for (int i = 0; i < numBoneWeights; i++) {
WRITE(p, "mat3x4 u_bone%i : register(c%i);\n", i, CONST_VS_BONE0 + i * 3);
}
#endif
}
WRITE(p, "vec4 u_uvscaleoffset : register(c%i);\n", CONST_VS_UVSCALEOFFSET);
// No need for light ubershader support here, D3D9 doesn't do it.
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_OFF) {
// This is needed for shade mapping
WRITE(p, "vec3 u_lightpos%i : register(c%i);\n", i, CONST_VS_LIGHTPOS + i);
}
if (doLight[i] == LIGHT_FULL) {
GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2));
GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2));
if (type != GE_LIGHTTYPE_DIRECTIONAL)
WRITE(p, "vec3 u_lightatt%i : register(c%i);\n", i, CONST_VS_LIGHTATT + i);
if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) {
WRITE(p, "vec3 u_lightdir%i : register(c%i);\n", i, CONST_VS_LIGHTDIR + i);
WRITE(p, "vec4 u_lightangle_spotCoef%i : register(c%i);\n", i, CONST_VS_LIGHTANGLE_SPOTCOEF + i);
}
WRITE(p, "vec3 u_lightambient%i : register(c%i);\n", i, CONST_VS_LIGHTAMBIENT + i);
WRITE(p, "vec3 u_lightdiffuse%i : register(c%i);\n", i, CONST_VS_LIGHTDIFFUSE + i);
if (comp == GE_LIGHTCOMP_BOTH) {
WRITE(p, "vec3 u_lightspecular%i : register(c%i);\n", i, CONST_VS_LIGHTSPECULAR + i);
}
}
}
if (enableLighting) {
WRITE(p, "vec4 u_ambient : register(c%i);\n", CONST_VS_AMBIENT);
if ((matUpdate & 2) == 0 || !hasColor)
WRITE(p, "vec3 u_matdiffuse : register(c%i);\n", CONST_VS_MATDIFFUSE);
// if ((matUpdate & 4) == 0)
WRITE(p, "vec4 u_matspecular : register(c%i);\n", CONST_VS_MATSPECULAR); // Specular coef is contained in alpha
WRITE(p, "vec3 u_matemissive : register(c%i);\n", CONST_VS_MATEMISSIVE);
}
}
if (!isModeThrough) {
WRITE(p, "vec4 u_depthRange : register(c%i);\n", CONST_VS_DEPTHRANGE);
WRITE(p, "vec4 u_cullRangeMin : register(c%i);\n", CONST_VS_CULLRANGEMIN);
WRITE(p, "vec4 u_cullRangeMax : register(c%i);\n", CONST_VS_CULLRANGEMAX);
}
}
// And the "varyings".
if (useHWTransform) {
WRITE(p, "struct VS_IN { \n");
if ((doSpline || doBezier) && compat.shaderLanguage == HLSL_D3D11) {
WRITE(p, " uint instanceId : SV_InstanceID;\n");
}
if (enableBones) {
WRITE(p, " %s", boneWeightAttrDeclHLSL[numBoneWeights]);
}
if (hasTexcoord) {
WRITE(p, " vec2 texcoord : TEXCOORD0;\n");
}
if (hasColor) {
WRITE(p, " vec4 color0 : COLOR0;\n");
}
if (hasNormal) {
WRITE(p, " vec3 normal : NORMAL;\n");
}
WRITE(p, " vec3 position : POSITION;\n");
WRITE(p, "};\n");
} else {
WRITE(p, "struct VS_IN {\n");
WRITE(p, " vec4 position : POSITION;\n");
if (hasTexcoord) {
if (doTextureTransform && !isModeThrough) {
texCoordInVec3 = true;
WRITE(p, " vec3 texcoord : TEXCOORD0;\n");
} else {
WRITE(p, " vec2 texcoord : TEXCOORD0;\n");
}
}
if (hasColor) {
WRITE(p, " vec4 color0 : COLOR0;\n");
}
// only software transform supplies color1 as vertex data
if (lmode) {
WRITE(p, " vec3 color1 : COLOR1;\n");
}
WRITE(p, " float fog : NORMAL;\n");
WRITE(p, "};\n");
}
WRITE(p, "struct VS_OUT {\n");
WRITE(p, " vec3 v_texcoord : TEXCOORD0;\n");
const char *colorInterpolation = doFlatShading && compat.shaderLanguage == HLSL_D3D11 ? "nointerpolation " : "";
WRITE(p, " %svec4 v_color0 : COLOR0;\n", colorInterpolation);
if (lmode) {
WRITE(p, " vec3 v_color1 : COLOR1;\n");
}
WRITE(p, " float v_fogdepth : TEXCOORD1;\n");
if (compat.shaderLanguage == HLSL_D3D9) {
WRITE(p, " vec4 gl_Position : POSITION;\n");
} else {
WRITE(p, " vec4 gl_Position : SV_Position;\n");
bool clipRange = vertexRangeCulling && gstate_c.Use(GPU_USE_CLIP_DISTANCE);
if (clipClampedDepth && clipRange) {
WRITE(p, " float2 gl_ClipDistance : SV_ClipDistance;\n");
clipClampedDepthSuffix = ".x";
vertexRangeClipSuffix = ".y";
} else if (clipClampedDepth || clipRange) {
WRITE(p, " float gl_ClipDistance : SV_ClipDistance;\n");
clipClampedDepthSuffix = "";
vertexRangeClipSuffix = "";
}
if (vertexRangeCulling && gstate_c.Use(GPU_USE_CULL_DISTANCE)) {
WRITE(p, " float2 gl_CullDistance : SV_CullDistance0;\n");
}
}
WRITE(p, "};\n");
} else {
if (enableBones) {
const char * const * boneWeightDecl = boneWeightAttrDecl;
if (!strcmp(compat.attribute, "in")) {
boneWeightDecl = boneWeightInDecl;
}
WRITE(p, "%s", boneWeightDecl[numBoneWeights]);
*attrMask |= 1 << ATTR_W1;
if (numBoneWeights >= 5)
*attrMask |= 1 << ATTR_W2;
}
if (useHWTransform)
WRITE(p, "%s vec3 position;\n", compat.attribute);
else
WRITE(p, "%s vec4 position;\n", compat.attribute); // need to pass the fog coord in w
*attrMask |= 1 << ATTR_POSITION;
if (useHWTransform && hasNormal) {
WRITE(p, "%s mediump vec3 normal;\n", compat.attribute);
*attrMask |= 1 << ATTR_NORMAL;
}
if (!useHWTransform) {
WRITE(p, "%s highp float fog;\n", compat.attribute);
*attrMask |= 1 << ATTR_NORMAL;
}
if (hasTexcoord) {
if (!useHWTransform && doTextureTransform && !isModeThrough) {
WRITE(p, "%s vec3 texcoord;\n", compat.attribute);
texCoordInVec3 = true;
} else {
WRITE(p, "%s vec2 texcoord;\n", compat.attribute);
}
*attrMask |= 1 << ATTR_TEXCOORD;
}
if (hasColor) {
WRITE(p, "%s lowp vec4 color0;\n", compat.attribute);
*attrMask |= 1 << ATTR_COLOR0;
if (lmode && !useHWTransform) { // only software transform supplies color1 as vertex data
WRITE(p, "%s lowp vec3 color1;\n", compat.attribute);
*attrMask |= 1 << ATTR_COLOR1;
}
}
if (isModeThrough) {
WRITE(p, "uniform mat4 u_proj_through;\n");
*uniformMask |= DIRTY_PROJTHROUGHMATRIX;
} else if (useHWTransform) {
if (gstate_c.Use(GPU_USE_VIRTUAL_REALITY)) {
if (gstate_c.Use(GPU_USE_SINGLE_PASS_STEREO)) {
WRITE(p, "layout(shared) uniform ProjectionMatrix { uniform mat4 u_proj_lens[2]; };\n");
} else {
WRITE(p, "uniform mat4 u_proj_lens;\n");
}
}
WRITE(p, "uniform mat4 u_proj;\n");
*uniformMask |= DIRTY_PROJMATRIX;
}
if (useHWTransform) {
// When transforming by hardware, we need a great deal more uniforms...
// TODO: Use 4x3 matrices where possible. Though probably doesn't matter much.
WRITE(p, "uniform mat4 u_world;\n");
if (gstate_c.Use(GPU_USE_VIRTUAL_REALITY) && gstate_c.Use(GPU_USE_SINGLE_PASS_STEREO)) {
WRITE(p, "layout(shared) uniform ViewMatrices { uniform mat4 u_view[2]; };\n");
} else {
WRITE(p, "uniform mat4 u_view;\n");
}
*uniformMask |= DIRTY_WORLDMATRIX | DIRTY_VIEWMATRIX;
if (doTextureTransform) {
WRITE(p, "uniform mediump mat4 u_texmtx;\n");
*uniformMask |= DIRTY_TEXMATRIX;
}
if (enableBones) {
for (int i = 0; i < numBoneWeights; i++) {
WRITE(p, "uniform mat4 u_bone%i;\n", i);
*uniformMask |= DIRTY_BONEMATRIX0 << i;
}
}
WRITE(p, "uniform vec4 u_uvscaleoffset;\n");
*uniformMask |= DIRTY_UVSCALEOFFSET;
if (lightUberShader) {
p.C("uniform uint u_lightControl;\n");
*uniformMask |= DIRTY_LIGHT_CONTROL;
}
for (int i = 0; i < 4; i++) {
if (lightUberShader || doLight[i] != LIGHT_OFF) {
// This is needed for shade mapping
WRITE(p, "uniform vec3 u_lightpos%i;\n", i);
*uniformMask |= DIRTY_LIGHT0 << i;
}
if (lightUberShader || doLight[i] == LIGHT_FULL) {
*uniformMask |= DIRTY_LIGHT0 << i;
GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2));
GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2));
if (lightUberShader || type != GE_LIGHTTYPE_DIRECTIONAL)
WRITE(p, "uniform mediump vec3 u_lightatt%i;\n", i);
if (lightUberShader || type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) {
WRITE(p, "uniform mediump vec3 u_lightdir%i;\n", i);
WRITE(p, "uniform mediump vec2 u_lightangle_spotCoef%i;\n", i);
}
WRITE(p, "uniform lowp vec3 u_lightambient%i;\n", i);
WRITE(p, "uniform lowp vec3 u_lightdiffuse%i;\n", i);
if (lightUberShader || comp == GE_LIGHTCOMP_BOTH) {
WRITE(p, "uniform lowp vec3 u_lightspecular%i;\n", i);
}
}
}
if (enableLighting) {
WRITE(p, "uniform lowp vec4 u_ambient;\n");
*uniformMask |= DIRTY_AMBIENT;
if (lightUberShader || (matUpdate & 2) == 0 || !hasColor) {
WRITE(p, "uniform lowp vec3 u_matdiffuse;\n");
*uniformMask |= DIRTY_MATDIFFUSE;
}
WRITE(p, "uniform lowp vec4 u_matspecular;\n"); // Specular coef is contained in alpha
WRITE(p, "uniform lowp vec3 u_matemissive;\n");
*uniformMask |= DIRTY_MATSPECULAR | DIRTY_MATEMISSIVE;
}
} else {
WRITE(p, "uniform lowp float u_rotation;\n");
}
if (gstate_c.Use(GPU_USE_VIRTUAL_REALITY)) {
WRITE(p, "uniform lowp float u_scaleX;\n");
WRITE(p, "uniform lowp float u_scaleY;\n");
}
if (useHWTransform || !hasColor) {
WRITE(p, "uniform lowp vec4 u_matambientalpha;\n"); // matambient + matalpha
*uniformMask |= DIRTY_MATAMBIENTALPHA;
}
WRITE(p, "uniform highp vec2 u_fogcoef;\n");
*uniformMask |= DIRTY_FOGCOEF;
if (!isModeThrough) {
WRITE(p, "uniform highp vec4 u_depthRange;\n");
WRITE(p, "uniform highp vec4 u_cullRangeMin;\n");
WRITE(p, "uniform highp vec4 u_cullRangeMax;\n");
*uniformMask |= DIRTY_DEPTHRANGE | DIRTY_CULLRANGE;
}
WRITE(p, "%s%s lowp vec4 v_color0;\n", shading, compat.varying_vs);
if (lmode) {
WRITE(p, "%s%s lowp vec3 v_color1;\n", shading, compat.varying_vs);
}
WRITE(p, "%s %s vec3 v_texcoord;\n", compat.varying_vs, highpTexcoord ? "highp" : "mediump");
// See the fragment shader generator
if (highpFog) {
WRITE(p, "%s highp float v_fogdepth;\n", compat.varying_vs);
} else {
WRITE(p, "%s mediump float v_fogdepth;\n", compat.varying_vs);
}
}
// See comment above this function (GenerateVertexShader).
if (!isModeThrough && gstate_c.Use(GPU_ROUND_DEPTH_TO_16BIT)) {
// Apply the projection and viewport to get the Z buffer value, floor to integer, undo the viewport and projection.
WRITE(p, "\nvec4 depthRoundZVP(vec4 v) {\n");
WRITE(p, " float z = v.z / v.w;\n");
WRITE(p, " z = z * u_depthRange.x + u_depthRange.y;\n");
WRITE(p, " z = floor(z);\n");
WRITE(p, " z = (z - u_depthRange.y) / u_depthRange.x;\n");
WRITE(p, " return vec4(v.x, v.y, z * v.w, v.w);\n");
WRITE(p, "}\n\n");
}
// Hardware tessellation
if (doBezier || doSpline) {
*uniformMask |= DIRTY_BEZIERSPLINE;
if (compat.shaderLanguage == GLSL_VULKAN) {
WRITE(p, "struct TessData {\n");
WRITE(p, " vec4 pos;\n");
WRITE(p, " vec4 tex;\n");
WRITE(p, " vec4 col;\n");
WRITE(p, "};\n");
WRITE(p, "layout (std430, set = 0, binding = %d) readonly buffer s_tess_data {\n", DRAW_BINDING_TESS_STORAGE_BUF);
WRITE(p, " TessData tess_data[];\n");
WRITE(p, "};\n");
WRITE(p, "struct TessWeight {\n");
WRITE(p, " vec4 basis;\n");
WRITE(p, " vec4 deriv;\n");
WRITE(p, "};\n");
WRITE(p, "layout (std430, set = 0, binding = %d) readonly buffer s_tess_weights_u {\n", DRAW_BINDING_TESS_STORAGE_BUF_WU);
WRITE(p, " TessWeight tess_weights_u[];\n");
WRITE(p, "};\n");
WRITE(p, "layout (std430, set = 0, binding = %d) readonly buffer s_tess_weights_v {\n", DRAW_BINDING_TESS_STORAGE_BUF_WV);
WRITE(p, " TessWeight tess_weights_v[];\n");
WRITE(p, "};\n");
} else if (ShaderLanguageIsOpenGL(compat.shaderLanguage)) {
WRITE(p, "uniform sampler2D u_tess_points;\n"); // Control Points
WRITE(p, "uniform sampler2D u_tess_weights_u;\n");
WRITE(p, "uniform sampler2D u_tess_weights_v;\n");
WRITE(p, "uniform int u_spline_counts;\n");
} else if (compat.shaderLanguage == HLSL_D3D11) {
WRITE(p, "struct TessData {\n");
WRITE(p, " vec3 pos; float pad1;\n");
WRITE(p, " vec2 tex; vec2 pad2;\n");
WRITE(p, " vec4 col;\n");
WRITE(p, "};\n");
WRITE(p, "StructuredBuffer<TessData> tess_data : register(t0);\n");
WRITE(p, "struct TessWeight {\n");
WRITE(p, " vec4 basis;\n");
WRITE(p, " vec4 deriv;\n");
WRITE(p, "};\n");
WRITE(p, "StructuredBuffer<TessWeight> tess_weights_u : register(t1);\n");
WRITE(p, "StructuredBuffer<TessWeight> tess_weights_v : register(t2);\n");
} else if (compat.shaderLanguage == HLSL_D3D9) {
}
const char *init[3] = { "0.0, 0.0", "0.0, 0.0, 0.0", "0.0, 0.0, 0.0, 0.0" };
for (int i = 2; i <= 4; i++) {
// Define 3 types vec2, vec3, vec4
WRITE(p, "vec%d tess_sample(in vec%d points[16], mat4 weights) {\n", i, i);
WRITE(p, " vec%d pos = vec%d(%s);\n", i, i, init[i - 2]);
for (int v = 0; v < 4; ++v) {
for (int u = 0; u < 4; ++u) {
WRITE(p, " pos += weights[%i][%i] * points[%i];\n", v, u, v * 4 + u);
}
}
WRITE(p, " return pos;\n");
WRITE(p, "}\n");
}
if (ShaderLanguageIsOpenGL(compat.shaderLanguage) && compat.glslVersionNumber < 130) { // For glsl version 1.10
WRITE(p, "mat4 outerProduct(vec4 u, vec4 v) {\n");
WRITE(p, " return mat4(u * v[0], u * v[1], u * v[2], u * v[3]);\n");
WRITE(p, "}\n");
} else if (compat.shaderLanguage == HLSL_D3D9 || compat.shaderLanguage == HLSL_D3D11) {
WRITE(p, "mat4 outerProduct(vec4 u, vec4 v) {\n");
WRITE(p, " return mul((float4x1)v, (float1x4)u);\n");
WRITE(p, "}\n");
}
WRITE(p, "struct Tess {\n");
WRITE(p, " vec3 pos;\n");
WRITE(p, " vec2 tex;\n");
WRITE(p, " vec4 col;\n");
if (hasNormalTess)
WRITE(p, " vec3 nrm;\n");
WRITE(p, "};\n");
if (compat.shaderLanguage == HLSL_D3D9 || compat.shaderLanguage == HLSL_D3D11) {
WRITE(p, "void tessellate(in VS_IN In, out Tess tess) {\n");
WRITE(p, " vec3 position = In.position;\n");
WRITE(p, " vec3 normal = In.normal;\n");
} else {
WRITE(p, "void tessellate(out Tess tess) {\n");
}
WRITE(p, " ivec2 point_pos = ivec2(position.z, normal.z)%s;\n", doBezier ? " * 3" : "");
WRITE(p, " ivec2 weight_idx = ivec2(position.xy);\n");
// Load 4x4 control points
WRITE(p, " vec3 _pos[16];\n");
WRITE(p, " vec2 _tex[16];\n");
WRITE(p, " vec4 _col[16];\n");
if (compat.coefsFromBuffers) {
WRITE(p, " int index;\n");
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
WRITE(p, " index = (%i + point_pos.y) * int(u_spline_counts) + (%i + point_pos.x);\n", i, j);
WRITE(p, " _pos[%i] = tess_data[index].pos.xyz;\n", i * 4 + j);
if (hasTexcoordTess)
WRITE(p, " _tex[%i] = tess_data[index].tex.xy;\n", i * 4 + j);
if (hasColorTess)
WRITE(p, " _col[%i] = tess_data[index].col;\n", i * 4 + j);
}
}
// Basis polynomials as weight coefficients
WRITE(p, " vec4 basis_u = tess_weights_u[weight_idx.x].basis;\n");
WRITE(p, " vec4 basis_v = tess_weights_v[weight_idx.y].basis;\n");
WRITE(p, " mat4 basis = outerProduct(basis_u, basis_v);\n");
} else {
WRITE(p, " int index_u, index_v;\n");
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
WRITE(p, " index_u = (%i + point_pos.x);\n", j);
WRITE(p, " index_v = (%i + point_pos.y);\n", i);
WRITE(p, " _pos[%i] = %s(u_tess_points, ivec2(index_u, index_v), 0).xyz;\n", i * 4 + j, compat.texelFetch);
if (hasTexcoordTess)
WRITE(p, " _tex[%i] = %s(u_tess_points, ivec2(index_u + u_spline_counts, index_v), 0).xy;\n", i * 4 + j, compat.texelFetch);
if (hasColorTess)
WRITE(p, " _col[%i] = %s(u_tess_points, ivec2(index_u + u_spline_counts * 2, index_v), 0).rgba;\n", i * 4 + j, compat.texelFetch);
}
}
// Basis polynomials as weight coefficients
WRITE(p, " vec4 basis_u = %s(u_tess_weights_u, %s, 0);\n", compat.texelFetch, "ivec2(weight_idx.x * 2, 0)");
WRITE(p, " vec4 basis_v = %s(u_tess_weights_v, %s, 0);\n", compat.texelFetch, "ivec2(weight_idx.y * 2, 0)");
WRITE(p, " mat4 basis = outerProduct(basis_u, basis_v);\n");
}
// Tessellate
WRITE(p, " tess.pos = tess_sample(_pos, basis);\n");
if (hasTexcoordTess)
WRITE(p, " tess.tex = tess_sample(_tex, basis);\n");
else
WRITE(p, " tess.tex = normal.xy;\n");
if (hasColorTess)
WRITE(p, " tess.col = tess_sample(_col, basis);\n");
else
WRITE(p, " tess.col = u_matambientalpha;\n");
if (hasNormalTess) {
if (compat.coefsFromBuffers) {
// Derivatives as weight coefficients
WRITE(p, " vec4 deriv_u = tess_weights_u[weight_idx.x].deriv;\n");
WRITE(p, " vec4 deriv_v = tess_weights_v[weight_idx.y].deriv;\n");
} else {
// Derivatives as weight coefficients
WRITE(p, " vec4 deriv_u = %s(u_tess_weights_u, %s, 0);\n", compat.texelFetch, "ivec2(weight_idx.x * 2 + 1, 0)");
WRITE(p, " vec4 deriv_v = %s(u_tess_weights_v, %s, 0);\n", compat.texelFetch, "ivec2(weight_idx.y * 2 + 1, 0)");
}
WRITE(p, " vec3 du = tess_sample(_pos, outerProduct(deriv_u, basis_v));\n");
WRITE(p, " vec3 dv = tess_sample(_pos, outerProduct(basis_u, deriv_v));\n");
WRITE(p, " tess.nrm = normalize(cross(du, dv));\n");
}
WRITE(p, "}\n");
}
if (useHWTransform) {
WRITE(p, "vec3 normalizeOr001(vec3 v) {\n");
WRITE(p, " return length(v) == 0.0 ? vec3(0.0, 0.0, 1.0) : normalize(v);\n");
WRITE(p, "}\n");
}
if (ShaderLanguageIsOpenGL(compat.shaderLanguage) || compat.shaderLanguage == GLSL_VULKAN) {
WRITE(p, "void main() {\n");
} else if (compat.shaderLanguage == HLSL_D3D9 || compat.shaderLanguage == HLSL_D3D11) {
WRITE(p, "VS_OUT main(VS_IN In) {\n");
WRITE(p, " VS_OUT Out;\n");
if (hasTexcoord) {
if (texCoordInVec3) {
WRITE(p, " vec3 texcoord = In.texcoord;\n");
} else {
WRITE(p, " vec2 texcoord = In.texcoord;\n");
}
}
if (hasColor) {
WRITE(p, " vec4 color0 = In.color0;\n");
if (lmode && !useHWTransform) {
WRITE(p, " vec3 color1 = In.color1;\n");
}
}
if (hasNormal) {
WRITE(p, " vec3 normal = In.normal;\n");
}
if (useHWTransform) {
WRITE(p, " vec3 position = In.position;\n");
} else {
WRITE(p, " vec4 position = In.position;\n");
}
if (!useHWTransform) {
WRITE(p, " float fog = In.fog;\n");
}
if (enableBones) {
WRITE(p, "%s", boneWeightAttrInitHLSL[numBoneWeights]);
}
}
if (!useHWTransform) {
// Simple pass-through of vertex data to fragment shader
if (texCoordInVec3) {
WRITE(p, " %sv_texcoord = texcoord;\n", compat.vsOutPrefix);
} else {
WRITE(p, " %sv_texcoord = vec3(texcoord, 1.0);\n", compat.vsOutPrefix);
}
if (hasColor) {
WRITE(p, " %sv_color0 = color0;\n", compat.vsOutPrefix);
if (lmode) {
WRITE(p, " %sv_color1 = color1;\n", compat.vsOutPrefix);
}
} else {
WRITE(p, " %sv_color0 = u_matambientalpha;\n", compat.vsOutPrefix);
if (lmode) {
WRITE(p, " %sv_color1 = splat3(0.0);\n", compat.vsOutPrefix);
}
}
WRITE(p, " %sv_fogdepth = fog;\n", compat.vsOutPrefix);
if (isModeThrough) {
// The proj_through matrix already has the rotation, if needed.
WRITE(p, " vec4 outPos = mul(u_proj_through, vec4(position.xyz, 1.0));\n");
} else {
if (compat.shaderLanguage == GLSL_VULKAN) {
// Apply rotation from the uniform.
WRITE(p, " mat2 displayRotation = mat2(\n");
WRITE(p, " u_rotation == 0.0 ? 1.0 : (u_rotation == 2.0 ? -1.0 : 0.0), u_rotation == 1.0 ? 1.0 : (u_rotation == 3.0 ? -1.0 : 0.0),\n");
WRITE(p, " u_rotation == 3.0 ? 1.0 : (u_rotation == 1.0 ? -1.0 : 0.0), u_rotation == 0.0 ? 1.0 : (u_rotation == 2.0 ? -1.0 : 0.0)\n");
WRITE(p, " );\n");
WRITE(p, " vec4 pos = position;\n");
WRITE(p, " pos.xy = mul(displayRotation, pos.xy);\n");
} else {
WRITE(p, " vec4 pos = position;\n");
}
// The viewport is used in this case, so need to compensate for that.
if (gstate_c.Use(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, " vec4 outPos = depthRoundZVP(pos);\n");
} else {
WRITE(p, " vec4 outPos = pos;\n");
}
}
} else {
// Step 1: World Transform / Skinning
if (!enableBones) {
if (doBezier || doSpline) {
// Hardware tessellation
WRITE(p, " Tess tess;\n");
if (compat.shaderLanguage == HLSL_D3D9 || compat.shaderLanguage == HLSL_D3D11) {
WRITE(p, " tessellate(In, tess);\n");
} else {
WRITE(p, " tessellate(tess);\n");
}
WRITE(p, " vec3 worldpos = mul(vec4(tess.pos.xyz, 1.0), u_world).xyz;\n");
if (hasNormalTess) {
WRITE(p, " mediump vec3 worldnormal = normalizeOr001(mul(vec4(%stess.nrm, 0.0), u_world).xyz);\n", flipNormalTess ? "-" : "");
} else {
WRITE(p, " mediump vec3 worldnormal = normalizeOr001(mul(vec4(0.0, 0.0, %s1.0, 0.0), u_world).xyz);\n", flipNormalTess ? "-" : "");
}
} else {
// No skinning, just standard T&L.
WRITE(p, " vec3 worldpos = mul(vec4(position, 1.0), u_world).xyz;\n");
if (hasNormal)
WRITE(p, " mediump vec3 worldnormal = normalizeOr001(mul(vec4(%snormal, 0.0), u_world).xyz);\n", flipNormal ? "-" : "");
else
WRITE(p, " mediump vec3 worldnormal = normalizeOr001(mul(vec4(0.0, 0.0, %s1.0, 0.0), u_world).xyz);\n", flipNormal ? "-" : "");
}
} else {
static const char * const rescale[4] = {"", " * 1.9921875", " * 1.999969482421875", ""}; // 2*127.5f/128.f, 2*32767.5f/32768.f, 1.0f};
const char *factor = rescale[boneWeightScale];
static const char * const boneWeightAttr[8] = {
"w1.x", "w1.y", "w1.z", "w1.w",
"w2.x", "w2.y", "w2.z", "w2.w",
};
const char *boneMatrix = compat.forceMatrix4x4 ? "mat4" : "mat3x4";
// Uncomment this to screw up bone shaders to check the vertex shader software fallback
// WRITE(p, "THIS SHOULD ERROR! #error");
if (numBoneWeights == 1 && ShaderLanguageIsOpenGL(compat.shaderLanguage))
WRITE(p, " %s skinMatrix = mul(w1, u_bone0)", boneMatrix);
else
WRITE(p, " %s skinMatrix = mul(w1.x, u_bone0)", boneMatrix);
for (int i = 1; i < numBoneWeights; i++) {
const char *weightAttr = boneWeightAttr[i];
// workaround for "cant do .x of scalar" issue.
if (ShaderLanguageIsOpenGL(compat.shaderLanguage)) {
if (numBoneWeights == 1 && i == 0) weightAttr = "w1";
if (numBoneWeights == 5 && i == 4) weightAttr = "w2";
}
WRITE(p, " + mul(%s, u_bone%i)", weightAttr, i);
}
WRITE(p, ";\n");
WRITE(p, " vec3 skinnedpos = mul(vec4(position, 1.0), skinMatrix).xyz%s;\n", factor);
WRITE(p, " vec3 worldpos = mul(vec4(skinnedpos, 1.0), u_world).xyz;\n");
if (hasNormal) {
WRITE(p, " mediump vec3 skinnednormal = mul(vec4(%snormal, 0.0), skinMatrix).xyz%s;\n", flipNormal ? "-" : "", factor);
} else {
WRITE(p, " mediump vec3 skinnednormal = mul(vec4(0.0, 0.0, %s1.0, 0.0), skinMatrix).xyz%s;\n", flipNormal ? "-" : "", factor);
}
WRITE(p, " mediump vec3 worldnormal = normalizeOr001(mul(vec4(skinnednormal, 0.0), u_world).xyz);\n");
}
std::string matrixPostfix;
if (gstate_c.Use(GPU_USE_VIRTUAL_REALITY) && gstate_c.Use(GPU_USE_SINGLE_PASS_STEREO)) {
matrixPostfix = "[gl_ViewID_OVR]";
}
WRITE(p, " vec4 viewPos = vec4(mul(vec4(worldpos, 1.0), u_view%s).xyz, 1.0);\n", matrixPostfix.c_str());
// Final view and projection transforms.
if (gstate_c.Use(GPU_ROUND_DEPTH_TO_16BIT)) {
if (gstate_c.Use(GPU_USE_VIRTUAL_REALITY)) {
WRITE(p, " vec4 outPos = depthRoundZVP(mul(u_proj_lens%s, viewPos));\n", matrixPostfix.c_str());
WRITE(p, " vec4 orgPos = depthRoundZVP(mul(u_proj, viewPos));\n");
} else {
WRITE(p, " vec4 outPos = depthRoundZVP(mul(u_proj, viewPos));\n");
}
} else {
if (gstate_c.Use(GPU_USE_VIRTUAL_REALITY)) {
WRITE(p, " vec4 outPos = mul(u_proj_lens%s, viewPos);\n", matrixPostfix.c_str());
WRITE(p, " vec4 orgPos = mul(u_proj, viewPos);\n");
} else {
WRITE(p, " vec4 outPos = mul(u_proj, viewPos);\n");
}
}
// TODO: Declare variables for dots for shade mapping if needed.
const char *srcCol = "color0";
if (doBezier || doSpline) {
// TODO: Probably, should use hasColorTess but FF4 has a problem with drawing the background.
srcCol = "tess.col";
}
if (lightUberShader && hasColor) {
p.F(" vec4 ambientColor = ((u_lightControl & (1u << 0x14u)) != 0x0u) ? %s : u_matambientalpha;\n", srcCol);
if (enableLighting) {
p.F(" vec3 diffuseColor = ((u_lightControl & (1u << 0x15u)) != 0x0u) ? %s.rgb : u_matdiffuse;\n", srcCol);
p.F(" vec3 specularColor = ((u_lightControl & (1u << 0x16u)) != 0x0u) ? %s.rgb : u_matspecular.rgb;\n", srcCol);
}
} else {
// This path also takes care of the lightUberShader && !hasColor path, because all comparisons fail.
p.F(" vec4 ambientColor = %s;\n", (matUpdate & 1) && hasColor ? srcCol : "u_matambientalpha");
if (enableLighting) {
p.F(" vec3 diffuseColor = %s.rgb;\n", (matUpdate & 2) && hasColor ? srcCol : "u_matdiffuse");
p.F(" vec3 specularColor = %s.rgb;\n", (matUpdate & 4) && hasColor ? srcCol : "u_matspecular");
}
}
bool diffuseIsZero = true;
bool specularIsZero = true;
bool distanceNeeded = false;
bool anySpots = false;
if (enableLighting) {
p.C(" lowp vec4 lightSum0 = u_ambient * ambientColor + vec4(u_matemissive, 0.0);\n");
for (int i = 0; i < 4; i++) {
GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4*i, 2));
GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4*i, 2));
if (doLight[i] != LIGHT_FULL)
continue;
diffuseIsZero = false;
if (comp == GE_LIGHTCOMP_BOTH)
specularIsZero = false;
if (type != GE_LIGHTTYPE_DIRECTIONAL)
distanceNeeded = true;
if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN)
anySpots = true;
}
if (lightUberShader) {
anySpots = true;
diffuseIsZero = false;
specularIsZero = false;
distanceNeeded = true;
}
if (!specularIsZero) {
WRITE(p, " lowp vec3 lightSum1 = splat3(0.0);\n");
}
if (!diffuseIsZero) {
WRITE(p, " vec3 toLight;\n");
WRITE(p, " lowp vec3 diffuse;\n");
}
if (distanceNeeded) {
WRITE(p, " float distance;\n");
WRITE(p, " lowp float lightScale;\n");
}
WRITE(p, " mediump float ldot;\n");
if (anySpots) {
WRITE(p, " lowp float angle;\n");
}
}
bool useIndexing = compat.shaderLanguage == HLSL_D3D11 || compat.shaderLanguage == GLSL_VULKAN;
char iStr[4];
if (lightUberShader) {
// We generate generic code that can calculate any combination of lights specified
// in u_lightControl. u_lightControl is computed in PackLightControlBits().
p.C(" uint comp; uint type; float attenuation;\n");
if (useIndexing) {
p.C(" for (uint i = 0; i < 4; i++) {\n");
}
// If we can use indexing, we actually loop in the shader now, using the loop emitted
// above. In that case, we only need to emit the code once, so the for loop here will
// only run for a single pass.
int count = useIndexing ? 1 : 4;
for (int i = 0; i < count; i++) {
snprintf(iStr, sizeof(iStr), useIndexing ? "[i]" : "%d", i);
if (useIndexing) {
p.C(" if ((u_lightControl & (0x1u << i)) != 0x0u) { \n");
p.C(" comp = (u_lightControl >> uint(0x4u + 0x4u * i)) & 0x3u;\n");
p.C(" type = (u_lightControl >> uint(0x4u + 0x4u * i + 0x2u)) & 0x3u;\n");
} else {
p.F(" if ((u_lightControl & 0x%xu) != 0x0u) { \n", 1 << i);
p.F(" comp = (u_lightControl >> 0x%02xu) & 0x3u;\n", 4 + 4 * i);
p.F(" type = (u_lightControl >> 0x%02xu) & 0x3u;\n", 4 + 4 * i + 2);
}
p.F(" toLight = u_lightpos%s;\n", iStr);
p.C(" if (type != 0x0u) {\n"); // GE_LIGHTTYPE_DIRECTIONAL
p.F(" toLight -= worldpos;\n");
p.F(" distance = length(toLight);\n");
p.F(" toLight /= distance;\n");
p.F(" attenuation = clamp(1.0 / dot(u_lightatt%s, vec3(1.0, distance, distance*distance)), 0.0, 1.0);\n", iStr);
p.C(" if (type == 0x01u) {\n"); // GE_LIGHTTYPE_POINT
p.C(" lightScale = attenuation;\n");
p.C(" } else {\n"); // type must be 0x02 - GE_LIGHTTYPE_SPOT
p.F(" angle = dot(u_lightdir%s, toLight);\n", iStr);
p.F(" if (angle >= u_lightangle_spotCoef%s.x) {\n", iStr);
p.F(" lightScale = attenuation * (u_lightangle_spotCoef%s.y <= 0.0 ? 1.0 : pow(angle, u_lightangle_spotCoef%s.y));\n", iStr, iStr, iStr);
p.C(" } else {\n");
p.C(" lightScale = 0.0;\n");
p.C(" }\n");
p.C(" }\n");
p.C(" } else {\n");
p.C(" lightScale = 1.0;\n"); // GE_LIGHTTYPE_DIRECTIONAL
p.C(" }\n");
p.C(" ldot = dot(toLight, worldnormal);\n");
p.C(" if (comp == 0x2u) {\n"); // GE_LIGHTCOMP_ONLYPOWDIFFUSE
p.C(" ldot = u_matspecular.a > 0.0 ? pow(max(ldot, 0.0), u_matspecular.a) : 1.0;\n");
p.C(" }\n");
p.F(" diffuse = (u_lightdiffuse%s * diffuseColor) * max(ldot, 0.0);\n", iStr);
p.C(" if (comp == 0x1u && ldot > 0.0) {\n"); // do specular
p.C(" if (u_matspecular.a > 0.0) {\n");
p.C(" ldot = dot(normalize(toLight + vec3(0.0, 0.0, 1.0)), worldnormal);\n");
p.C(" ldot = pow(max(ldot, 0.0), u_matspecular.a);\n");
p.C(" } else {\n");
p.C(" ldot = 1.0;\n");
p.C(" }\n");
p.F(" lightSum1 += u_lightspecular%s * specularColor * ldot * lightScale;\n", iStr);
p.C(" }\n");
p.F(" lightSum0.rgb += (u_lightambient%s * ambientColor.rgb + diffuse) * lightScale;\n", iStr);
p.C(" }\n");
}
if (useIndexing) {
p.F(" }");
}
} else {
// Generate specific code for calculating the enabled lights only.
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_FULL)
continue;
snprintf(iStr, sizeof(iStr), useIndexing ? "[%d]" : "%d", i);
GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2));
GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2));
if (type == GE_LIGHTTYPE_DIRECTIONAL) {
// We prenormalize light positions for directional lights.
p.F(" toLight = u_lightpos%s;\n", iStr);
} else {
p.F(" toLight = u_lightpos%s - worldpos;\n", iStr);
p.C(" distance = length(toLight);\n");
p.C(" toLight /= distance;\n");
}
bool doSpecular = comp == GE_LIGHTCOMP_BOTH;
bool poweredDiffuse = comp == GE_LIGHTCOMP_ONLYPOWDIFFUSE;
p.C(" ldot = dot(toLight, worldnormal);\n");
if (poweredDiffuse) {
// pow(0.0, 0.0) may be undefined, but the PSP seems to treat it as 1.0.
// Seen in Tales of the World: Radiant Mythology (#2424.)
p.C(" if (u_matspecular.a > 0.0) {\n");
p.C(" ldot = pow(max(ldot, 0.0), u_matspecular.a);\n");
p.C(" } else {\n");
p.C(" ldot = 1.0;\n");
p.C(" }\n");
}
const char *timesLightScale = " * lightScale";
// Attenuation
switch (type) {
case GE_LIGHTTYPE_DIRECTIONAL:
timesLightScale = "";
break;
case GE_LIGHTTYPE_POINT:
p.F(" lightScale = clamp(1.0 / dot(u_lightatt%s, vec3(1.0, distance, distance*distance)), 0.0, 1.0);\n", iStr);
break;
case GE_LIGHTTYPE_SPOT:
case GE_LIGHTTYPE_UNKNOWN:
p.F(" angle = dot(u_lightdir%s, toLight);\n", iStr, iStr);
p.F(" if (angle >= u_lightangle_spotCoef%s.x) {\n", iStr);
p.F(" lightScale = clamp(1.0 / dot(u_lightatt%s, vec3(1.0, distance, distance*distance)), 0.0, 1.0) * (u_lightangle_spotCoef%s.y <= 0.0 ? 1.0 : pow(angle, u_lightangle_spotCoef%s.y));\n", iStr, iStr, iStr);
p.C(" } else {\n");
p.C(" lightScale = 0.0;\n");
p.C(" }\n");
break;
default:
// ILLEGAL
break;
}
p.F(" diffuse = (u_lightdiffuse%s * diffuseColor) * max(ldot, 0.0);\n", iStr);
if (doSpecular) {
p.C(" if (ldot >= 0.0) {\n");
p.C(" if (u_matspecular.a > 0.0) {\n");
p.C(" ldot = dot(normalize(toLight + vec3(0.0, 0.0, 1.0)), worldnormal);\n");
p.C(" ldot = pow(max(ldot, 0.0), u_matspecular.a);\n");
p.C(" } else {\n");
p.C(" ldot = 1.0;\n");
p.C(" }\n");
p.C(" if (ldot > 0.0)\n");
p.F(" lightSum1 += u_lightspecular%s * specularColor * ldot %s;\n", iStr, timesLightScale);
p.C(" }\n");
}
p.F(" lightSum0.rgb += (u_lightambient%s * ambientColor.rgb + diffuse)%s;\n", iStr, timesLightScale);
}
}
if (enableLighting) {
// Sum up ambient, emissive here.
if (lmode) {
WRITE(p, " %sv_color0 = clamp(lightSum0, 0.0, 1.0);\n", compat.vsOutPrefix);
// v_color1 only exists when lmode = 1.
if (specularIsZero) {
WRITE(p, " %sv_color1 = splat3(0.0);\n", compat.vsOutPrefix);
} else {
WRITE(p, " %sv_color1 = clamp(lightSum1, 0.0, 1.0);\n", compat.vsOutPrefix);
}
} else {
if (specularIsZero) {
WRITE(p, " %sv_color0 = clamp(lightSum0, 0.0, 1.0);\n", compat.vsOutPrefix);
} else {
WRITE(p, " %sv_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + vec4(lightSum1, 0.0), 0.0, 1.0);\n", compat.vsOutPrefix);
}
}
} else {
// Lighting doesn't affect color.
if (hasColor) {
if (doBezier || doSpline)
WRITE(p, " %sv_color0 = tess.col;\n", compat.vsOutPrefix);
else
WRITE(p, " %sv_color0 = color0;\n", compat.vsOutPrefix);
} else {
WRITE(p, " %sv_color0 = u_matambientalpha;\n", compat.vsOutPrefix);
if (bugs.Has(Draw::Bugs::MALI_CONSTANT_LOAD_BUG) && g_Config.bVendorBugChecksEnabled) {
WRITE(p, " %sv_color0.r += 0.000001;\n", compat.vsOutPrefix);
}
}
if (lmode) {
WRITE(p, " %sv_color1 = splat3(0.0);\n", compat.vsOutPrefix);
}
}
bool scaleUV = !isModeThrough && (uvGenMode == GE_TEXMAP_TEXTURE_COORDS || uvGenMode == GE_TEXMAP_UNKNOWN);
// Step 3: UV generation
{
switch (uvGenMode) {
case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy.
case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works.
if (scaleUV) {
if (hasTexcoord) {
if (doBezier || doSpline)
WRITE(p, " %sv_texcoord = vec3(tess.tex.xy * u_uvscaleoffset.xy + u_uvscaleoffset.zw, 0.0);\n", compat.vsOutPrefix);
else
WRITE(p, " %sv_texcoord = vec3(texcoord.xy * u_uvscaleoffset.xy, 0.0);\n", compat.vsOutPrefix);
} else {
WRITE(p, " %sv_texcoord = splat3(0.0);\n", compat.vsOutPrefix);
}
} else {
if (hasTexcoord) {
if (doBezier || doSpline)
WRITE(p, " %sv_texcoord = vec3(tess.tex.xy * u_uvscaleoffset.xy + u_uvscaleoffset.zw, 0.0);\n", compat.vsOutPrefix);
else
WRITE(p, " %sv_texcoord = vec3(texcoord.xy * u_uvscaleoffset.xy + u_uvscaleoffset.zw, 0.0);\n", compat.vsOutPrefix);
} else {
WRITE(p, " %sv_texcoord = vec3(u_uvscaleoffset.zw, 0.0);\n", compat.vsOutPrefix);
}
}
break;
case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping.
{
std::string temp_tc;
switch (uvProjMode) {
case GE_PROJMAP_POSITION: // Use model space XYZ as source
if (doBezier || doSpline)
temp_tc = "vec4(tess.pos, 1.0)";
else
temp_tc = "vec4(position, 1.0)";
break;
case GE_PROJMAP_UV: // Use unscaled UV as source
{
// prescale is false here.
if (hasTexcoord) {
if (doBezier || doSpline)
temp_tc = "vec4(tess.tex.xy, 0.0, 1.0)";
else
temp_tc = "vec4(texcoord.xy, 0.0, 1.0)";
} else {
temp_tc = "vec4(0.0, 0.0, 0.0, 1.0)";
}
}
break;
case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source
if ((doBezier || doSpline) && hasNormalTess)
temp_tc = StringFromFormat("length(tess.nrm) == 0.0 ? vec4(0.0, 0.0, 0.0, 1.0) : vec4(normalize(%stess.nrm), 1.0)", flipNormalTess ? "-" : "");
else if (hasNormal)
temp_tc = StringFromFormat("length(normal) == 0.0 ? vec4(0.0, 0.0, 0.0, 1.0) : vec4(normalize(%snormal), 1.0)", flipNormal ? "-" : "");
else
temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)";
break;
case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source
if ((doBezier || doSpline) && hasNormalTess)
temp_tc = flipNormalTess ? "vec4(-tess.nrm, 1.0)" : "vec4(tess.nrm, 1.0)";
else if (hasNormal)
temp_tc = flipNormal ? "vec4(-normal, 1.0)" : "vec4(normal, 1.0)";
else
temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)";
break;
}
// Transform by texture matrix. XYZ as we are doing projection mapping.
WRITE(p, " %sv_texcoord = mul(%s, u_texmtx).xyz * vec3(u_uvscaleoffset.xy, 1.0);\n", compat.vsOutPrefix, temp_tc.c_str());
}
break;
case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources.
{
char ls0Str[4];
char ls1Str[4];
if (useIndexing) {
snprintf(ls0Str, sizeof(ls0Str), "[%d]", ls0);
snprintf(ls1Str, sizeof(ls1Str), "[%d]", ls1);
} else {
snprintf(ls0Str, sizeof(ls0Str), "%d", ls0);
snprintf(ls1Str, sizeof(ls1Str), "%d", ls1);
}
std::string lightFactor0 = StringFromFormat("(length(u_lightpos%s) == 0.0 ? worldnormal.z : dot(normalize(u_lightpos%s), worldnormal))", ls0Str, ls0Str);
std::string lightFactor1 = StringFromFormat("(length(u_lightpos%s) == 0.0 ? worldnormal.z : dot(normalize(u_lightpos%s), worldnormal))", ls1Str, ls1Str);
WRITE(p, " %sv_texcoord = vec3(u_uvscaleoffset.xy * vec2(1.0 + %s, 1.0 + %s) * 0.5, 1.0);\n", compat.vsOutPrefix, lightFactor0.c_str(), lightFactor1.c_str());
}
break;
default:
// ILLEGAL
break;
}
}
// Compute fogdepth
WRITE(p, " %sv_fogdepth = (viewPos.z + u_fogcoef.x) * u_fogcoef.y;\n", compat.vsOutPrefix);
}
if (clipClampedDepth) {
// This should clip against minz, but only when it's above zero.
if (ShaderLanguageIsOpenGL(compat.shaderLanguage)) {
// On OpenGL/GLES, these values account for the -1 -> 1 range.
WRITE(p, " if (u_depthRange.y - u_depthRange.x >= 1.0) {\n");
WRITE(p, " %sgl_ClipDistance%s = outPos.w + outPos.z;\n", compat.vsOutPrefix, clipClampedDepthSuffix);
} else {
// Everywhere else, it's 0 -> 1, simpler.
WRITE(p, " if (u_depthRange.y >= 1.0) {\n");
WRITE(p, " %sgl_ClipDistance%s = outPos.z;\n", compat.vsOutPrefix, clipClampedDepthSuffix);
}
// This is similar, but for maxz when it's below 65535.0. -1/0 don't matter here.
WRITE(p, " } else if (u_depthRange.x + u_depthRange.y <= 65534.0) {\n");
WRITE(p, " %sgl_ClipDistance%s = outPos.w - outPos.z;\n", compat.vsOutPrefix, clipClampedDepthSuffix);
WRITE(p, " } else {\n");
WRITE(p, " %sgl_ClipDistance%s = 0.0;\n", compat.vsOutPrefix, clipClampedDepthSuffix);
WRITE(p, " }\n");
}
if (vertexRangeCulling && !gstate_c.Use(GPU_USE_VIRTUAL_REALITY)) {
WRITE(p, " vec3 projPos = outPos.xyz / outPos.w;\n");
WRITE(p, " float projZ = (projPos.z - u_depthRange.z) * u_depthRange.w;\n");
if (!bugs.Has(Draw::Bugs::BROKEN_NAN_IN_CONDITIONAL)) {
// Vertex range culling doesn't happen when Z clips, note sign of w is important.
WRITE(p, " if (u_cullRangeMin.w <= 0.0 || projZ * outPos.w > -outPos.w) {\n");
const char *outMin = "projPos.x < u_cullRangeMin.x || projPos.y < u_cullRangeMin.y";
const char *outMax = "projPos.x > u_cullRangeMax.x || projPos.y > u_cullRangeMax.y";
WRITE(p, " if ((%s) || (%s)) {\n", outMin, outMax);
WRITE(p, " outPos.xyzw = u_cullRangeMax.wwww;\n");
WRITE(p, " }\n");
WRITE(p, " }\n");
WRITE(p, " if (u_cullRangeMin.w <= 0.0) {\n");
WRITE(p, " if (projPos.z < u_cullRangeMin.z || projPos.z > u_cullRangeMax.z) {\n");
WRITE(p, " outPos.xyzw = u_cullRangeMax.wwww;\n");
WRITE(p, " }\n");
WRITE(p, " }\n");
}
const char *cull0 = compat.shaderLanguage == HLSL_D3D11 ? ".x" : "[0]";
const char *cull1 = compat.shaderLanguage == HLSL_D3D11 ? ".y" : "[1]";
if (gstate_c.Use(GPU_USE_CLIP_DISTANCE)) {
// TODO: Ignore triangles from GE_PRIM_RECTANGLES in transform mode, which should not clip to neg z.
// We add a small amount to prevent error as in #15816 (PSP Z is only 16-bit fixed point, anyway.)
WRITE(p, " %sgl_ClipDistance%s = projZ * outPos.w + outPos.w + %f;\n", compat.vsOutPrefix, vertexRangeClipSuffix, 0.0625 / 65536.0);
}
if (gstate_c.Use(GPU_USE_CULL_DISTANCE)) {
// Cull any triangle fully outside in the same direction when depth clamp enabled.
// We check u_depthRange in case depthScale was zero - in that case we can't work out the cull distance.
WRITE(p, " if (u_cullRangeMin.w > 0.0 && u_depthRange.w != 0.0f) {\n");
WRITE(p, " %sgl_CullDistance%s = projPos.z - u_cullRangeMin.z;\n", compat.vsOutPrefix, cull0);
WRITE(p, " %sgl_CullDistance%s = u_cullRangeMax.z - projPos.z;\n", compat.vsOutPrefix, cull1);
WRITE(p, " } else {\n");
WRITE(p, " %sgl_CullDistance%s = 0.0;\n", compat.vsOutPrefix, cull0);
WRITE(p, " %sgl_CullDistance%s = 0.0;\n", compat.vsOutPrefix, cull1);
WRITE(p, " }\n");
}
}
// We've named the output gl_Position in HLSL as well.
WRITE(p, " %sgl_Position = outPos;\n", compat.vsOutPrefix);
if (gstate_c.Use(GPU_USE_VIRTUAL_REALITY)) {
// Z correction for the depth buffer
if (useHWTransform) {
WRITE(p, " %sgl_Position.z = orgPos.z / abs(orgPos.w) * abs(outPos.w);\n", compat.vsOutPrefix);
}
// HUD scaling
WRITE(p, " %sgl_Position.x *= u_scaleX;\n", compat.vsOutPrefix);
WRITE(p, " %sgl_Position.y *= u_scaleY;\n", compat.vsOutPrefix);
}
if (useSimpleStereo && useHWTransform) {
p.C(" float zFactor = 0.2 * float(gl_ViewIndex * 2 - 1);\n");
p.C(" float zFocus = 0.0;\n");
p.C(" gl_Position.x += (-gl_Position.z - zFocus) * zFactor;\n");
}
if (needsZWHack) {
// See comment in thin3d_vulkan.cpp.
WRITE(p, " if (%sgl_Position.z == %sgl_Position.w) %sgl_Position.z *= 0.999999;\n",
compat.vsOutPrefix, compat.vsOutPrefix, compat.vsOutPrefix);
}
if (compat.shaderLanguage == HLSL_D3D11 || compat.shaderLanguage == HLSL_D3D9) {
WRITE(p, " return Out;\n");
}
WRITE(p, "}\n");
return true;
}