ppsspp/Core/MemMap.cpp
2022-12-04 07:57:30 -08:00

504 lines
15 KiB
C++

// Copyright (C) 2003 Dolphin Project / 2012 PPSSPP Project
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#if PPSSPP_PLATFORM(UWP)
#include "Common/CommonWindows.h"
#endif
#include <algorithm>
#include <mutex>
#include "Common/Common.h"
#include "Common/MemoryUtil.h"
#include "Common/MemArena.h"
#include "Common/Serialize/Serializer.h"
#include "Common/Serialize/SerializeFuncs.h"
#include "Core/Core.h"
#include "Core/Config.h"
#include "Core/ConfigValues.h"
#include "Core/Debugger/SymbolMap.h"
#include "Core/Debugger/MemBlockInfo.h"
#include "Core/HDRemaster.h"
#include "Core/HLE/HLE.h"
#include "Core/HLE/ReplaceTables.h"
#include "Core/MemMap.h"
#include "Core/MemFault.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/JitCommon/JitBlockCache.h"
#include "Core/MIPS/JitCommon/JitCommon.h"
#include "Common/Thread/ParallelLoop.h"
#include "UI/OnScreenDisplay.h"
namespace Memory {
// The base pointer to the auto-mirrored arena.
u8* base = nullptr;
// The MemArena class
MemArena g_arena;
// ==============
u8 *m_pPhysicalScratchPad;
u8 *m_pUncachedScratchPad;
// 64-bit: Pointers to high-mem mirrors
// 32-bit: Same as above
u8 *m_pPhysicalRAM[3];
u8 *m_pUncachedRAM[3];
u8 *m_pKernelRAM[3]; // RAM mirrored up to "kernel space". Fully accessible at all times currently.
// Technically starts at 0xA0000000, which we don't properly support (but we don't really support kernel code.)
// This matches how we handle 32-bit masking.
u8 *m_pUncachedKernelRAM[3];
// VRAM is mirrored 4 times. The second and fourth mirrors are swizzled.
// In practice, a game accessing the mirrors most likely is deswizzling the depth buffer.
u8 *m_pPhysicalVRAM[4];
u8 *m_pUncachedVRAM[4];
// Holds the ending address of the PSP's user space.
// Required for HD Remasters to work properly.
// This replaces RAM_NORMAL_SIZE at runtime.
u32 g_MemorySize;
// Used to store the PSP model on game startup.
u32 g_PSPModel;
std::recursive_mutex g_shutdownLock;
// We don't declare the IO region in here since its handled by other means.
static MemoryView views[] =
{
{&m_pPhysicalScratchPad, 0x00010000, SCRATCHPAD_SIZE, 0},
{&m_pUncachedScratchPad, 0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS},
{&m_pPhysicalVRAM[0], 0x04000000, 0x00200000, 0},
{&m_pPhysicalVRAM[1], 0x04200000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pPhysicalVRAM[2], 0x04400000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pPhysicalVRAM[3], 0x04600000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pUncachedVRAM[0], 0x44000000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pUncachedVRAM[1], 0x44200000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pUncachedVRAM[2], 0x44400000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pUncachedVRAM[3], 0x44600000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pPhysicalRAM[0], 0x08000000, g_MemorySize, MV_IS_PRIMARY_RAM}, // only from 0x08800000 is it usable (last 24 megs)
{&m_pUncachedRAM[0], 0x48000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
{&m_pKernelRAM[0], 0x88000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM | MV_KERNEL},
{&m_pUncachedKernelRAM[0],0xC0000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM | MV_KERNEL},
// Starts at memory + 31 MB.
{&m_pPhysicalRAM[1], 0x09F00000, g_MemorySize, MV_IS_EXTRA1_RAM},
{&m_pUncachedRAM[1], 0x49F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM},
{&m_pKernelRAM[1], 0x89F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM | MV_KERNEL},
{&m_pUncachedKernelRAM[1],0xC9F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM | MV_KERNEL},
// Starts at memory + 31 * 2 MB.
{&m_pPhysicalRAM[2], 0x0BE00000, g_MemorySize, MV_IS_EXTRA2_RAM},
{&m_pUncachedRAM[2], 0x4BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM},
{&m_pKernelRAM[2], 0x8BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM | MV_KERNEL},
{&m_pUncachedKernelRAM[2],0xCBE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM | MV_KERNEL},
// TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to
// implement those.
};
static const int num_views = sizeof(views) / sizeof(MemoryView);
inline static bool CanIgnoreView(const MemoryView &view) {
#ifdef MASKED_PSP_MEMORY
// Basically, 32-bit platforms can ignore views that are masked out anyway.
return (view.flags & MV_MIRROR_PREVIOUS) && (view.virtual_address & ~MEMVIEW32_MASK) != 0;
#else
return false;
#endif
}
#if PPSSPP_PLATFORM(IOS) && PPSSPP_ARCH(64BIT)
#define SKIP(a_flags, b_flags) \
if ((b_flags) & MV_KERNEL) \
continue;
#else
#define SKIP(a_flags, b_flags) \
;
#endif
static bool Memory_TryBase(u32 flags) {
// OK, we know where to find free space. Now grab it!
// We just mimic the popular BAT setup.
size_t position = 0;
size_t last_position = 0;
// Zero all the pointers to be sure.
for (int i = 0; i < num_views; i++) {
if (views[i].out_ptr)
*views[i].out_ptr = 0;
}
int i;
for (i = 0; i < num_views; i++) {
const MemoryView &view = views[i];
if (view.size == 0)
continue;
SKIP(flags, view.flags);
if (view.flags & MV_MIRROR_PREVIOUS) {
position = last_position;
}
#ifndef MASKED_PSP_MEMORY
*view.out_ptr = (u8*)g_arena.CreateView(
position, view.size, base + view.virtual_address);
if (!*view.out_ptr) {
goto bail;
DEBUG_LOG(MEMMAP, "Failed at view %d", i);
}
#else
if (CanIgnoreView(view)) {
// This is handled by address masking in 32-bit, no view needs to be created.
*view.out_ptr = *views[i - 1].out_ptr;
} else {
*view.out_ptr = (u8*)g_arena.CreateView(
position, view.size, base + (view.virtual_address & MEMVIEW32_MASK));
if (!*view.out_ptr) {
DEBUG_LOG(MEMMAP, "Failed at view %d", i);
goto bail;
}
}
#endif
last_position = position;
position += g_arena.roundup(view.size);
}
return true;
bail:
// Argh! ERROR! Free what we grabbed so far so we can try again.
for (int j = 0; j <= i; j++) {
if (views[i].size == 0)
continue;
SKIP(flags, views[i].flags);
if (*views[j].out_ptr) {
if (!CanIgnoreView(views[j])) {
g_arena.ReleaseView(*views[j].out_ptr, views[j].size);
}
*views[j].out_ptr = NULL;
}
}
return false;
}
bool MemoryMap_Setup(u32 flags) {
#if PPSSPP_PLATFORM(UWP)
// We reserve the memory, then simply commit in TryBase.
base = (u8*)VirtualAllocFromApp(0, 0x10000000, MEM_RESERVE, PAGE_READWRITE);
#else
// Figure out how much memory we need to allocate in total.
size_t total_mem = 0;
for (int i = 0; i < num_views; i++) {
if (views[i].size == 0)
continue;
SKIP(flags, views[i].flags);
if (!CanIgnoreView(views[i]))
total_mem += g_arena.roundup(views[i].size);
}
// Grab some pagefile backed memory out of the void ...
if (!g_arena.GrabMemSpace(total_mem)) {
// It'll already have logged.
return false;
}
#endif
#if !PPSSPP_PLATFORM(ANDROID)
if (g_arena.NeedsProbing()) {
int base_attempts = 0;
#if PPSSPP_PLATFORM(WINDOWS) && PPSSPP_ARCH(32BIT)
// Try a whole range of possible bases. Return once we got a valid one.
uintptr_t max_base_addr = 0x7FFF0000 - 0x10000000;
uintptr_t min_base_addr = 0x01000000;
uintptr_t stride = 0x400000;
#elif PPSSPP_ARCH(ARM64) && PPSSPP_PLATFORM(IOS)
// iOS
uintptr_t max_base_addr = 0x1FFFF0000ULL - 0x80000000ULL;
uintptr_t min_base_addr = 0x100000000ULL;
uintptr_t stride = 0x800000;
#else
uintptr_t max_base_addr = 0;
uintptr_t min_base_addr = 0;
uintptr_t stride = 0;
ERROR_LOG(MEMMAP, "MemoryMap_Setup: Hit a wrong path, should not be needed on this platform.");
return false;
#endif
for (uintptr_t base_addr = min_base_addr; base_addr < max_base_addr; base_addr += stride) {
base_attempts++;
base = (u8 *)base_addr;
if (Memory_TryBase(flags)) {
INFO_LOG(MEMMAP, "Found valid memory base at %p after %i tries.", base, base_attempts);
return true;
}
}
ERROR_LOG(MEMMAP, "MemoryMap_Setup: Failed finding a memory base.");
return false;
}
else
#endif
{
#if !PPSSPP_PLATFORM(UWP)
base = g_arena.Find4GBBase();
#endif
}
// Should return true...
return Memory_TryBase(flags);
}
void MemoryMap_Shutdown(u32 flags) {
for (int i = 0; i < num_views; i++) {
if (views[i].size == 0)
continue;
SKIP(flags, views[i].flags);
if (*views[i].out_ptr)
g_arena.ReleaseView(*views[i].out_ptr, views[i].size);
*views[i].out_ptr = nullptr;
}
g_arena.ReleaseSpace();
#if PPSSPP_PLATFORM(UWP)
VirtualFree(base, 0, MEM_RELEASE);
#endif
}
bool Init() {
// On some 32 bit platforms (like Android, iOS, etc.), you can only map < 32 megs at a time.
const static int MAX_MMAP_SIZE = 31 * 1024 * 1024;
_dbg_assert_msg_(g_MemorySize <= MAX_MMAP_SIZE * 3, "ACK - too much memory for three mmap views.");
for (size_t i = 0; i < ARRAY_SIZE(views); i++) {
if (views[i].flags & MV_IS_PRIMARY_RAM)
views[i].size = std::min((int)g_MemorySize, MAX_MMAP_SIZE);
if (views[i].flags & MV_IS_EXTRA1_RAM)
views[i].size = std::min(std::max((int)g_MemorySize - MAX_MMAP_SIZE, 0), MAX_MMAP_SIZE);
if (views[i].flags & MV_IS_EXTRA2_RAM)
views[i].size = std::min(std::max((int)g_MemorySize - MAX_MMAP_SIZE * 2, 0), MAX_MMAP_SIZE);
}
int flags = 0;
if (!MemoryMap_Setup(flags)) {
return false;
}
INFO_LOG(MEMMAP, "Memory system initialized. Base at %p (RAM at @ %p, uncached @ %p)",
base, m_pPhysicalRAM, m_pUncachedRAM);
MemFault_Init();
return true;
}
void Reinit() {
_assert_msg_(PSP_IsInited(), "Cannot reinit during startup/shutdown");
Core_NotifyLifecycle(CoreLifecycle::MEMORY_REINITING);
Shutdown();
Init();
Core_NotifyLifecycle(CoreLifecycle::MEMORY_REINITED);
}
static void DoMemoryVoid(PointerWrap &p, uint32_t start, uint32_t size) {
uint8_t *d = GetPointerWrite(start);
uint8_t *&storage = *p.ptr;
// We only handle aligned data and sizes.
if ((size & 0x3F) != 0 || ((uintptr_t)d & 0x3F) != 0)
return p.DoVoid(d, size);
switch (p.mode) {
case PointerWrap::MODE_READ:
ParallelMemcpy(&g_threadManager, d, storage, size);
break;
case PointerWrap::MODE_WRITE:
ParallelMemcpy(&g_threadManager, storage, d, size);
break;
case PointerWrap::MODE_MEASURE:
// Nothing to do here.
break;
case PointerWrap::MODE_VERIFY:
ParallelRangeLoop(&g_threadManager, [&](int l, int h) {
for (int i = l; i < h; i++)
_dbg_assert_msg_(d[i] == storage[i], "Savestate verification failure: %d (0x%X) (at %p) != %d (0x%X) (at %p).\n", d[i], d[i], &d[i], storage[i], storage[i], &storage[i]);
}, 0, size, 128);
break;
case PointerWrap::MODE_NOOP:
break;
}
storage += size;
}
void DoState(PointerWrap &p) {
auto s = p.Section("Memory", 1, 3);
if (!s)
return;
if (s < 2) {
if (!g_RemasterMode)
g_MemorySize = RAM_NORMAL_SIZE;
g_PSPModel = PSP_MODEL_FAT;
} else if (s == 2) {
// In version 2, we determine memory size based on PSP model.
u32 oldMemorySize = g_MemorySize;
Do(p, g_PSPModel);
p.DoMarker("PSPModel");
if (!g_RemasterMode) {
g_MemorySize = g_PSPModel == PSP_MODEL_FAT ? RAM_NORMAL_SIZE : RAM_DOUBLE_SIZE;
if (oldMemorySize < g_MemorySize) {
Reinit();
}
}
} else {
// In version 3, we started just saving the memory size directly.
// It's no longer based strictly on the PSP model.
u32 oldMemorySize = g_MemorySize;
Do(p, g_PSPModel);
p.DoMarker("PSPModel");
Do(p, g_MemorySize);
if (oldMemorySize != g_MemorySize) {
Reinit();
}
}
DoMemoryVoid(p, PSP_GetKernelMemoryBase(), g_MemorySize);
p.DoMarker("RAM");
DoMemoryVoid(p, PSP_GetVidMemBase(), VRAM_SIZE);
p.DoMarker("VRAM");
DoArray(p, m_pPhysicalScratchPad, SCRATCHPAD_SIZE);
p.DoMarker("ScratchPad");
}
void Shutdown() {
std::lock_guard<std::recursive_mutex> guard(g_shutdownLock);
u32 flags = 0;
MemoryMap_Shutdown(flags);
base = nullptr;
DEBUG_LOG(MEMMAP, "Memory system shut down.");
}
bool IsActive() {
return base != nullptr;
}
// Wanting to avoid include pollution, MemMap.h is included a lot.
MemoryInitedLock::MemoryInitedLock()
{
g_shutdownLock.lock();
}
MemoryInitedLock::~MemoryInitedLock()
{
g_shutdownLock.unlock();
}
MemoryInitedLock Lock()
{
return MemoryInitedLock();
}
__forceinline static Opcode Read_Instruction(u32 address, bool resolveReplacements, Opcode inst)
{
if (!MIPS_IS_EMUHACK(inst.encoding)) {
return inst;
}
// No mutex on jit access here, but we assume the caller has locked, if necessary.
if (MIPS_IS_RUNBLOCK(inst.encoding) && MIPSComp::jit) {
inst = MIPSComp::jit->GetOriginalOp(inst);
if (resolveReplacements && MIPS_IS_REPLACEMENT(inst)) {
u32 op;
if (GetReplacedOpAt(address, &op)) {
if (MIPS_IS_EMUHACK(op)) {
ERROR_LOG(MEMMAP, "WTF 1");
return Opcode(op);
} else {
return Opcode(op);
}
} else {
ERROR_LOG(MEMMAP, "Replacement, but no replacement op? %08x", inst.encoding);
}
}
return inst;
} else if (resolveReplacements && MIPS_IS_REPLACEMENT(inst.encoding)) {
u32 op;
if (GetReplacedOpAt(address, &op)) {
if (MIPS_IS_EMUHACK(op)) {
ERROR_LOG(MEMMAP, "WTF 2");
return Opcode(op);
} else {
return Opcode(op);
}
} else {
return inst;
}
} else {
return inst;
}
}
Opcode Read_Instruction(u32 address, bool resolveReplacements)
{
Opcode inst = Opcode(Read_U32(address));
return Read_Instruction(address, resolveReplacements, inst);
}
Opcode ReadUnchecked_Instruction(u32 address, bool resolveReplacements)
{
Opcode inst = Opcode(ReadUnchecked_U32(address));
return Read_Instruction(address, resolveReplacements, inst);
}
Opcode Read_Opcode_JIT(u32 address)
{
Opcode inst = Opcode(Read_U32(address));
// No mutex around jit access here, but we assume caller has if necessary.
if (MIPS_IS_RUNBLOCK(inst.encoding) && MIPSComp::jit) {
return MIPSComp::jit->GetOriginalOp(inst);
} else {
return inst;
}
}
// WARNING! No checks!
// We assume that _Address is cached
void Write_Opcode_JIT(const u32 _Address, const Opcode& _Value)
{
Memory::WriteUnchecked_U32(_Value.encoding, _Address);
}
void Memset(const u32 _Address, const u8 _iValue, const u32 _iLength, const char *tag) {
if (IsValidRange(_Address, _iLength)) {
uint8_t *ptr = GetPointerWriteUnchecked(_Address);
memset(ptr, _iValue, _iLength);
} else {
for (size_t i = 0; i < _iLength; i++)
Write_U8(_iValue, (u32)(_Address + i));
}
NotifyMemInfo(MemBlockFlags::WRITE, _Address, _iLength, tag, strlen(tag));
}
} // namespace
void PSPPointerNotifyRW(int rw, uint32_t ptr, uint32_t bytes, const char * tag, size_t tagLen) {
if (MemBlockInfoDetailed(bytes)) {
if (rw & 1)
NotifyMemInfo(MemBlockFlags::WRITE, ptr, bytes, tag, tagLen);
if (rw & 2)
NotifyMemInfo(MemBlockFlags::READ, ptr, bytes, tag, tagLen);
}
}