ppsspp/UWP/Common/DeviceResources.cpp
2022-10-29 13:02:10 -07:00

704 lines
22 KiB
C++

#include "pch.h"
#include <algorithm>
#include "DeviceResources.h"
#include "DirectXHelper.h"
using namespace D2D1;
using namespace DirectX;
using namespace Microsoft::WRL;
using namespace Windows::Foundation;
using namespace Windows::Graphics::Display;
using namespace Windows::UI::Core;
using namespace Windows::UI::Xaml::Controls;
using namespace Platform;
namespace DisplayMetrics
{
// High resolution displays can require a lot of GPU and battery power to render.
// High resolution phones, for example, may suffer from poor battery life if
// games attempt to render at 60 frames per second at full fidelity.
// The decision to render at full fidelity across all platforms and form factors
// should be deliberate.
static const bool SupportHighResolutions = true;
// The default thresholds that define a "high resolution" display. If the thresholds
// are exceeded and SupportHighResolutions is false, the dimensions will be scaled
// by 50%.
static const float DpiThreshold = 192.0f; // 200% of standard desktop display.
static const float WidthThreshold = 1920.0f; // 1080p width.
static const float HeightThreshold = 1080.0f; // 1080p height.
};
// Constants used to calculate screen rotations
namespace ScreenRotation
{
// 0-degree Z-rotation
static const XMFLOAT4X4 Rotation0(
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
);
// 90-degree Z-rotation
static const XMFLOAT4X4 Rotation90(
0.0f, 1.0f, 0.0f, 0.0f,
-1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
);
// 180-degree Z-rotation
static const XMFLOAT4X4 Rotation180(
-1.0f, 0.0f, 0.0f, 0.0f,
0.0f, -1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
);
// 270-degree Z-rotation
static const XMFLOAT4X4 Rotation270(
0.0f, -1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
);
};
// Constructor for DeviceResources.
DX::DeviceResources::DeviceResources() :
m_screenViewport(),
m_d3dFeatureLevel(D3D_FEATURE_LEVEL_9_1),
m_d3dRenderTargetSize(),
m_outputSize(),
m_logicalSize(),
m_nativeOrientation(DisplayOrientations::None),
m_currentOrientation(DisplayOrientations::None),
m_dpi(-1.0f),
m_effectiveDpi(-1.0f),
m_deviceNotify(nullptr)
{
CreateDeviceIndependentResources();
CreateDeviceResources();
}
// Configures resources that don't depend on the Direct3D device.
void DX::DeviceResources::CreateDeviceIndependentResources()
{
// Initialize Direct2D resources.
D2D1_FACTORY_OPTIONS options;
ZeroMemory(&options, sizeof(D2D1_FACTORY_OPTIONS));
#if defined(_DEBUG)
// If the project is in a debug build, enable Direct2D debugging via SDK Layers.
options.debugLevel = D2D1_DEBUG_LEVEL_INFORMATION;
#endif
// Initialize the Direct2D Factory.
DX::ThrowIfFailed(
D2D1CreateFactory(
D2D1_FACTORY_TYPE_SINGLE_THREADED,
__uuidof(ID2D1Factory3),
&options,
&m_d2dFactory
)
);
// Initialize the DirectWrite Factory.
DX::ThrowIfFailed(
DWriteCreateFactory(
DWRITE_FACTORY_TYPE_SHARED,
__uuidof(IDWriteFactory3),
&m_dwriteFactory
)
);
// Initialize the Windows Imaging Component (WIC) Factory.
DX::ThrowIfFailed(
CoCreateInstance(
CLSID_WICImagingFactory2,
nullptr,
CLSCTX_INPROC_SERVER,
IID_PPV_ARGS(&m_wicFactory)
)
);
}
// Configures the Direct3D device, and stores handles to it and the device context.
void DX::DeviceResources::CreateDeviceResources()
{
// This flag adds support for surfaces with a different color channel ordering
// than the API default. It is required for compatibility with Direct2D.
UINT creationFlags = D3D11_CREATE_DEVICE_BGRA_SUPPORT;
#if defined(_DEBUG)
if (DX::SdkLayersAvailable())
{
// If the project is in a debug build, enable debugging via SDK Layers with this flag.
creationFlags |= D3D11_CREATE_DEVICE_DEBUG;
}
#endif
// This array defines the set of DirectX hardware feature levels this app will support.
// Note the ordering should be preserved.
// Don't forget to declare your application's minimum required feature level in its
// description. All applications are assumed to support 9.1 unless otherwise stated.
D3D_FEATURE_LEVEL featureLevels[] =
{
D3D_FEATURE_LEVEL_12_1,
D3D_FEATURE_LEVEL_12_0,
D3D_FEATURE_LEVEL_11_1,
D3D_FEATURE_LEVEL_11_0,
D3D_FEATURE_LEVEL_10_1,
D3D_FEATURE_LEVEL_10_0,
D3D_FEATURE_LEVEL_9_3,
D3D_FEATURE_LEVEL_9_2,
D3D_FEATURE_LEVEL_9_1
};
// Create the Direct3D 11 API device object and a corresponding context.
ComPtr<ID3D11Device> device;
ComPtr<ID3D11DeviceContext> context;
HRESULT hr = D3D11CreateDevice(
nullptr, // Specify nullptr to use the default adapter.
D3D_DRIVER_TYPE_HARDWARE, // Create a device using the hardware graphics driver.
0, // Should be 0 unless the driver is D3D_DRIVER_TYPE_SOFTWARE.
creationFlags, // Set debug and Direct2D compatibility flags.
featureLevels, // List of feature levels this app can support.
ARRAYSIZE(featureLevels), // Size of the list above.
D3D11_SDK_VERSION, // Always set this to D3D11_SDK_VERSION for Windows Store apps.
&device, // Returns the Direct3D device created.
&m_d3dFeatureLevel, // Returns feature level of device created.
&context // Returns the device immediate context.
);
if (FAILED(hr))
{
// If the initialization fails, fall back to the WARP device.
// For more information on WARP, see:
// http://go.microsoft.com/fwlink/?LinkId=286690
DX::ThrowIfFailed(
D3D11CreateDevice(
nullptr,
D3D_DRIVER_TYPE_WARP, // Create a WARP device instead of a hardware device.
0,
creationFlags,
featureLevels,
ARRAYSIZE(featureLevels),
D3D11_SDK_VERSION,
&device,
&m_d3dFeatureLevel,
&context
)
);
}
// Store pointers to the Direct3D 11.3 API device and immediate context.
DX::ThrowIfFailed(
device.As(&m_d3dDevice)
);
DX::ThrowIfFailed(
context.As(&m_d3dContext)
);
// Create the Direct2D device object and a corresponding context.
ComPtr<IDXGIDevice3> dxgiDevice;
DX::ThrowIfFailed(
m_d3dDevice.As(&dxgiDevice)
);
DX::ThrowIfFailed(
m_d2dFactory->CreateDevice(dxgiDevice.Get(), &m_d2dDevice)
);
DX::ThrowIfFailed(
m_d2dDevice->CreateDeviceContext(
D2D1_DEVICE_CONTEXT_OPTIONS_NONE,
&m_d2dContext
)
);
}
// These resources need to be recreated every time the window size is changed.
void DX::DeviceResources::CreateWindowSizeDependentResources()
{
// Clear the previous window size specific context.
ID3D11RenderTargetView* nullViews[] = {nullptr};
m_d3dContext->OMSetRenderTargets(ARRAYSIZE(nullViews), nullViews, nullptr);
m_d3dRenderTargetView = nullptr;
m_d2dContext->SetTarget(nullptr);
m_d2dTargetBitmap = nullptr;
m_d3dContext->Flush1(D3D11_CONTEXT_TYPE_ALL, nullptr);
UpdateRenderTargetSize();
// The width and height of the swap chain must be based on the window's
// natively-oriented width and height. If the window is not in the native
// orientation, the dimensions must be reversed.
DXGI_MODE_ROTATION displayRotation = ComputeDisplayRotation();
bool swapDimensions = displayRotation == DXGI_MODE_ROTATION_ROTATE90 || displayRotation == DXGI_MODE_ROTATION_ROTATE270;
m_d3dRenderTargetSize.Width = swapDimensions ? m_outputSize.Height : m_outputSize.Width;
m_d3dRenderTargetSize.Height = swapDimensions ? m_outputSize.Width : m_outputSize.Height;
if (m_swapChain != nullptr)
{
// If the swap chain already exists, resize it.
HRESULT hr = m_swapChain->ResizeBuffers(
2, // Double-buffered swap chain.
lround(m_d3dRenderTargetSize.Width),
lround(m_d3dRenderTargetSize.Height),
DXGI_FORMAT_B8G8R8A8_UNORM,
0
);
if (hr == DXGI_ERROR_DEVICE_REMOVED || hr == DXGI_ERROR_DEVICE_RESET)
{
// If the device was removed for any reason, a new device and swap chain will need to be created.
HandleDeviceLost();
// Everything is set up now. Do not continue execution of this method. HandleDeviceLost will reenter this method
// and correctly set up the new device.
return;
}
else
{
DX::ThrowIfFailed(hr);
}
}
else
{
// Otherwise, create a new one using the same adapter as the existing Direct3D device.
DXGI_SCALING scaling = DisplayMetrics::SupportHighResolutions ? DXGI_SCALING_NONE : DXGI_SCALING_STRETCH;
DXGI_SWAP_CHAIN_DESC1 swapChainDesc = {0};
swapChainDesc.Width = lround(m_d3dRenderTargetSize.Width); // Match the size of the window.
swapChainDesc.Height = lround(m_d3dRenderTargetSize.Height);
swapChainDesc.Format = DXGI_FORMAT_B8G8R8A8_UNORM; // This is the most common swap chain format.
swapChainDesc.Stereo = false;
swapChainDesc.SampleDesc.Count = 1; // Don't use multi-sampling.
swapChainDesc.SampleDesc.Quality = 0;
swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
swapChainDesc.BufferCount = 2; // Use double-buffering to minimize latency.
swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL; // All Windows Store apps must use this SwapEffect.
swapChainDesc.Flags = 0;
swapChainDesc.Scaling = scaling;
swapChainDesc.AlphaMode = DXGI_ALPHA_MODE_IGNORE;
// This sequence obtains the DXGI factory that was used to create the Direct3D device above.
ComPtr<IDXGIDevice3> dxgiDevice;
DX::ThrowIfFailed(
m_d3dDevice.As(&dxgiDevice)
);
ComPtr<IDXGIAdapter> dxgiAdapter;
DX::ThrowIfFailed(
dxgiDevice->GetAdapter(&dxgiAdapter)
);
ComPtr<IDXGIFactory4> dxgiFactory;
DX::ThrowIfFailed(
dxgiAdapter->GetParent(IID_PPV_ARGS(&dxgiFactory))
);
ComPtr<IDXGISwapChain1> swapChain;
DX::ThrowIfFailed(
dxgiFactory->CreateSwapChainForCoreWindow(
m_d3dDevice.Get(),
reinterpret_cast<IUnknown*>(m_window.Get()),
&swapChainDesc,
nullptr,
&swapChain
)
);
DX::ThrowIfFailed(
swapChain.As(&m_swapChain)
);
// Ensure that DXGI does not queue more than one frame at a time. This both reduces latency and
// ensures that the application will only render after each VSync, minimizing power consumption.
DX::ThrowIfFailed(
dxgiDevice->SetMaximumFrameLatency(1)
);
}
// Set the proper orientation for the swap chain, and generate 2D and
// 3D matrix transformations for rendering to the rotated swap chain.
// Note the rotation angle for the 2D and 3D transforms are different.
// This is due to the difference in coordinate spaces. Additionally,
// the 3D matrix is specified explicitly to avoid rounding errors.
switch (displayRotation)
{
case DXGI_MODE_ROTATION_IDENTITY:
m_orientationTransform2D = Matrix3x2F::Identity();
m_orientationTransform3D = ScreenRotation::Rotation0;
break;
case DXGI_MODE_ROTATION_ROTATE90:
m_orientationTransform2D =
Matrix3x2F::Rotation(90.0f) *
Matrix3x2F::Translation(m_logicalSize.Height, 0.0f);
m_orientationTransform3D = ScreenRotation::Rotation270;
break;
case DXGI_MODE_ROTATION_ROTATE180:
m_orientationTransform2D =
Matrix3x2F::Rotation(180.0f) *
Matrix3x2F::Translation(m_logicalSize.Width, m_logicalSize.Height);
m_orientationTransform3D = ScreenRotation::Rotation180;
break;
case DXGI_MODE_ROTATION_ROTATE270:
m_orientationTransform2D =
Matrix3x2F::Rotation(270.0f) *
Matrix3x2F::Translation(0.0f, m_logicalSize.Width);
m_orientationTransform3D = ScreenRotation::Rotation90;
break;
default:
throw ref new FailureException();
}
DX::ThrowIfFailed(
m_swapChain->SetRotation(displayRotation)
);
// Create a render target view of the swap chain back buffer.
ComPtr<ID3D11Texture2D1> backBuffer;
DX::ThrowIfFailed(
m_swapChain->GetBuffer(0, IID_PPV_ARGS(&backBuffer))
);
DX::ThrowIfFailed(
m_d3dDevice->CreateRenderTargetView1(
backBuffer.Get(),
nullptr,
&m_d3dRenderTargetView
)
);
// Set the 3D rendering viewport to target the entire window.
m_screenViewport = CD3D11_VIEWPORT(
0.0f,
0.0f,
m_d3dRenderTargetSize.Width,
m_d3dRenderTargetSize.Height
);
m_d3dContext->RSSetViewports(1, &m_screenViewport);
// Create a Direct2D target bitmap associated with the
// swap chain back buffer and set it as the current target.
D2D1_BITMAP_PROPERTIES1 bitmapProperties =
D2D1::BitmapProperties1(
D2D1_BITMAP_OPTIONS_TARGET | D2D1_BITMAP_OPTIONS_CANNOT_DRAW,
D2D1::PixelFormat(DXGI_FORMAT_B8G8R8A8_UNORM, D2D1_ALPHA_MODE_PREMULTIPLIED),
m_dpi,
m_dpi
);
ComPtr<IDXGISurface2> dxgiBackBuffer;
DX::ThrowIfFailed(
m_swapChain->GetBuffer(0, IID_PPV_ARGS(&dxgiBackBuffer))
);
DX::ThrowIfFailed(
m_d2dContext->CreateBitmapFromDxgiSurface(
dxgiBackBuffer.Get(),
&bitmapProperties,
&m_d2dTargetBitmap
)
);
m_d2dContext->SetTarget(m_d2dTargetBitmap.Get());
m_d2dContext->SetDpi(m_effectiveDpi, m_effectiveDpi);
// Grayscale text anti-aliasing is recommended for all Windows Store apps.
m_d2dContext->SetTextAntialiasMode(D2D1_TEXT_ANTIALIAS_MODE_GRAYSCALE);
}
// Determine the dimensions of the render target and whether it will be scaled down.
void DX::DeviceResources::UpdateRenderTargetSize()
{
m_effectiveDpi = m_dpi;
if (Windows::System::Profile::AnalyticsInfo::VersionInfo->DeviceFamily == L"Windows.Xbox")
{
m_effectiveDpi = 96.0f / static_cast<float>(m_logicalSize.Height) * 1080.0f;
}
else
{
// To improve battery life on high resolution devices, render to a smaller render target
// and allow the GPU to scale the output when it is presented.
if (!DisplayMetrics::SupportHighResolutions && m_dpi >= DisplayMetrics::DpiThreshold)
{
float width = DX::ConvertDipsToPixels(m_logicalSize.Width, m_dpi);
float height = DX::ConvertDipsToPixels(m_logicalSize.Height, m_dpi);
// When the device is in portrait orientation, height > width. Compare the
// larger dimension against the width threshold and the smaller dimension
// against the height threshold.
if (std::max(width, height) > DisplayMetrics::WidthThreshold && std::min(width, height) > DisplayMetrics::HeightThreshold)
{
// To scale the app we change the effective DPI. Logical size does not change.
m_effectiveDpi /= 2.0f;
}
}
}
// Calculate the necessary render target size in pixels.
m_outputSize.Width = DX::ConvertDipsToPixels(m_logicalSize.Width, m_effectiveDpi);
m_outputSize.Height = DX::ConvertDipsToPixels(m_logicalSize.Height, m_effectiveDpi);
// Prevent zero size DirectX content from being created.
m_outputSize.Width = std::max(m_outputSize.Width, 1.0f);
m_outputSize.Height = std::max(m_outputSize.Height, 1.0f);
}
// This method is called when the CoreWindow is created (or re-created).
void DX::DeviceResources::SetWindow(CoreWindow^ window)
{
DisplayInformation^ currentDisplayInformation = DisplayInformation::GetForCurrentView();
m_window = window;
if (Windows::System::Profile::AnalyticsInfo::VersionInfo->DeviceFamily == L"Windows.Xbox")
{
const auto hdi = Windows::Graphics::Display::Core::HdmiDisplayInformation::GetForCurrentView();
if (hdi)
{
try
{
const auto dm = hdi->GetCurrentDisplayMode();
const float hdmi_width = (float)dm->ResolutionWidthInRawPixels;
const float hdmi_height = (float)dm->ResolutionHeightInRawPixels;
// If we're running on Xbox, use the HDMI mode instead of the CoreWindow size.
// In UWP, the CoreWindow is always 1920x1080, even when running at 4K.
m_logicalSize = Windows::Foundation::Size(hdmi_width, hdmi_height);
m_dpi = currentDisplayInformation->LogicalDpi * 1.5f;
}
catch (const Platform::Exception^)
{
m_logicalSize = Windows::Foundation::Size(window->Bounds.Width, window->Bounds.Height);
m_dpi = currentDisplayInformation->LogicalDpi;
}
}
}
else
{
m_logicalSize = Windows::Foundation::Size(window->Bounds.Width, window->Bounds.Height);
m_dpi = currentDisplayInformation->LogicalDpi;
}
m_nativeOrientation = currentDisplayInformation->NativeOrientation;
m_currentOrientation = currentDisplayInformation->CurrentOrientation;
m_d2dContext->SetDpi(m_dpi, m_dpi);
CreateWindowSizeDependentResources();
}
// This method is called in the event handler for the SizeChanged event.
void DX::DeviceResources::SetLogicalSize(Windows::Foundation::Size logicalSize)
{
if (m_logicalSize != logicalSize)
{
m_logicalSize = logicalSize;
CreateWindowSizeDependentResources();
}
}
// This method is called in the event handler for the DpiChanged event.
void DX::DeviceResources::SetDpi(float dpi)
{
if (dpi != m_dpi)
{
m_dpi = dpi;
// When the display DPI changes, the logical size of the window (measured in Dips) also changes and needs to be updated.
m_logicalSize = Windows::Foundation::Size(m_window->Bounds.Width, m_window->Bounds.Height);
m_d2dContext->SetDpi(m_dpi, m_dpi);
CreateWindowSizeDependentResources();
}
}
// This method is called in the event handler for the OrientationChanged event.
void DX::DeviceResources::SetCurrentOrientation(DisplayOrientations currentOrientation)
{
if (m_currentOrientation != currentOrientation)
{
m_currentOrientation = currentOrientation;
CreateWindowSizeDependentResources();
}
}
// This method is called in the event handler for the DisplayContentsInvalidated event.
void DX::DeviceResources::ValidateDevice()
{
// The D3D Device is no longer valid if the default adapter changed since the device
// was created or if the device has been removed.
// First, get the information for the default adapter from when the device was created.
ComPtr<IDXGIDevice3> dxgiDevice;
DX::ThrowIfFailed(m_d3dDevice.As(&dxgiDevice));
ComPtr<IDXGIAdapter> deviceAdapter;
DX::ThrowIfFailed(dxgiDevice->GetAdapter(&deviceAdapter));
ComPtr<IDXGIFactory4> deviceFactory;
DX::ThrowIfFailed(deviceAdapter->GetParent(IID_PPV_ARGS(&deviceFactory)));
ComPtr<IDXGIAdapter1> previousDefaultAdapter;
DX::ThrowIfFailed(deviceFactory->EnumAdapters1(0, &previousDefaultAdapter));
DXGI_ADAPTER_DESC1 previousDesc;
DX::ThrowIfFailed(previousDefaultAdapter->GetDesc1(&previousDesc));
// Next, get the information for the current default adapter.
ComPtr<IDXGIFactory4> currentFactory;
DX::ThrowIfFailed(CreateDXGIFactory1(IID_PPV_ARGS(&currentFactory)));
ComPtr<IDXGIAdapter1> currentDefaultAdapter;
DX::ThrowIfFailed(currentFactory->EnumAdapters1(0, &currentDefaultAdapter));
DXGI_ADAPTER_DESC1 currentDesc;
DX::ThrowIfFailed(currentDefaultAdapter->GetDesc1(&currentDesc));
// If the adapter LUIDs don't match, or if the device reports that it has been removed,
// a new D3D device must be created.
if (previousDesc.AdapterLuid.LowPart != currentDesc.AdapterLuid.LowPart ||
previousDesc.AdapterLuid.HighPart != currentDesc.AdapterLuid.HighPart ||
FAILED(m_d3dDevice->GetDeviceRemovedReason()))
{
// Release references to resources related to the old device.
dxgiDevice = nullptr;
deviceAdapter = nullptr;
deviceFactory = nullptr;
previousDefaultAdapter = nullptr;
// Create a new device and swap chain.
HandleDeviceLost();
}
}
// Recreate all device resources and set them back to the current state.
void DX::DeviceResources::HandleDeviceLost()
{
m_swapChain = nullptr;
if (m_deviceNotify != nullptr)
{
m_deviceNotify->OnDeviceLost();
}
CreateDeviceResources();
m_d2dContext->SetDpi(m_dpi, m_dpi);
CreateWindowSizeDependentResources();
if (m_deviceNotify != nullptr)
{
m_deviceNotify->OnDeviceRestored();
}
}
// Register our DeviceNotify to be informed on device lost and creation.
void DX::DeviceResources::RegisterDeviceNotify(DX::IDeviceNotify* deviceNotify)
{
m_deviceNotify = deviceNotify;
}
// Call this method when the app suspends. It provides a hint to the driver that the app
// is entering an idle state and that temporary buffers can be reclaimed for use by other apps.
void DX::DeviceResources::Trim()
{
ComPtr<IDXGIDevice3> dxgiDevice;
m_d3dDevice.As(&dxgiDevice);
dxgiDevice->Trim();
}
// Present the contents of the swap chain to the screen.
void DX::DeviceResources::Present()
{
// The first argument instructs DXGI to block until VSync, putting the application
// to sleep until the next VSync. This ensures we don't waste any cycles rendering
// frames that will never be displayed to the screen.
DXGI_PRESENT_PARAMETERS parameters = { 0 };
HRESULT hr = m_swapChain->Present1(1, 0, &parameters);
// Discard the contents of the render target.
// This is a valid operation only when the existing contents will be entirely
// overwritten. If dirty or scroll rects are used, this call should be removed.
m_d3dContext->DiscardView1(m_d3dRenderTargetView.Get(), nullptr, 0);
// If the device was removed either by a disconnection or a driver upgrade, we
// must recreate all device resources.
if (hr == DXGI_ERROR_DEVICE_REMOVED || hr == DXGI_ERROR_DEVICE_RESET)
{
HandleDeviceLost();
}
else
{
DX::ThrowIfFailed(hr);
}
}
// This method determines the rotation between the display device's native orientation and the
// current display orientation.
DXGI_MODE_ROTATION DX::DeviceResources::ComputeDisplayRotation()
{
DXGI_MODE_ROTATION rotation = DXGI_MODE_ROTATION_UNSPECIFIED;
// Note: NativeOrientation can only be Landscape or Portrait even though
// the DisplayOrientations enum has other values.
switch (m_nativeOrientation)
{
case DisplayOrientations::Landscape:
switch (m_currentOrientation)
{
case DisplayOrientations::Landscape:
rotation = DXGI_MODE_ROTATION_IDENTITY;
break;
case DisplayOrientations::Portrait:
rotation = DXGI_MODE_ROTATION_ROTATE270;
break;
case DisplayOrientations::LandscapeFlipped:
rotation = DXGI_MODE_ROTATION_ROTATE180;
break;
case DisplayOrientations::PortraitFlipped:
rotation = DXGI_MODE_ROTATION_ROTATE90;
break;
}
break;
case DisplayOrientations::Portrait:
switch (m_currentOrientation)
{
case DisplayOrientations::Landscape:
rotation = DXGI_MODE_ROTATION_ROTATE90;
break;
case DisplayOrientations::Portrait:
rotation = DXGI_MODE_ROTATION_IDENTITY;
break;
case DisplayOrientations::LandscapeFlipped:
rotation = DXGI_MODE_ROTATION_ROTATE270;
break;
case DisplayOrientations::PortraitFlipped:
rotation = DXGI_MODE_ROTATION_ROTATE180;
break;
}
break;
}
return rotation;
}