ppsspp/GPU/GPUState.h
Unknown W. Brackets 33598f2e75 GPU: Support clip and cull distances separately.
Older GL devices, and it seems Apple devices, may not support cull.
2021-10-12 20:34:44 -07:00

635 lines
24 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#pragma once
#include "Common/Common.h"
#include "Common/Swap.h"
#include "GPU/GPU.h"
#include "GPU/ge_constants.h"
#include "GPU/Common/ShaderCommon.h"
class PointerWrap;
struct GPUgstate {
// Getting rid of this ugly union in favor of the accessor functions
// might be a good idea....
union {
u32 cmdmem[256];
struct {
u32 nop,
vaddr,
iaddr,
pad00,
prim,
bezier,
spline,
boundBox,
jump,
bjump,
call,
ret,
end,
pad01,
signal,
finish,
base,
pad02,
vertType,
offsetAddr,
origin,
region1,
region2,
lightingEnable,
lightEnable[4],
depthClampEnable,
cullfaceEnable,
textureMapEnable, // 0x1E GE_CMD_TEXTUREMAPENABLE
fogEnable,
ditherEnable,
alphaBlendEnable,
alphaTestEnable,
zTestEnable,
stencilTestEnable,
antiAliasEnable,
patchCullEnable,
colorTestEnable,
logicOpEnable,
pad03,
boneMatrixNumber,
boneMatrixData,
morphwgt[8], //dont use
pad04[2],
patchdivision,
patchprimitive,
patchfacing,
pad04_a,
worldmtxnum, // 0x3A
worldmtxdata, // 0x3B
viewmtxnum, // 0x3C
viewmtxdata, // 0x3D
projmtxnum, // 0x3E
projmtxdata, // 0x3F
texmtxnum, // 0x40
texmtxdata, // 0x41
viewportxscale, // 0x42
viewportyscale, // 0x43
viewportzscale, // 0x44
viewportxcenter, // 0x45
viewportycenter, // 0x46
viewportzcenter, // 0x47
texscaleu, // 0x48
texscalev, // 0x49
texoffsetu, // 0x4A
texoffsetv, // 0x4B
offsetx, // 0x4C
offsety, // 0x4D
pad111[2],
shademodel, // 0x50
reversenormals, // 0x51
pad222,
materialupdate, // 0x53
materialemissive, // 0x54
materialambient, // 0x55
materialdiffuse, // 0x56
materialspecular, // 0x57
materialalpha, // 0x58
pad333[2],
materialspecularcoef, // 0x5B
ambientcolor, // 0x5C
ambientalpha, // 0x5D
lmode, // 0x5E GE_CMD_LIGHTMODE
ltype[4], // 0x5F-0x62 GE_CMD_LIGHTTYPEx
lpos[12], // 0x63-0x6E
ldir[12], // 0x6F-0x7A
latt[12], // 0x7B-0x86
lconv[4], // 0x87-0x8A
lcutoff[4], // 0x8B-0x8E
lcolor[12], // 0x8F-0x9A
cullmode, // 0x9B
fbptr, // 0x9C
fbwidth, // 0x9D
zbptr, // 0x9E
zbwidth, // 0x9F
texaddr[8], // 0xA0-0xA7
texbufwidth[8], // 0xA8-0xAF
clutaddr, // 0xB0
clutaddrupper, // 0xB1
transfersrc, // 0xB2
transfersrcw, // 0xB3
transferdst, // 0xB4
transferdstw, // 0xB5
padxxx[2],
texsize[8], // 0xB8-BF
texmapmode, // 0xC0
texshade, // 0xC1
texmode, // 0xC2 GE_CMD_TEXMODE
texformat, // 0xC3
loadclut, // 0xC4
clutformat, // 0xC5
texfilter, // 0xC6
texwrap, // 0xC7
texlevel, // 0xC8
texfunc, // 0xC9
texenvcolor, // 0xCA
texflush, // 0xCB
texsync, // 0xCC
fog1, // 0xCD
fog2, // 0xCE
fogcolor, // 0xCF
texlodslope, // 0xD0
padxxxxxx, // 0xD1
framebufpixformat, // 0xD2
clearmode, // 0xD3 GE_CMD_CLEARMODE
scissor1,
scissor2,
minz,
maxz,
colortest,
colorref,
colortestmask,
alphatest,
stenciltest,
stencilop,
ztestfunc,
blend,
blendfixa,
blendfixb,
dithmtx[4],
lop, // 0xE6
zmsk,
pmskc,
pmska,
transferstart,
transfersrcpos,
transferdstpos,
pad99,
transfersize, // 0xEE
pad100, // 0xEF
imm_vscx, // 0xF0
imm_vscy,
imm_vscz,
imm_vtcs,
imm_vtct,
imm_vtcq,
imm_cv,
imm_ap,
imm_fc,
imm_scv; // 0xF9
// In the unlikely case we ever add anything else here, don't forget to update the padding on the next line!
u32 pad05[0xFF- 0xF9];
};
};
// These are not directly mapped, instead these are loaded one-by-one through special commands.
// However, these are actual state, and can be read back.
float worldMatrix[12]; // 4x3
float viewMatrix[12]; // 4x3
float projMatrix[16]; // 4x4
float tgenMatrix[12]; // 4x3
float boneMatrix[12 * 8]; // Eight 4x3 bone matrices.
// We ignore the high bits of the framebuffer in fbwidth - even 0x08000000 renders to vRAM.
u32 getFrameBufRawAddress() const { return (fbptr & 0xFFFFFF); }
// 0x44000000 is uncached VRAM.
u32 getFrameBufAddress() const { return 0x44000000 | getFrameBufRawAddress(); }
GEBufferFormat FrameBufFormat() const { return static_cast<GEBufferFormat>(framebufpixformat & 3); }
int FrameBufStride() const { return fbwidth&0x7FC; }
u32 getDepthBufRawAddress() const { return (zbptr & 0xFFFFFF); }
u32 getDepthBufAddress() const { return 0x44000000 | getDepthBufRawAddress(); }
int DepthBufStride() const { return zbwidth&0x7FC; }
// Pixel Pipeline
bool isModeClear() const { return clearmode & 1; }
bool isFogEnabled() const { return fogEnable & 1; }
float getFogCoef1() const { return getFloat24(fog1); }
float getFogCoef2() const { return getFloat24(fog2); }
// Cull
bool isCullEnabled() const { return cullfaceEnable & 1; }
int getCullMode() const { return cullmode & 1; }
// Color Mask
bool isClearModeColorMask() const { return (clearmode&0x100) != 0; }
bool isClearModeAlphaMask() const { return (clearmode&0x200) != 0; }
bool isClearModeDepthMask() const { return (clearmode&0x400) != 0; }
u32 getClearModeColorMask() const { return ((clearmode&0x100) ? 0 : 0xFFFFFF) | ((clearmode&0x200) ? 0 : 0xFF000000); }
// Blend
GEBlendSrcFactor getBlendFuncA() const { return (GEBlendSrcFactor)(blend & 0xF); }
GEBlendDstFactor getBlendFuncB() const { return (GEBlendDstFactor)((blend >> 4) & 0xF); }
u32 getFixA() const { return blendfixa & 0xFFFFFF; }
u32 getFixB() const { return blendfixb & 0xFFFFFF; }
GEBlendMode getBlendEq() const { return static_cast<GEBlendMode>((blend >> 8) & 0x7); }
bool isAlphaBlendEnabled() const { return alphaBlendEnable & 1; }
// AntiAlias
bool isAntiAliasEnabled() const { return antiAliasEnable & 1; }
// Dither
bool isDitherEnabled() const { return ditherEnable & 1; }
int getDitherValue(int x, int y) const {
u8 raw = (dithmtx[y & 3] >> ((x & 3) * 4)) & 0xF;
// Apply sign extension to make 8-F negative, 0-7 positive.
return ((s8)(raw << 4)) >> 4;
}
// Color Mask
u32 getColorMask() const { return (pmskc & 0xFFFFFF) | ((pmska & 0xFF) << 24); }
u8 getStencilWriteMask() const { return pmska & 0xFF; }
bool isLogicOpEnabled() const { return logicOpEnable & 1; }
GELogicOp getLogicOp() const { return static_cast<GELogicOp>(lop & 0xF); }
// Depth Test
bool isDepthTestEnabled() const { return zTestEnable & 1; }
bool isDepthWriteEnabled() const { return !(zmsk & 1); }
GEComparison getDepthTestFunction() const { return static_cast<GEComparison>(ztestfunc & 0x7); }
u16 getDepthRangeMin() const { return minz & 0xFFFF; }
u16 getDepthRangeMax() const { return maxz & 0xFFFF; }
// Stencil Test
bool isStencilTestEnabled() const { return stencilTestEnable & 1; }
GEComparison getStencilTestFunction() const { return static_cast<GEComparison>(stenciltest & 0x7); }
int getStencilTestRef() const { return (stenciltest>>8) & 0xFF; }
int getStencilTestMask() const { return (stenciltest>>16) & 0xFF; }
GEStencilOp getStencilOpSFail() const { return static_cast<GEStencilOp>(stencilop & 0x7); }
GEStencilOp getStencilOpZFail() const { return static_cast<GEStencilOp>((stencilop>>8) & 0x7); }
GEStencilOp getStencilOpZPass() const { return static_cast<GEStencilOp>((stencilop>>16) & 0x7); }
// Alpha Test
bool isAlphaTestEnabled() const { return alphaTestEnable & 1; }
GEComparison getAlphaTestFunction() const { return static_cast<GEComparison>(alphatest & 0x7); }
int getAlphaTestRef() const { return (alphatest >> 8) & 0xFF; }
int getAlphaTestMask() const { return (alphatest >> 16) & 0xFF; }
// Color Test
bool isColorTestEnabled() const { return colorTestEnable & 1; }
GEComparison getColorTestFunction() const { return static_cast<GEComparison>(colortest & 0x3); }
u32 getColorTestRef() const { return colorref & 0xFFFFFF; }
u32 getColorTestMask() const { return colortestmask & 0xFFFFFF; }
// Texturing
// TODO: Verify getTextureAddress() alignment?
u32 getTextureAddress(int level) const { return (texaddr[level] & 0xFFFFF0) | ((texbufwidth[level] << 8) & 0x0F000000); }
int getTextureWidth(int level) const { return 1 << (texsize[level] & 0xf);}
int getTextureHeight(int level) const { return 1 << ((texsize[level] >> 8) & 0xf);}
u16 getTextureDimension(int level) const { return texsize[level] & 0xf0f;}
GETexLevelMode getTexLevelMode() const { return static_cast<GETexLevelMode>(texlevel & 0x3); }
int getTexLevelOffset16() const { return (int)(s8)((texlevel >> 16) & 0xFF); }
bool isTextureMapEnabled() const { return textureMapEnable & 1; }
GETexFunc getTextureFunction() const { return static_cast<GETexFunc>(texfunc & 0x7); }
bool isColorDoublingEnabled() const { return (texfunc & 0x10000) != 0; }
bool isTextureAlphaUsed() const { return (texfunc & 0x100) != 0; }
GETextureFormat getTextureFormat() const { return static_cast<GETextureFormat>(texformat & 0xF); }
bool isTextureFormatIndexed() const { return (texformat & 4) != 0; } // GE_TFMT_CLUT4 - GE_TFMT_CLUT32 are 0b1xx.
int getTextureEnvColR() const { return texenvcolor&0xFF; }
int getTextureEnvColG() const { return (texenvcolor>>8)&0xFF; }
int getTextureEnvColB() const { return (texenvcolor>>16)&0xFF; }
u32 getClutAddress() const { return (clutaddr & 0x00FFFFF0) | ((clutaddrupper << 8) & 0x0F000000); }
int getClutLoadBytes() const { return (loadclut & 0x3F) * 32; }
int getClutLoadBlocks() const { return (loadclut & 0x3F); }
GEPaletteFormat getClutPaletteFormat() const { return static_cast<GEPaletteFormat>(clutformat & 3); }
int getClutIndexShift() const { return (clutformat >> 2) & 0x1F; }
int getClutIndexMask() const { return (clutformat >> 8) & 0xFF; }
int getClutIndexStartPos() const { return ((clutformat >> 16) & 0x1F) << 4; }
u32 transformClutIndex(u32 index) const {
// We need to wrap any entries beyond the first 1024 bytes.
u32 mask = getClutPaletteFormat() == GE_CMODE_32BIT_ABGR8888 ? 0xFF : 0x1FF;
return ((index >> getClutIndexShift()) & getClutIndexMask()) | (getClutIndexStartPos() & mask);
}
bool isClutIndexSimple() const { return (clutformat & ~3) == 0xC500FF00; } // Meaning, no special mask, shift, or start pos.
bool isTextureSwizzled() const { return texmode & 1; }
bool isClutSharedForMipmaps() const { return (texmode & 0x100) == 0; }
bool isMipmapEnabled() const { return (texfilter & 4) != 0; }
bool isMipmapFilteringEnabled() const { return (texfilter & 2) != 0; }
bool isMinifyFilteringEnabled() const { return (texfilter & 1) != 0; }
bool isMagnifyFilteringEnabled() const { return (texfilter >> 8) & 1; }
int getTextureMaxLevel() const { return (texmode >> 16) & 0x7; }
float getTextureLodSlope() const { return getFloat24(texlodslope); }
// Lighting
bool isLightingEnabled() const { return lightingEnable & 1; }
bool isLightChanEnabled(int chan) const { return lightEnable[chan] & 1; }
GELightComputation getLightComputation(int chan) const { return static_cast<GELightComputation>(ltype[chan] & 0x3); }
bool isUsingPoweredDiffuseLight(int chan) const { return getLightComputation(chan) == GE_LIGHTCOMP_ONLYPOWDIFFUSE; }
bool isUsingSpecularLight(int chan) const { return getLightComputation(chan) == GE_LIGHTCOMP_BOTH; }
bool isUsingSecondaryColor() const { return lmode & 1; }
GELightType getLightType(int chan) const { return static_cast<GELightType>((ltype[chan] >> 8) & 3); }
bool isDirectionalLight(int chan) const { return getLightType(chan) == GE_LIGHTTYPE_DIRECTIONAL; }
bool isPointLight(int chan) const { return getLightType(chan) == GE_LIGHTTYPE_POINT; }
bool isSpotLight(int chan) const { return getLightType(chan) >= GE_LIGHTTYPE_SPOT; }
GEShadeMode getShadeMode() const { return static_cast<GEShadeMode>(shademodel & 1); }
unsigned int getAmbientR() const { return ambientcolor&0xFF; }
unsigned int getAmbientG() const { return (ambientcolor>>8)&0xFF; }
unsigned int getAmbientB() const { return (ambientcolor>>16)&0xFF; }
unsigned int getAmbientA() const { return ambientalpha&0xFF; }
unsigned int getAmbientRGBA() const { return (ambientcolor&0xFFFFFF) | ((ambientalpha&0xFF)<<24); }
unsigned int getMaterialUpdate() const { return materialupdate&0xFFFFFF; }
unsigned int getMaterialAmbientR() const { return materialambient&0xFF; }
unsigned int getMaterialAmbientG() const { return (materialambient>>8)&0xFF; }
unsigned int getMaterialAmbientB() const { return (materialambient>>16)&0xFF; }
unsigned int getMaterialAmbientA() const { return materialalpha&0xFF; }
unsigned int getMaterialAmbientRGBA() const { return (materialambient & 0x00FFFFFF) | (materialalpha << 24); }
unsigned int getMaterialDiffuseR() const { return materialdiffuse&0xFF; }
unsigned int getMaterialDiffuseG() const { return (materialdiffuse>>8)&0xFF; }
unsigned int getMaterialDiffuseB() const { return (materialdiffuse>>16)&0xFF; }
unsigned int getMaterialDiffuse() const { return materialdiffuse & 0xffffff; }
unsigned int getMaterialEmissiveR() const { return materialemissive&0xFF; }
unsigned int getMaterialEmissiveG() const { return (materialemissive>>8)&0xFF; }
unsigned int getMaterialEmissiveB() const { return (materialemissive>>16)&0xFF; }
unsigned int getMaterialEmissive() const { return materialemissive & 0xffffff; }
unsigned int getMaterialSpecularR() const { return materialspecular&0xFF; }
unsigned int getMaterialSpecularG() const { return (materialspecular>>8)&0xFF; }
unsigned int getMaterialSpecularB() const { return (materialspecular>>16)&0xFF; }
unsigned int getMaterialSpecular() const { return materialspecular & 0xffffff; }
float getMaterialSpecularCoef() const { return getFloat24(materialspecularcoef); }
unsigned int getLightAmbientColorR(int chan) const { return lcolor[chan*3]&0xFF; }
unsigned int getLightAmbientColorG(int chan) const { return (lcolor[chan*3]>>8)&0xFF; }
unsigned int getLightAmbientColorB(int chan) const { return (lcolor[chan*3]>>16)&0xFF; }
unsigned int getLightAmbientColor(int chan) const { return lcolor[chan*3]&0xFFFFFF; }
unsigned int getDiffuseColorR(int chan) const { return lcolor[1+chan*3]&0xFF; }
unsigned int getDiffuseColorG(int chan) const { return (lcolor[1+chan*3]>>8)&0xFF; }
unsigned int getDiffuseColorB(int chan) const { return (lcolor[1+chan*3]>>16)&0xFF; }
unsigned int getDiffuseColor(int chan) const { return lcolor[1+chan*3]&0xFFFFFF; }
unsigned int getSpecularColorR(int chan) const { return lcolor[2+chan*3]&0xFF; }
unsigned int getSpecularColorG(int chan) const { return (lcolor[2+chan*3]>>8)&0xFF; }
unsigned int getSpecularColorB(int chan) const { return (lcolor[2+chan*3]>>16)&0xFF; }
unsigned int getSpecularColor(int chan) const { return lcolor[2+chan*3]&0xFFFFFF; }
int getPatchDivisionU() const { return patchdivision & 0x7F; }
int getPatchDivisionV() const { return (patchdivision >> 8) & 0x7F; }
// UV gen
GETexMapMode getUVGenMode() const { return static_cast<GETexMapMode>(texmapmode & 3);} // 2 bits
GETexProjMapMode getUVProjMode() const { return static_cast<GETexProjMapMode>((texmapmode >> 8) & 3);} // 2 bits
int getUVLS0() const { return texshade & 0x3; } // 2 bits
int getUVLS1() const { return (texshade >> 8) & 0x3; } // 2 bits
bool isTexCoordClampedS() const { return texwrap & 1; }
bool isTexCoordClampedT() const { return (texwrap >> 8) & 1; }
int getScissorX1() const { return scissor1 & 0x3FF; }
int getScissorY1() const { return (scissor1 >> 10) & 0x3FF; }
int getScissorX2() const { return scissor2 & 0x3FF; }
int getScissorY2() const { return (scissor2 >> 10) & 0x3FF; }
int getRegionX1() const { return region1 & 0x3FF; }
int getRegionY1() const { return (region1 >> 10) & 0x3FF; }
int getRegionX2() const { return (region2 & 0x3FF); }
int getRegionY2() const { return (region2 >> 10) & 0x3FF; }
bool isDepthClampEnabled() const { return depthClampEnable & 1; }
// Note that the X1/Y1/Z1 here does not mean the upper-left corner, but half the dimensions. X2/Y2/Z2 are the center.
float getViewportXScale() const { return getFloat24(viewportxscale); }
float getViewportYScale() const { return getFloat24(viewportyscale); }
float getViewportZScale() const { return getFloat24(viewportzscale); }
float getViewportXCenter() const { return getFloat24(viewportxcenter); }
float getViewportYCenter() const { return getFloat24(viewportycenter); }
float getViewportZCenter() const { return getFloat24(viewportzcenter); }
// Fixed 16 point.
int getOffsetX16() const { return offsetx & 0xFFFF; }
int getOffsetY16() const { return offsety & 0xFFFF; }
float getOffsetX() const { return (float)getOffsetX16() / 16.0f; }
float getOffsetY() const { return (float)getOffsetY16() / 16.0f; }
// Vertex type
bool isModeThrough() const { return (vertType & GE_VTYPE_THROUGH) != 0; }
bool areNormalsReversed() const { return reversenormals & 1; }
bool isSkinningEnabled() const { return ((vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE); }
int getNumMorphWeights() const { return ((vertType & GE_VTYPE_MORPHCOUNT_MASK) >> GE_VTYPE_MORPHCOUNT_SHIFT) + 1; }
GEPatchPrimType getPatchPrimitiveType() const { return static_cast<GEPatchPrimType>(patchprimitive & 3); }
bool isPatchNormalsReversed() const { return patchfacing & 1; }
// Transfers
u32 getTransferSrcAddress() const { return (transfersrc & 0xFFFFF0) | ((transfersrcw & 0xFF0000) << 8); }
// Bits 0xf800 are ignored, > 0x400 is treated as 0.
u32 getTransferSrcStride() const { int stride = transfersrcw & 0x7F8; return stride > 0x400 ? 0 : stride; }
int getTransferSrcX() const { return (transfersrcpos >> 0) & 0x3FF; }
int getTransferSrcY() const { return (transfersrcpos >> 10) & 0x3FF; }
u32 getTransferDstAddress() const { return (transferdst & 0xFFFFF0) | ((transferdstw & 0xFF0000) << 8); }
// Bits 0xf800 are ignored, > 0x400 is treated as 0.
u32 getTransferDstStride() const { int stride = transferdstw & 0x7F8; return stride > 0x400 ? 0 : stride; }
int getTransferDstX() const { return (transferdstpos >> 0) & 0x3FF; }
int getTransferDstY() const { return (transferdstpos >> 10) & 0x3FF; }
int getTransferWidth() const { return ((transfersize >> 0) & 0x3FF) + 1; }
int getTransferHeight() const { return ((transfersize >> 10) & 0x3FF) + 1; }
int getTransferBpp() const { return (transferstart & 1) ? 4 : 2; }
void FastLoadBoneMatrix(u32 addr);
// Real data in the context ends here
void Reset();
void Save(u32_le *ptr);
void Restore(u32_le *ptr);
};
bool vertTypeIsSkinningEnabled(u32 vertType);
inline int vertTypeGetNumBoneWeights(u32 vertType) { return 1 + ((vertType & GE_VTYPE_WEIGHTCOUNT_MASK) >> GE_VTYPE_WEIGHTCOUNT_SHIFT); }
inline int vertTypeGetWeightMask(u32 vertType) { return vertType & GE_VTYPE_WEIGHT_MASK; }
// The rest is cached simplified/converted data for fast access.
// Does not need to be saved when saving/restoring context.
//
// Lots of this, however, is actual emulator state which must be saved when savestating.
// vertexAddr, indexAddr, offsetAddr for example.
struct UVScale {
float uScale, vScale;
float uOff, vOff;
};
#define FLAG_BIT(x) (1 << x)
// Some of these are OpenGL-specific even though this file is neutral, unfortunately.
// Might want to move this mechanism into the backend later.
enum {
GPU_SUPPORTS_DUALSOURCE_BLEND = FLAG_BIT(0),
GPU_SUPPORTS_GLSL_ES_300 = FLAG_BIT(1),
GPU_SUPPORTS_GLSL_330 = FLAG_BIT(2),
GPU_SUPPORTS_VS_RANGE_CULLING = FLAG_BIT(3),
GPU_SUPPORTS_BLEND_MINMAX = FLAG_BIT(4),
GPU_SUPPORTS_LOGIC_OP = FLAG_BIT(5),
GPU_USE_DEPTH_RANGE_HACK = FLAG_BIT(6),
GPU_SUPPORTS_WIDE_LINES = FLAG_BIT(7),
GPU_SUPPORTS_ANISOTROPY = FLAG_BIT(8),
GPU_USE_CLEAR_RAM_HACK = FLAG_BIT(9),
GPU_SUPPORTS_INSTANCE_RENDERING = FLAG_BIT(10),
GPU_SUPPORTS_VERTEX_TEXTURE_FETCH = FLAG_BIT(11),
GPU_SUPPORTS_TEXTURE_FLOAT = FLAG_BIT(12),
GPU_SUPPORTS_16BIT_FORMATS = FLAG_BIT(13),
GPU_SUPPORTS_DEPTH_CLAMP = FLAG_BIT(14),
GPU_SUPPORTS_32BIT_INT_FSHADER = FLAG_BIT(15),
GPU_SUPPORTS_DEPTH_TEXTURE = FLAG_BIT(16),
GPU_SUPPORTS_ACCURATE_DEPTH = FLAG_BIT(17),
// Free bit: 18
GPU_SUPPORTS_COPY_IMAGE = FLAG_BIT(19),
GPU_SUPPORTS_ANY_FRAMEBUFFER_FETCH = FLAG_BIT(20),
GPU_SCALE_DEPTH_FROM_24BIT_TO_16BIT = FLAG_BIT(21),
GPU_ROUND_FRAGMENT_DEPTH_TO_16BIT = FLAG_BIT(22),
GPU_ROUND_DEPTH_TO_16BIT = FLAG_BIT(23), // Can be disabled either per game or if we use a real 16-bit depth buffer
GPU_SUPPORTS_TEXTURE_LOD_CONTROL = FLAG_BIT(24),
GPU_SUPPORTS_FRAMEBUFFER_BLIT = FLAG_BIT(26),
GPU_SUPPORTS_FRAMEBUFFER_BLIT_TO_DEPTH = FLAG_BIT(27),
GPU_SUPPORTS_TEXTURE_NPOT = FLAG_BIT(28),
GPU_SUPPORTS_CLIP_DISTANCE = FLAG_BIT(29),
GPU_SUPPORTS_CULL_DISTANCE = FLAG_BIT(30),
GPU_PREFER_REVERSE_COLOR_ORDER = FLAG_BIT(31),
};
struct KnownVertexBounds {
u16 minU;
u16 minV;
u16 maxU;
u16 maxV;
};
enum class SubmitType {
DRAW,
BEZIER,
SPLINE,
HW_BEZIER,
HW_SPLINE,
};
struct GPUStateCache {
bool Supports(u32 flags) { return (featureFlags & flags) != 0; } // Return true if ANY of flags are true.
bool SupportsAll(u32 flags) { return (featureFlags & flags) == flags; } // Return true if ALL flags are true.
uint64_t GetDirtyUniforms() { return dirty & DIRTY_ALL_UNIFORMS; }
void Dirty(u64 what) {
dirty |= what;
}
void CleanUniforms() {
dirty &= ~DIRTY_ALL_UNIFORMS;
}
void Clean(u64 what) {
dirty &= ~what;
}
bool IsDirty(u64 what) const {
return (dirty & what) != 0ULL;
}
void SetUseShaderDepal(bool depal) {
if (depal != useShaderDepal) {
useShaderDepal = depal;
Dirty(DIRTY_FRAGMENTSHADER_STATE);
}
}
void SetTextureFullAlpha(bool fullAlpha) {
if (fullAlpha != textureFullAlpha) {
textureFullAlpha = fullAlpha;
Dirty(DIRTY_FRAGMENTSHADER_STATE);
}
}
void SetNeedShaderTexclamp(bool need) {
if (need != needShaderTexClamp) {
needShaderTexClamp = need;
Dirty(DIRTY_FRAGMENTSHADER_STATE);
if (need)
Dirty(DIRTY_TEXCLAMP);
}
}
void SetAllowFramebufferRead(bool allow) {
if (allowFramebufferRead != allow) {
allowFramebufferRead = allow;
Dirty(DIRTY_FRAGMENTSHADER_STATE);
}
}
u32 featureFlags;
u32 vertexAddr;
u32 indexAddr;
u32 offsetAddr;
uint64_t dirty;
bool textureFullAlpha;
bool vertexFullAlpha;
int skipDrawReason;
UVScale uv;
bool bgraTexture;
bool needShaderTexClamp;
bool allowFramebufferRead;
float morphWeights[8];
u32 deferredVertTypeDirty;
u32 curTextureWidth;
u32 curTextureHeight;
u32 actualTextureHeight;
// Only applied when needShaderTexClamp = true.
u32 curTextureXOffset;
u32 curTextureYOffset;
float vpWidth;
float vpHeight;
float vpXOffset;
float vpYOffset;
float vpZOffset;
float vpWidthScale;
float vpHeightScale;
float vpDepthScale;
KnownVertexBounds vertBounds;
// TODO: These should be accessed from the current VFB object directly.
u32 curRTWidth;
u32 curRTHeight;
u32 curRTRenderWidth;
u32 curRTRenderHeight;
void SetCurRTOffsetX(int off) {
if (off != curRTOffsetX) {
curRTOffsetX = off;
Dirty(DIRTY_VIEWPORTSCISSOR_STATE);
}
}
u32 curRTOffsetX;
// Set if we are doing hardware bezier/spline.
SubmitType submitType;
int spline_num_points_u;
bool useShaderDepal;
GEBufferFormat depalFramebufferFormat;
u32 getRelativeAddress(u32 data) const;
void Reset();
void DoState(PointerWrap &p);
};
class GPUInterface;
class GPUDebugInterface;
extern GPUgstate gstate;
extern GPUStateCache gstate_c;
inline u32 GPUStateCache::getRelativeAddress(u32 data) const {
u32 baseExtended = ((gstate.base & 0x000F0000) << 8) | data;
return (gstate_c.offsetAddr + baseExtended) & 0x0FFFFFFF;
}