ppsspp/GPU/GPUCommonHW.cpp
2024-10-28 17:02:03 +01:00

1802 lines
70 KiB
C++

#include "Common/Profiler/Profiler.h"
#include "Common/GPU/thin3d.h"
#include "Common/Serialize/Serializer.h"
#include "Common/System/System.h"
#include "Core/System.h"
#include "Core/Config.h"
#include "Core/Util/PPGeDraw.h"
#include "GPU/GPUCommonHW.h"
#include "GPU/Common/SplineCommon.h"
#include "GPU/Common/DrawEngineCommon.h"
#include "GPU/Common/TextureCacheCommon.h"
#include "GPU/Common/FramebufferManagerCommon.h"
struct CommonCommandTableEntry {
uint8_t cmd;
uint8_t flags;
uint64_t dirty;
GPUCommonHW::CmdFunc func;
};
struct CommandInfo {
uint64_t flags;
GPUCommonHW::CmdFunc func;
// Dirty flags are mashed into the regular flags by a left shift of 8.
void AddDirty(u64 dirty) {
flags |= dirty << 8;
}
void RemoveDirty(u64 dirty) {
flags &= ~(dirty << 8);
}
};
static CommandInfo cmdInfo_[256];
const CommonCommandTableEntry commonCommandTable[] = {
// From Common. No flushing but definitely need execute.
{ GE_CMD_OFFSETADDR, FLAG_EXECUTE, 0, &GPUCommon::Execute_OffsetAddr },
{ GE_CMD_ORIGIN, FLAG_EXECUTE | FLAG_READS_PC, 0, &GPUCommon::Execute_Origin },
{ GE_CMD_JUMP, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_Jump },
{ GE_CMD_CALL, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_Call },
{ GE_CMD_RET, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_Ret },
{ GE_CMD_END, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_End },
{ GE_CMD_VADDR, FLAG_EXECUTE, 0, &GPUCommon::Execute_Vaddr },
{ GE_CMD_IADDR, FLAG_EXECUTE, 0, &GPUCommon::Execute_Iaddr },
{ GE_CMD_BJUMP, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_BJump }, // EXECUTE
{ GE_CMD_BOUNDINGBOX, FLAG_EXECUTE, 0, &GPUCommonHW::Execute_BoundingBox }, // Shouldn't need to FLUSHBEFORE.
{ GE_CMD_PRIM, FLAG_EXECUTE, 0, &GPUCommonHW::Execute_Prim },
{ GE_CMD_BEZIER, FLAG_EXECUTE, 0, &GPUCommonHW::Execute_Bezier },
{ GE_CMD_SPLINE, FLAG_EXECUTE, 0, &GPUCommonHW::Execute_Spline },
// Changing the vertex type requires us to flush.
{ GE_CMD_VERTEXTYPE, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommonHW::Execute_VertexType },
{ GE_CMD_LOADCLUT, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTE, 0, &GPUCommonHW::Execute_LoadClut},
// These two are actually processed in CMD_END.
{ GE_CMD_SIGNAL },
{ GE_CMD_FINISH },
// Changes that dirty the framebuffer
{ GE_CMD_FRAMEBUFPTR, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS },
{ GE_CMD_FRAMEBUFWIDTH, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULLRANGE },
{ GE_CMD_FRAMEBUFPIXFORMAT, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_ZBUFPTR, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_ZBUFWIDTH, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_FOGCOLOR, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FOGCOLOR },
{ GE_CMD_FOG1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FOGCOEF },
{ GE_CMD_FOG2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FOGCOEF },
// These affect the fragment shader so need flushing.
{ GE_CMD_CLEARMODE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULLRANGE | DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE | DIRTY_GEOMETRYSHADER_STATE },
{ GE_CMD_TEXTUREMAPENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE | DIRTY_GEOMETRYSHADER_STATE },
{ GE_CMD_FOGENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_TEXMODE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_TEXSHADELS, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE },
// Raster state for Direct3D 9, uncommon.
{ GE_CMD_SHADEMODE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE | DIRTY_RASTER_STATE },
{ GE_CMD_TEXFUNC, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAGMENTSHADER_STATE | DIRTY_TEX_ALPHA_MUL },
{ GE_CMD_COLORTEST, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_ALPHATESTENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_COLORTESTENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_COLORTESTMASK, FLAG_FLUSHBEFOREONCHANGE, DIRTY_ALPHACOLORMASK | DIRTY_FRAGMENTSHADER_STATE },
// These change the vertex shader so need flushing.
{ GE_CMD_REVERSENORMAL, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE },
{ GE_CMD_LIGHTINGENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE | DIRTY_GEOMETRYSHADER_STATE },
{ GE_CMD_LIGHTENABLE0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE },
{ GE_CMD_LIGHTENABLE1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE },
{ GE_CMD_LIGHTENABLE2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE },
{ GE_CMD_LIGHTENABLE3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE },
{ GE_CMD_LIGHTTYPE0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE | DIRTY_LIGHT0 },
{ GE_CMD_LIGHTTYPE1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE | DIRTY_LIGHT1 },
{ GE_CMD_LIGHTTYPE2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE | DIRTY_LIGHT2 },
{ GE_CMD_LIGHTTYPE3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE | DIRTY_LIGHT3 },
{ GE_CMD_MATERIALUPDATE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE },
// These change all shaders so need flushing.
{ GE_CMD_LIGHTMODE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE | DIRTY_GEOMETRYSHADER_STATE },
{ GE_CMD_TEXFILTER, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXWRAP, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS | DIRTY_FRAGMENTSHADER_STATE },
// Uniform changes. though the fragmentshader optimizes based on these sometimes.
{ GE_CMD_ALPHATEST, FLAG_FLUSHBEFOREONCHANGE, DIRTY_ALPHACOLORREF | DIRTY_ALPHACOLORMASK | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_COLORREF, FLAG_FLUSHBEFOREONCHANGE, DIRTY_ALPHACOLORREF | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_TEXENVCOLOR, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXENV },
// Simple render state changes. Handled in StateMapping.cpp.
{ GE_CMD_CULL, FLAG_FLUSHBEFOREONCHANGE, DIRTY_RASTER_STATE },
{ GE_CMD_CULLFACEENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_RASTER_STATE },
{ GE_CMD_DITHERENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_RASTER_STATE },
{ GE_CMD_STENCILOP, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_STENCILTEST, FLAG_FLUSHBEFOREONCHANGE, DIRTY_STENCILREPLACEVALUE | DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE },
{ GE_CMD_STENCILTESTENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_ALPHABLENDENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_BLENDMODE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_BLENDFIXEDA, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_BLENDFIXEDB, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_MASKRGB, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE | DIRTY_FRAGMENTSHADER_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_COLORWRITEMASK },
{ GE_CMD_MASKALPHA, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE | DIRTY_FRAGMENTSHADER_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_COLORWRITEMASK },
{ GE_CMD_ZTEST, FLAG_FLUSHBEFOREONCHANGE, DIRTY_DEPTHSTENCIL_STATE | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_ZTESTENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_DEPTHSTENCIL_STATE | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_ZWRITEDISABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_DEPTHSTENCIL_STATE | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_LOGICOP, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_LOGICOPENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE | DIRTY_FRAGMENTSHADER_STATE },
{ GE_CMD_TEXMAPMODE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE },
// These are read on every SubmitPrim, no need for dirtying or flushing.
{ GE_CMD_TEXSCALEU },
{ GE_CMD_TEXSCALEV },
{ GE_CMD_TEXOFFSETU },
{ GE_CMD_TEXOFFSETV },
{ GE_CMD_TEXSIZE0, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTE, 0, &GPUCommonHW::Execute_TexSize0 },
{ GE_CMD_TEXSIZE1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXSIZE2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXSIZE3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXSIZE4, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXSIZE5, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXSIZE6, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXSIZE7, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXFORMAT, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_IMAGE },
{ GE_CMD_TEXLEVEL, FLAG_EXECUTEONCHANGE, DIRTY_TEXTURE_PARAMS, &GPUCommonHW::Execute_TexLevel },
{ GE_CMD_TEXLODSLOPE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_IMAGE },
{ GE_CMD_TEXADDR1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR4, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR5, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR6, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR7, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_IMAGE },
{ GE_CMD_TEXBUFWIDTH1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH4, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH5, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH6, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH7, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
// These must flush on change, so that LoadClut doesn't have to always flush.
{ GE_CMD_CLUTADDR, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_CLUTADDRUPPER, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_CLUTFORMAT, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS | DIRTY_DEPAL },
// Morph weights. TODO: Remove precomputation?
{ GE_CMD_MORPHWEIGHT0, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT1, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT2, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT3, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT4, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT5, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT6, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT7, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
// Control spline/bezier patches. Don't really require flushing as such, but meh.
{ GE_CMD_PATCHDIVISION, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_PATCHPRIMITIVE, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_PATCHFACING, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VERTEXSHADER_STATE },
{ GE_CMD_PATCHCULLENABLE, FLAG_FLUSHBEFOREONCHANGE },
// Can probably ignore this one as we don't support AA lines.
{ GE_CMD_ANTIALIASENABLE, FLAG_FLUSHBEFOREONCHANGE },
// Viewport.
{ GE_CMD_OFFSETX, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULLRANGE | DIRTY_CULL_PLANES },
{ GE_CMD_OFFSETY, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULLRANGE | DIRTY_CULL_PLANES },
{ GE_CMD_VIEWPORTXSCALE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_CULLRANGE | DIRTY_PROJMATRIX | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULL_PLANES },
{ GE_CMD_VIEWPORTYSCALE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_CULLRANGE | DIRTY_PROJMATRIX | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULL_PLANES },
{ GE_CMD_VIEWPORTXCENTER, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_CULLRANGE | DIRTY_PROJMATRIX | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULL_PLANES },
{ GE_CMD_VIEWPORTYCENTER, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_CULLRANGE | DIRTY_PROJMATRIX | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULL_PLANES },
{ GE_CMD_VIEWPORTZSCALE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_CULLRANGE | DIRTY_DEPTHRANGE | DIRTY_PROJMATRIX | DIRTY_VIEWPORTSCISSOR_STATE },
{ GE_CMD_VIEWPORTZCENTER, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_CULLRANGE | DIRTY_DEPTHRANGE | DIRTY_PROJMATRIX | DIRTY_VIEWPORTSCISSOR_STATE },
{ GE_CMD_DEPTHCLAMPENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULLRANGE | DIRTY_RASTER_STATE },
// Z clip
{ GE_CMD_MINZ, FLAG_FLUSHBEFOREONCHANGE, DIRTY_DEPTHRANGE | DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULLRANGE },
{ GE_CMD_MAXZ, FLAG_FLUSHBEFOREONCHANGE, DIRTY_DEPTHRANGE | DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULLRANGE },
// Region
{ GE_CMD_REGION1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULLRANGE | DIRTY_CULL_PLANES },
{ GE_CMD_REGION2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULLRANGE | DIRTY_CULL_PLANES },
// Scissor
{ GE_CMD_SCISSOR1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULLRANGE | DIRTY_CULL_PLANES },
{ GE_CMD_SCISSOR2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_CULLRANGE | DIRTY_CULL_PLANES },
// Lighting base colors
{ GE_CMD_AMBIENTCOLOR, FLAG_FLUSHBEFOREONCHANGE, DIRTY_AMBIENT },
{ GE_CMD_AMBIENTALPHA, FLAG_FLUSHBEFOREONCHANGE, DIRTY_AMBIENT },
{ GE_CMD_MATERIALDIFFUSE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_MATDIFFUSE },
{ GE_CMD_MATERIALEMISSIVE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_MATEMISSIVE },
{ GE_CMD_MATERIALAMBIENT, FLAG_FLUSHBEFOREONCHANGE, DIRTY_MATAMBIENTALPHA },
{ GE_CMD_MATERIALALPHA, FLAG_FLUSHBEFOREONCHANGE, DIRTY_MATAMBIENTALPHA },
{ GE_CMD_MATERIALSPECULAR, FLAG_FLUSHBEFOREONCHANGE, DIRTY_MATSPECULAR },
{ GE_CMD_MATERIALSPECULARCOEF, FLAG_FLUSHBEFOREONCHANGE, DIRTY_MATSPECULAR },
// Light parameters
{ GE_CMD_LX0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LY0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LZ0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LX1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LY1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LZ1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LX2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LY2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LZ2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LX3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LY3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LZ3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LDX0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LDY0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LDZ0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LDX1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LDY1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LDZ1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LDX2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LDY2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LDZ2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LDX3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LDY3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LDZ3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LKA0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LKB0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LKC0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LKA1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LKB1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LKC1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LKA2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LKB2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LKC2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LKA3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LKB3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LKC3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LKS0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LKS1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LKS2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LKS3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LKO0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LKO1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LKO2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LKO3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LAC0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LDC0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LSC0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LAC1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LDC1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LSC1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LAC2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LDC2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LSC2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LAC3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LDC3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LSC3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
// Ignored commands
{ GE_CMD_TEXFLUSH, FLAG_EXECUTE, 0, &GPUCommonHW::Execute_TexFlush },
{ GE_CMD_TEXSYNC, 0 },
// These are just nop or part of other later commands.
{ GE_CMD_NOP, 0 },
{ GE_CMD_BASE, 0 },
{ GE_CMD_TRANSFERSRC, 0 },
{ GE_CMD_TRANSFERSRCW, 0 },
{ GE_CMD_TRANSFERDST, 0 },
{ GE_CMD_TRANSFERDSTW, 0 },
{ GE_CMD_TRANSFERSRCPOS, 0 },
{ GE_CMD_TRANSFERDSTPOS, 0 },
{ GE_CMD_TRANSFERSIZE, 0 },
{ GE_CMD_TRANSFERSTART, FLAG_EXECUTE | FLAG_READS_PC, 0, &GPUCommonHW::Execute_BlockTransferStart },
// We don't use the dither table.
{ GE_CMD_DITH0 },
{ GE_CMD_DITH1 },
{ GE_CMD_DITH2 },
{ GE_CMD_DITH3 },
// These handle their own flushing.
{ GE_CMD_WORLDMATRIXNUMBER, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommonHW::Execute_WorldMtxNum },
{ GE_CMD_WORLDMATRIXDATA, FLAG_EXECUTE, 0, &GPUCommonHW::Execute_WorldMtxData },
{ GE_CMD_VIEWMATRIXNUMBER, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommonHW::Execute_ViewMtxNum },
{ GE_CMD_VIEWMATRIXDATA, FLAG_EXECUTE, 0, &GPUCommonHW::Execute_ViewMtxData },
{ GE_CMD_PROJMATRIXNUMBER, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommonHW::Execute_ProjMtxNum },
{ GE_CMD_PROJMATRIXDATA, FLAG_EXECUTE, 0, &GPUCommonHW::Execute_ProjMtxData },
{ GE_CMD_TGENMATRIXNUMBER, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommonHW::Execute_TgenMtxNum },
{ GE_CMD_TGENMATRIXDATA, FLAG_EXECUTE, 0, &GPUCommonHW::Execute_TgenMtxData },
{ GE_CMD_BONEMATRIXNUMBER, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommonHW::Execute_BoneMtxNum },
{ GE_CMD_BONEMATRIXDATA, FLAG_EXECUTE, 0, &GPUCommonHW::Execute_BoneMtxData },
// Vertex Screen/Texture/Color
{ GE_CMD_VSCX },
{ GE_CMD_VSCY },
{ GE_CMD_VSCZ },
{ GE_CMD_VTCS },
{ GE_CMD_VTCT },
{ GE_CMD_VTCQ },
{ GE_CMD_VCV },
{ GE_CMD_VAP, FLAG_EXECUTE, 0, &GPUCommon::Execute_ImmVertexAlphaPrim },
{ GE_CMD_VFC },
{ GE_CMD_VSCV },
// "Missing" commands (gaps in the sequence)
{ GE_CMD_UNKNOWN_03, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_0D, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_11, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_29, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_34, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_35, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_39, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_4E, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_4F, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_52, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_59, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_5A, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_B6, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_B7, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_D1, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_ED, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_EF, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_FA, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_FB, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_FC, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_FD, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_FE, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
// Appears to be debugging related or something? Hit a lot in GoW.
{ GE_CMD_NOP_FF, 0 },
};
GPUCommonHW::GPUCommonHW(GraphicsContext *gfxCtx, Draw::DrawContext *draw) : GPUCommon(gfxCtx, draw) {
memset(cmdInfo_, 0, sizeof(cmdInfo_));
// Convert the command table to a faster format, and check for dupes.
std::set<u8> dupeCheck;
for (size_t i = 0; i < ARRAY_SIZE(commonCommandTable); i++) {
const u8 cmd = commonCommandTable[i].cmd;
if (dupeCheck.find(cmd) != dupeCheck.end()) {
ERROR_LOG(Log::G3D, "Command table Dupe: %02x (%i)", (int)cmd, (int)cmd);
} else {
dupeCheck.insert(cmd);
}
cmdInfo_[cmd].flags |= (uint64_t)commonCommandTable[i].flags | (commonCommandTable[i].dirty << 8);
cmdInfo_[cmd].func = commonCommandTable[i].func;
if ((cmdInfo_[cmd].flags & (FLAG_EXECUTE | FLAG_EXECUTEONCHANGE)) && !cmdInfo_[cmd].func) {
// Can't have FLAG_EXECUTE commands without a function pointer to execute.
Crash();
}
}
// Find commands missing from the table.
for (int i = 0; i < 0xEF; i++) {
if (dupeCheck.find((u8)i) == dupeCheck.end()) {
ERROR_LOG(Log::G3D, "Command missing from table: %02x (%i)", i, i);
}
}
UpdateCmdInfo();
UpdateMSAALevel(draw);
}
GPUCommonHW::~GPUCommonHW() {
// Clear features so they're not visible in system info.
gstate_c.SetUseFlags(0);
// Delete the various common managers.
framebufferManager_->DestroyAllFBOs();
delete framebufferManager_;
delete textureCache_;
if (shaderManager_) {
shaderManager_->ClearShaders();
delete shaderManager_;
}
}
// Called once per frame. Might also get called during the pause screen
// if "transparent".
void GPUCommonHW::CheckConfigChanged() {
if (configChanged_) {
ClearCacheNextFrame();
gstate_c.SetUseFlags(CheckGPUFeatures());
drawEngineCommon_->NotifyConfigChanged();
textureCache_->NotifyConfigChanged();
framebufferManager_->NotifyConfigChanged();
BuildReportingInfo();
configChanged_ = false;
}
// Check needed when running tests.
if (framebufferManager_) {
framebufferManager_->CheckPostShaders();
}
}
void GPUCommonHW::CheckDisplayResized() {
if (displayResized_) {
framebufferManager_->NotifyDisplayResized();
displayResized_ = false;
}
}
void GPUCommonHW::CheckRenderResized() {
if (renderResized_) {
framebufferManager_->NotifyRenderResized(msaaLevel_);
renderResized_ = false;
}
}
// Call at the END of the GPU implementation's DeviceLost
void GPUCommonHW::DeviceLost() {
framebufferManager_->DeviceLost();
draw_ = nullptr;
textureCache_->Clear(false);
textureCache_->DeviceLost();
shaderManager_->DeviceLost();
drawEngineCommon_->DeviceLost();
}
// Call at the start of the GPU implementation's DeviceRestore
void GPUCommonHW::DeviceRestore(Draw::DrawContext *draw) {
draw_ = draw;
displayResized_ = true; // re-check display bounds.
renderResized_ = true;
framebufferManager_->DeviceRestore(draw_);
textureCache_->DeviceRestore(draw_);
shaderManager_->DeviceRestore(draw_);
drawEngineCommon_->DeviceRestore(draw_);
PPGeSetDrawContext(draw_);
gstate_c.SetUseFlags(CheckGPUFeatures());
BuildReportingInfo();
UpdateCmdInfo();
}
void GPUCommonHW::UpdateCmdInfo() {
if (g_Config.bSoftwareSkinning) {
cmdInfo_[GE_CMD_VERTEXTYPE].flags &= ~FLAG_FLUSHBEFOREONCHANGE;
cmdInfo_[GE_CMD_VERTEXTYPE].func = &GPUCommonHW::Execute_VertexTypeSkinning;
} else {
cmdInfo_[GE_CMD_VERTEXTYPE].flags |= FLAG_FLUSHBEFOREONCHANGE;
cmdInfo_[GE_CMD_VERTEXTYPE].func = &GPUCommonHW::Execute_VertexType;
}
// Reconfigure for light ubershader or not.
for (int i = 0; i < 4; i++) {
if (gstate_c.Use(GPU_USE_LIGHT_UBERSHADER)) {
cmdInfo_[GE_CMD_LIGHTENABLE0 + i].RemoveDirty(DIRTY_VERTEXSHADER_STATE);
cmdInfo_[GE_CMD_LIGHTENABLE0 + i].AddDirty(DIRTY_LIGHT_CONTROL);
cmdInfo_[GE_CMD_LIGHTTYPE0 + i].RemoveDirty(DIRTY_VERTEXSHADER_STATE);
cmdInfo_[GE_CMD_LIGHTTYPE0 + i].AddDirty(DIRTY_LIGHT_CONTROL);
} else {
cmdInfo_[GE_CMD_LIGHTENABLE0 + i].RemoveDirty(DIRTY_LIGHT_CONTROL);
cmdInfo_[GE_CMD_LIGHTENABLE0 + i].AddDirty(DIRTY_VERTEXSHADER_STATE);
cmdInfo_[GE_CMD_LIGHTTYPE0 + i].RemoveDirty(DIRTY_LIGHT_CONTROL);
cmdInfo_[GE_CMD_LIGHTTYPE0 + i].AddDirty(DIRTY_VERTEXSHADER_STATE);
}
}
if (gstate_c.Use(GPU_USE_LIGHT_UBERSHADER)) {
cmdInfo_[GE_CMD_MATERIALUPDATE].RemoveDirty(DIRTY_VERTEXSHADER_STATE);
cmdInfo_[GE_CMD_MATERIALUPDATE].AddDirty(DIRTY_LIGHT_CONTROL);
} else {
cmdInfo_[GE_CMD_MATERIALUPDATE].RemoveDirty(DIRTY_LIGHT_CONTROL);
cmdInfo_[GE_CMD_MATERIALUPDATE].AddDirty(DIRTY_VERTEXSHADER_STATE);
}
if (gstate_c.Use(GPU_USE_FRAGMENT_UBERSHADER)) {
// Texfunc controls both texalpha and doubling. The rest is not dynamic yet so can't remove fragment shader dirtying.
cmdInfo_[GE_CMD_TEXFUNC].AddDirty(DIRTY_TEX_ALPHA_MUL);
} else {
cmdInfo_[GE_CMD_TEXFUNC].RemoveDirty(DIRTY_TEX_ALPHA_MUL);
}
}
void GPUCommonHW::BeginHostFrame() {
GPUCommon::BeginHostFrame();
if (drawEngineCommon_->EverUsedExactEqualDepth() && !sawExactEqualDepth_) {
sawExactEqualDepth_ = true;
gstate_c.SetUseFlags(CheckGPUFeatures());
}
}
void GPUCommonHW::SetDisplayFramebuffer(u32 framebuf, u32 stride, GEBufferFormat format) {
framebufferManager_->SetDisplayFramebuffer(framebuf, stride, format);
}
void GPUCommonHW::CheckFlushOp(int cmd, u32 diff) {
const u8 cmdFlags = cmdInfo_[cmd].flags;
if (diff && (cmdFlags & FLAG_FLUSHBEFOREONCHANGE)) {
if (dumpThisFrame_) {
NOTICE_LOG(Log::G3D, "================ FLUSH ================");
}
drawEngineCommon_->DispatchFlush();
}
}
void GPUCommonHW::PreExecuteOp(u32 op, u32 diff) {
CheckFlushOp(op >> 24, diff);
}
void GPUCommonHW::CopyDisplayToOutput(bool reallyDirty) {
// Flush anything left over.
drawEngineCommon_->DispatchFlush();
shaderManager_->DirtyLastShader();
// after this, render pass is active.
framebufferManager_->CopyDisplayToOutput(reallyDirty);
gstate_c.Dirty(DIRTY_TEXTURE_IMAGE);
}
bool GPUCommonHW::PresentedThisFrame() const {
return framebufferManager_->PresentedThisFrame();
}
void GPUCommonHW::DoState(PointerWrap &p) {
GPUCommon::DoState(p);
// TODO: Some of these things may not be necessary.
// None of these are necessary when saving.
if (p.mode == p.MODE_READ && !PSP_CoreParameter().frozen) {
textureCache_->Clear(true);
drawEngineCommon_->ClearTrackedVertexArrays();
gstate_c.Dirty(DIRTY_TEXTURE_IMAGE);
framebufferManager_->DestroyAllFBOs();
}
}
void GPUCommonHW::ClearCacheNextFrame() {
textureCache_->ClearNextFrame();
}
// Needs to be called on GPU thread, not reporting thread.
void GPUCommonHW::BuildReportingInfo() {
using namespace Draw;
reportingPrimaryInfo_ = draw_->GetInfoString(InfoField::VENDORSTRING);
reportingFullInfo_ = reportingPrimaryInfo_ + " - " + System_GetProperty(SYSPROP_GPUDRIVER_VERSION) + " - " + draw_->GetInfoString(InfoField::SHADELANGVERSION);
}
u32 GPUCommonHW::CheckGPUFeatures() const {
u32 features = 0;
if (draw_->GetDeviceCaps().logicOpSupported) {
features |= GPU_USE_LOGIC_OP;
}
if (draw_->GetDeviceCaps().anisoSupported) {
features |= GPU_USE_ANISOTROPY;
}
if (draw_->GetDeviceCaps().textureNPOTFullySupported) {
features |= GPU_USE_TEXTURE_NPOT;
}
if (draw_->GetDeviceCaps().dualSourceBlend) {
if (!g_Config.bVendorBugChecksEnabled || !draw_->GetBugs().Has(Draw::Bugs::DUAL_SOURCE_BLENDING_BROKEN)) {
features |= GPU_USE_DUALSOURCE_BLEND;
}
}
if (draw_->GetDeviceCaps().blendMinMaxSupported) {
features |= GPU_USE_BLEND_MINMAX;
}
if (draw_->GetDeviceCaps().clipDistanceSupported) {
features |= GPU_USE_CLIP_DISTANCE;
}
if (draw_->GetDeviceCaps().cullDistanceSupported) {
features |= GPU_USE_CULL_DISTANCE;
}
if (draw_->GetDeviceCaps().textureDepthSupported) {
features |= GPU_USE_DEPTH_TEXTURE;
}
if (draw_->GetDeviceCaps().depthClampSupported) {
// Some backends always do GPU_USE_ACCURATE_DEPTH, but it's required for depth clamp.
features |= GPU_USE_DEPTH_CLAMP | GPU_USE_ACCURATE_DEPTH;
}
bool canClipOrCull = draw_->GetDeviceCaps().clipDistanceSupported || draw_->GetDeviceCaps().cullDistanceSupported;
bool canDiscardVertex = !draw_->GetBugs().Has(Draw::Bugs::BROKEN_NAN_IN_CONDITIONAL);
if ((canClipOrCull || canDiscardVertex) && !g_Config.bDisableRangeCulling) {
// We'll dynamically use the parts that are supported, to reduce artifacts as much as possible.
features |= GPU_USE_VS_RANGE_CULLING;
}
if (draw_->GetDeviceCaps().framebufferFetchSupported) {
features |= GPU_USE_FRAMEBUFFER_FETCH;
}
if (draw_->GetShaderLanguageDesc().bitwiseOps && g_Config.bUberShaderVertex) {
features |= GPU_USE_LIGHT_UBERSHADER;
}
if (PSP_CoreParameter().compat.flags().ClearToRAM) {
features |= GPU_USE_CLEAR_RAM_HACK;
}
// Even without depth clamp, force accurate depth on for some games that break without it.
if (PSP_CoreParameter().compat.flags().DepthRangeHack) {
features |= GPU_USE_ACCURATE_DEPTH;
}
// Some backends will turn this off again in the calling function.
if (g_Config.bUberShaderFragment) {
features |= GPU_USE_FRAGMENT_UBERSHADER;
}
return features;
}
u32 GPUCommonHW::CheckGPUFeaturesLate(u32 features) const {
// If we already have a 16-bit depth buffer, we don't need to round.
bool prefer24 = draw_->GetDeviceCaps().preferredDepthBufferFormat == Draw::DataFormat::D24_S8;
bool prefer16 = draw_->GetDeviceCaps().preferredDepthBufferFormat == Draw::DataFormat::D16;
if (!prefer16) {
if (sawExactEqualDepth_ && (features & GPU_USE_ACCURATE_DEPTH) != 0 && !PSP_CoreParameter().compat.flags().ForceMaxDepthResolution) {
// Exact equal tests tend to have issues unless we use the PSP's depth range.
// We use 24-bit depth virtually everwhere, the fallback is just for safety.
if (prefer24)
features |= GPU_SCALE_DEPTH_FROM_24BIT_TO_16BIT;
else
features |= GPU_ROUND_FRAGMENT_DEPTH_TO_16BIT;
} else if (!g_Config.bHighQualityDepth && (features & GPU_USE_ACCURATE_DEPTH) != 0) {
features |= GPU_SCALE_DEPTH_FROM_24BIT_TO_16BIT;
} else if (PSP_CoreParameter().compat.flags().PixelDepthRounding) {
if (prefer24 && (features & GPU_USE_ACCURATE_DEPTH) != 0) {
// Here we can simulate a 16 bit depth buffer by scaling.
// Note that the depth buffer is fixed point, not floating, so dividing by 256 is pretty good.
features |= GPU_SCALE_DEPTH_FROM_24BIT_TO_16BIT;
} else {
// Use fragment rounding on where available otherwise.
features |= GPU_ROUND_FRAGMENT_DEPTH_TO_16BIT;
}
} else if (PSP_CoreParameter().compat.flags().VertexDepthRounding) {
features |= GPU_ROUND_DEPTH_TO_16BIT;
}
}
return features;
}
void GPUCommonHW::UpdateMSAALevel(Draw::DrawContext *draw) {
int level = g_Config.iMultiSampleLevel;
if (draw && draw->GetDeviceCaps().multiSampleLevelsMask & (1 << level)) {
msaaLevel_ = level;
} else {
// Didn't support the configured level, so revert to 0.
msaaLevel_ = 0;
}
}
std::vector<std::string> GPUCommonHW::DebugGetShaderIDs(DebugShaderType type) {
switch (type) {
case SHADER_TYPE_VERTEXLOADER:
return drawEngineCommon_->DebugGetVertexLoaderIDs();
case SHADER_TYPE_TEXTURE:
return textureCache_->GetTextureShaderCache()->DebugGetShaderIDs(type);
default:
return shaderManager_->DebugGetShaderIDs(type);
}
}
std::string GPUCommonHW::DebugGetShaderString(std::string id, DebugShaderType type, DebugShaderStringType stringType) {
switch (type) {
case SHADER_TYPE_VERTEXLOADER:
return drawEngineCommon_->DebugGetVertexLoaderString(id, stringType);
case SHADER_TYPE_TEXTURE:
return textureCache_->GetTextureShaderCache()->DebugGetShaderString(id, type, stringType);
default:
return shaderManager_->DebugGetShaderString(id, type, stringType);
}
}
bool GPUCommonHW::GetCurrentFramebuffer(GPUDebugBuffer &buffer, GPUDebugFramebufferType type, int maxRes) {
u32 fb_address = type == GPU_DBG_FRAMEBUF_RENDER ? (gstate.getFrameBufRawAddress() | 0x04000000) : framebufferManager_->DisplayFramebufAddr();
int fb_stride = type == GPU_DBG_FRAMEBUF_RENDER ? gstate.FrameBufStride() : framebufferManager_->DisplayFramebufStride();
GEBufferFormat format = type == GPU_DBG_FRAMEBUF_RENDER ? gstate_c.framebufFormat : framebufferManager_->DisplayFramebufFormat();
return framebufferManager_->GetFramebuffer(fb_address, fb_stride, format, buffer, maxRes);
}
bool GPUCommonHW::GetCurrentDepthbuffer(GPUDebugBuffer &buffer) {
u32 fb_address = gstate.getFrameBufRawAddress() | 0x04000000;
int fb_stride = gstate.FrameBufStride();
u32 z_address = gstate.getDepthBufRawAddress() | 0x04000000;
int z_stride = gstate.DepthBufStride();
return framebufferManager_->GetDepthbuffer(fb_address, fb_stride, z_address, z_stride, buffer);
}
bool GPUCommonHW::GetCurrentStencilbuffer(GPUDebugBuffer &buffer) {
u32 fb_address = gstate.getFrameBufRawAddress() | 0x04000000;
int fb_stride = gstate.FrameBufStride();
return framebufferManager_->GetStencilbuffer(fb_address, fb_stride, buffer);
}
bool GPUCommonHW::GetOutputFramebuffer(GPUDebugBuffer &buffer) {
// framebufferManager_ can be null here when taking screens in software rendering mode.
// TODO: Actually grab the framebuffer anyway.
return framebufferManager_ ? framebufferManager_->GetOutputFramebuffer(buffer) : false;
}
std::vector<const VirtualFramebuffer *> GPUCommonHW::GetFramebufferList() const {
return framebufferManager_->GetFramebufferList();
}
bool GPUCommonHW::GetCurrentClut(GPUDebugBuffer &buffer) {
return textureCache_->GetCurrentClutBuffer(buffer);
}
bool GPUCommonHW::GetCurrentTexture(GPUDebugBuffer &buffer, int level, bool *isFramebuffer) {
if (!gstate.isTextureMapEnabled()) {
return false;
}
return textureCache_->GetCurrentTextureDebug(buffer, level, isFramebuffer);
}
void GPUCommonHW::CheckDepthUsage(VirtualFramebuffer *vfb) {
if (!gstate_c.usingDepth) {
bool isReadingDepth = false;
bool isClearingDepth = false;
bool isWritingDepth = false;
if (gstate.isModeClear()) {
isClearingDepth = gstate.isClearModeDepthMask();
isWritingDepth = isClearingDepth;
} else if (gstate.isDepthTestEnabled()) {
isWritingDepth = gstate.isDepthWriteEnabled();
isReadingDepth = gstate.getDepthTestFunction() > GE_COMP_ALWAYS;
}
if (isWritingDepth || isReadingDepth) {
gstate_c.usingDepth = true;
gstate_c.clearingDepth = isClearingDepth;
vfb->last_frame_depth_render = gpuStats.numFlips;
if (isWritingDepth) {
vfb->last_frame_depth_updated = gpuStats.numFlips;
}
framebufferManager_->SetDepthFrameBuffer(isClearingDepth);
}
}
}
void GPUCommonHW::InvalidateCache(u32 addr, int size, GPUInvalidationType type) {
if (size > 0)
textureCache_->Invalidate(addr, size, type);
else
textureCache_->InvalidateAll(type);
if (type != GPU_INVALIDATE_ALL && framebufferManager_->MayIntersectFramebufferColor(addr)) {
// Vempire invalidates (with writeback) after drawing, but before blitting.
// TODO: Investigate whether we can get this to work some other way.
if (type == GPU_INVALIDATE_SAFE) {
framebufferManager_->UpdateFromMemory(addr, size);
}
}
}
bool GPUCommonHW::FramebufferDirty() {
VirtualFramebuffer *vfb = framebufferManager_->GetDisplayVFB();
if (vfb) {
bool dirty = vfb->dirtyAfterDisplay;
vfb->dirtyAfterDisplay = false;
return dirty;
}
return true;
}
bool GPUCommonHW::FramebufferReallyDirty() {
VirtualFramebuffer *vfb = framebufferManager_->GetDisplayVFB();
if (vfb) {
bool dirty = vfb->reallyDirtyAfterDisplay;
vfb->reallyDirtyAfterDisplay = false;
return dirty;
}
return true;
}
void GPUCommonHW::ExecuteOp(u32 op, u32 diff) {
const u8 cmd = op >> 24;
const CommandInfo info = cmdInfo_[cmd];
const u8 cmdFlags = info.flags;
if ((cmdFlags & FLAG_EXECUTE) || (diff && (cmdFlags & FLAG_EXECUTEONCHANGE))) {
(this->*info.func)(op, diff);
} else if (diff) {
uint64_t dirty = info.flags >> 8;
if (dirty)
gstate_c.Dirty(dirty);
}
}
void GPUCommonHW::FastRunLoop(DisplayList &list) {
PROFILE_THIS_SCOPE("gpuloop");
if (!Memory::IsValidAddress(list.pc)) {
// We're having some serious problems here, just bail and try to limp along and not crash the app.
downcount = 0;
return;
}
const CommandInfo *cmdInfo = cmdInfo_;
int dc = downcount;
for (; dc > 0; --dc) {
// We know that display list PCs have the upper nibble == 0 - no need to mask the pointer
const u32 op = *(const u32_le *)(Memory::base + list.pc);
const u32 cmd = op >> 24;
const CommandInfo &info = cmdInfo[cmd];
const u32 diff = op ^ gstate.cmdmem[cmd];
if (diff == 0) {
if (info.flags & FLAG_EXECUTE) {
downcount = dc;
(this->*info.func)(op, diff);
dc = downcount;
}
} else {
uint64_t flags = info.flags;
if (flags & FLAG_FLUSHBEFOREONCHANGE) {
drawEngineCommon_->DispatchFlush();
}
gstate.cmdmem[cmd] = op;
if (flags & (FLAG_EXECUTE | FLAG_EXECUTEONCHANGE)) {
downcount = dc;
(this->*info.func)(op, diff);
dc = downcount;
} else {
uint64_t dirty = flags >> 8;
if (dirty)
gstate_c.Dirty(dirty);
}
}
list.pc += 4;
}
downcount = 0;
}
void GPUCommonHW::Execute_VertexType(u32 op, u32 diff) {
if (diff) {
// TODO: We only need to dirty vshader-state here if the output format will be different.
gstate_c.Dirty(DIRTY_VERTEXSHADER_STATE);
if (diff & GE_VTYPE_THROUGH_MASK) {
// Switching between through and non-through, we need to invalidate a bunch of stuff.
gstate_c.Dirty(DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_FRAGMENTSHADER_STATE | DIRTY_GEOMETRYSHADER_STATE | DIRTY_CULLRANGE);
}
}
}
void GPUCommonHW::Execute_VertexTypeSkinning(u32 op, u32 diff) {
// Don't flush when weight count changes.
if (diff & ~GE_VTYPE_WEIGHTCOUNT_MASK) {
// Restore and flush
gstate.vertType ^= diff;
Flush();
gstate.vertType ^= diff;
// In this case, we may be doing weights and morphs.
// Update any bone matrix uniforms so it uses them correctly.
if ((op & GE_VTYPE_MORPHCOUNT_MASK) != 0) {
gstate_c.Dirty(gstate_c.deferredVertTypeDirty);
gstate_c.deferredVertTypeDirty = 0;
}
gstate_c.Dirty(DIRTY_VERTEXSHADER_STATE);
}
if (diff & GE_VTYPE_THROUGH_MASK)
gstate_c.Dirty(DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_FRAGMENTSHADER_STATE | DIRTY_GEOMETRYSHADER_STATE | DIRTY_CULLRANGE);
}
void GPUCommonHW::Execute_Prim(u32 op, u32 diff) {
// This drives all drawing. All other state we just buffer up, then we apply it only
// when it's time to draw. As most PSP games set state redundantly ALL THE TIME, this is a huge optimization.
PROFILE_THIS_SCOPE("execprim");
FlushImm();
// Upper bits are ignored.
GEPrimitiveType prim = static_cast<GEPrimitiveType>((op >> 16) & 7);
SetDrawType(DRAW_PRIM, prim);
// Discard AA lines as we can't do anything that makes sense with these anyway. The SW plugin might, though.
if (gstate.isAntiAliasEnabled()) {
// Heuristic derived from discussions in #6483 and #12588.
// Discard AA lines in Persona 3 Portable, DOA Paradise and Summon Night 5, while still keeping AA lines in Echochrome.
if ((prim == GE_PRIM_LINE_STRIP || prim == GE_PRIM_LINES) && gstate.getTextureFunction() == GE_TEXFUNC_REPLACE)
return;
}
// Update cached framebuffer format.
// We store it in the cache so it can be modified for blue-to-alpha, next.
gstate_c.framebufFormat = gstate.FrameBufFormat();
if (!Memory::IsValidAddress(gstate_c.vertexAddr)) {
ERROR_LOG(Log::G3D, "Bad vertex address %08x!", gstate_c.vertexAddr);
return;
}
// See the documentation for gstate_c.blueToAlpha.
bool blueToAlpha = false;
if (PSP_CoreParameter().compat.flags().BlueToAlpha) {
if (gstate_c.framebufFormat == GEBufferFormat::GE_FORMAT_565 && gstate.getColorMask() == 0x0FFFFF && !gstate.isLogicOpEnabled()) {
blueToAlpha = true;
gstate_c.framebufFormat = GEBufferFormat::GE_FORMAT_4444;
}
if (blueToAlpha != gstate_c.blueToAlpha) {
gstate_c.blueToAlpha = blueToAlpha;
gstate_c.Dirty(DIRTY_FRAMEBUF | DIRTY_FRAGMENTSHADER_STATE | DIRTY_BLEND_STATE);
}
}
if (PSP_CoreParameter().compat.flags().SplitFramebufferMargin) {
switch (gstate.vertType & 0xFFFFFF) {
case 0x00800102: // through, u16 uv, u16 pos (used for the framebuffer effect in-game)
case 0x0080011c: // through, 8888 color, s16 pos (used for clearing in the margin of the title screen)
case 0x00000183: // float uv, float pos (used for drawing in the margin of the title screen)
// Need to re-check the framebuffer every one of these draws, to update the split if needed.
gstate_c.Dirty(DIRTY_FRAMEBUF);
}
}
// This also makes skipping drawing very effective.
VirtualFramebuffer *vfb = framebufferManager_->SetRenderFrameBuffer(gstate_c.IsDirty(DIRTY_FRAMEBUF), gstate_c.skipDrawReason);
if (blueToAlpha) {
vfb->usageFlags |= FB_USAGE_BLUE_TO_ALPHA;
}
if (gstate_c.dirty & DIRTY_VERTEXSHADER_STATE) {
vertexCost_ = EstimatePerVertexCost();
}
u32 count = op & 0xFFFF;
// Must check this after SetRenderFrameBuffer so we know SKIPDRAW_NON_DISPLAYED_FB.
if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) {
// Rough estimate, not sure what's correct.
cyclesExecuted += vertexCost_ * count;
if (gstate.isModeClear()) {
gpuStats.numClears++;
}
return;
}
CheckDepthUsage(vfb);
const void *verts = Memory::GetPointerUnchecked(gstate_c.vertexAddr);
const void *inds = nullptr;
bool isTriangle = IsTrianglePrim(prim);
bool canExtend = isTriangle;
u32 vertexType = gstate.vertType;
if ((vertexType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
u32 indexAddr = gstate_c.indexAddr;
u32 indexSize = (vertexType & GE_VTYPE_IDX_MASK) >> GE_VTYPE_IDX_SHIFT;
if (!Memory::IsValidRange(indexAddr, count * indexSize)) {
ERROR_LOG(Log::G3D, "Bad index address %08x (%d)!", indexAddr, count);
return;
}
inds = Memory::GetPointerUnchecked(indexAddr);
canExtend = false;
}
int bytesRead = 0;
gstate_c.UpdateUVScaleOffset();
// cull mode
int cullMode = gstate.getCullMode();
uint32_t vertTypeID = GetVertTypeID(vertexType, gstate.getUVGenMode(), g_Config.bSoftwareSkinning);
#define MAX_CULL_CHECK_COUNT 6
// For now, turn off culling on platforms where we don't have SIMD bounding box tests, like RISC-V.
#if PPSSPP_ARCH(ARM_NEON) || PPSSPP_ARCH(SSE2)
#define PASSES_CULLING ((vertexType & (GE_VTYPE_THROUGH_MASK | GE_VTYPE_MORPHCOUNT_MASK | GE_VTYPE_WEIGHT_MASK | GE_VTYPE_IDX_MASK)) || count > MAX_CULL_CHECK_COUNT)
#else
#define PASSES_CULLING true
#endif
// If certain conditions are true, do frustum culling.
bool passCulling = PASSES_CULLING;
if (!passCulling) {
// Do software culling.
if (drawEngineCommon_->TestBoundingBoxFast(verts, count, vertexType)) {
passCulling = true;
} else {
gpuStats.numCulledDraws++;
}
}
// If the first one in a batch passes, let's assume the whole batch passes.
// Cuts down on checking, while not losing that much efficiency.
bool onePassed = false;
if (passCulling) {
if (!drawEngineCommon_->SubmitPrim(verts, inds, prim, count, vertTypeID, true, &bytesRead)) {
canExtend = false;
}
onePassed = true;
} else {
// Still need to advance bytesRead.
drawEngineCommon_->SkipPrim(prim, count, vertTypeID, &bytesRead);
canExtend = false;
}
// After drawing, we advance the vertexAddr (when non indexed) or indexAddr (when indexed).
// Some games rely on this, they don't bother reloading VADDR and IADDR.
// The VADDR/IADDR registers are NOT updated.
AdvanceVerts(vertexType, count, bytesRead);
int totalVertCount = count;
// PRIMs are often followed by more PRIMs. Save some work and submit them immediately.
const u32_le *start = (const u32_le *)Memory::GetPointerUnchecked(currentList->pc + 4);
const u32_le *src = start;
const u32_le *stall = currentList->stall ? (const u32_le *)Memory::GetPointerUnchecked(currentList->stall) : 0;
// Optimized submission of sequences of PRIM. Allows us to avoid going through all the mess
// above for each one. This can be expanded to support additional games that intersperse
// PRIM commands with other commands. A special case is Earth Defence Force 2 that changes culling mode
// between each prim, we just change the triangle winding right here to still be able to join draw calls.
uint32_t vtypeCheckMask = g_Config.bSoftwareSkinning ? (~GE_VTYPE_WEIGHTCOUNT_MASK) : 0xFFFFFFFF;
if (debugRecording_)
goto bail;
while (src != stall) {
uint32_t data = *src;
switch (data >> 24) {
case GE_CMD_PRIM:
{
GEPrimitiveType newPrim = static_cast<GEPrimitiveType>((data >> 16) & 7);
if (IsTrianglePrim(newPrim) != isTriangle)
goto bail; // Can't join over this boundary. Might as well exit and get this on the next time around.
// TODO: more efficient updating of verts/inds
u32 count = data & 0xFFFF;
bool clockwise = !gstate.isCullEnabled() || gstate.getCullMode() == cullMode;
if (canExtend) {
// Non-indexed draws can be cheaply merged if vertexAddr hasn't changed, that means the vertices
// are consecutive in memory. We also ignore culling here.
_dbg_assert_((vertexType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_NONE);
int commandsExecuted = drawEngineCommon_->ExtendNonIndexedPrim(src, stall, vertTypeID, clockwise, &bytesRead, isTriangle);
if (!commandsExecuted) {
goto bail;
}
src += commandsExecuted - 1;
gstate_c.vertexAddr += bytesRead;
totalVertCount += count;
break;
}
verts = Memory::GetPointerUnchecked(gstate_c.vertexAddr);
inds = nullptr;
if ((vertexType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
inds = Memory::GetPointerUnchecked(gstate_c.indexAddr);
} else {
// We can extend again after submitting a normal draw.
canExtend = isTriangle;
}
bool passCulling = onePassed || PASSES_CULLING;
if (!passCulling) {
// Do software culling.
_dbg_assert_((vertexType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_NONE);
if (drawEngineCommon_->TestBoundingBoxFast(verts, count, vertexType)) {
passCulling = true;
} else {
gpuStats.numCulledDraws++;
}
}
if (passCulling) {
if (!drawEngineCommon_->SubmitPrim(verts, inds, newPrim, count, vertTypeID, clockwise, &bytesRead)) {
canExtend = false;
}
// As soon as one passes, assume we don't need to check the rest of this batch.
onePassed = true;
} else {
// Still need to advance bytesRead.
drawEngineCommon_->SkipPrim(newPrim, count, vertTypeID, &bytesRead);
canExtend = false;
}
AdvanceVerts(vertexType, count, bytesRead);
totalVertCount += count;
break;
}
case GE_CMD_VERTEXTYPE:
{
uint32_t diff = data ^ vertexType;
// don't mask upper bits, vertexType is unmasked
if (diff) {
if (diff & vtypeCheckMask)
goto bail;
drawEngineCommon_->FlushSkin();
canExtend = false; // TODO: Might support extending between some vertex types in the future.
vertexType = data;
vertTypeID = GetVertTypeID(vertexType, gstate.getUVGenMode(), g_Config.bSoftwareSkinning);
}
break;
}
case GE_CMD_VADDR:
{
gstate.cmdmem[GE_CMD_VADDR] = data;
uint32_t newAddr = gstate_c.getRelativeAddress(data & 0x00FFFFFF);
if (gstate_c.vertexAddr != newAddr) {
canExtend = false;
gstate_c.vertexAddr = newAddr;
}
break;
}
case GE_CMD_IADDR:
gstate.cmdmem[GE_CMD_IADDR] = data;
gstate_c.indexAddr = gstate_c.getRelativeAddress(data & 0x00FFFFFF);
break;
case GE_CMD_OFFSETADDR:
gstate.cmdmem[GE_CMD_OFFSETADDR] = data;
gstate_c.offsetAddr = data << 8;
break;
case GE_CMD_BASE:
gstate.cmdmem[GE_CMD_BASE] = data;
break;
case GE_CMD_CULLFACEENABLE:
// Earth Defence Force 2
if (gstate.cmdmem[GE_CMD_CULLFACEENABLE] != data) {
goto bail;
}
break;
case GE_CMD_CULL:
// flip face by indices for triangles
cullMode = data & 1;
break;
case GE_CMD_TEXFLUSH:
case GE_CMD_NOP:
case GE_CMD_NOP_FF:
gstate.cmdmem[data >> 24] = data;
break;
case GE_CMD_BONEMATRIXNUMBER:
gstate.cmdmem[GE_CMD_BONEMATRIXNUMBER] = data;
break;
case GE_CMD_TEXSCALEU:
// We don't "dirty-check" - we could avoid getFloat24 and setting canExtend=false, but usually
// when texscale commands are in line with the prims like this, they actually have an effect
// and requires us to stop extending strips anyway.
gstate.cmdmem[GE_CMD_TEXSCALEU] = data;
gstate_c.uv.uScale = getFloat24(data);
canExtend = false;
break;
case GE_CMD_TEXSCALEV:
gstate.cmdmem[GE_CMD_TEXSCALEV] = data;
gstate_c.uv.vScale = getFloat24(data);
canExtend = false;
break;
case GE_CMD_TEXOFFSETU:
gstate.cmdmem[GE_CMD_TEXOFFSETU] = data;
gstate_c.uv.uOff = getFloat24(data);
canExtend = false;
break;
case GE_CMD_TEXOFFSETV:
gstate.cmdmem[GE_CMD_TEXOFFSETV] = data;
gstate_c.uv.vOff = getFloat24(data);
canExtend = false;
break;
case GE_CMD_TEXLEVEL:
// Same Gran Turismo hack from Execute_TexLevel
if ((data & 3) != GE_TEXLEVEL_MODE_AUTO && (0x00FF0000 & data) != 0) {
goto bail;
}
gstate.cmdmem[GE_CMD_TEXLEVEL] = data;
break;
case GE_CMD_CALL:
{
// A bone matrix probably. If not we bail.
const u32 target = gstate_c.getRelativeAddress(data & 0x00FFFFFC);
if ((Memory::ReadUnchecked_U32(target) >> 24) == GE_CMD_BONEMATRIXDATA &&
(Memory::ReadUnchecked_U32(target + 11 * 4) >> 24) == GE_CMD_BONEMATRIXDATA &&
(Memory::ReadUnchecked_U32(target + 12 * 4) >> 24) == GE_CMD_RET &&
(target > currentList->stall || target + 12 * 4 < currentList->stall) &&
(gstate.boneMatrixNumber & 0x00FFFFFF) <= 96 - 12) {
drawEngineCommon_->FlushSkin();
canExtend = false;
FastLoadBoneMatrix(target);
} else {
goto bail;
}
break;
}
case GE_CMD_TEXBUFWIDTH0:
case GE_CMD_TEXADDR0:
if (data != gstate.cmdmem[data >> 24])
goto bail;
break;
default:
// All other commands might need a flush or something, stop this inner loop.
goto bail;
}
src++;
}
bail:
drawEngineCommon_->FlushSkin();
gstate.cmdmem[GE_CMD_VERTEXTYPE] = vertexType;
int cmdCount = src - start;
// Skip over the commands we just read out manually.
if (cmdCount > 0) {
UpdatePC(currentList->pc, currentList->pc + cmdCount * 4);
currentList->pc += cmdCount * 4;
// flush back cull mode
if (cullMode != gstate.getCullMode()) {
// We rewrote everything to the old cull mode, so flush first.
drawEngineCommon_->DispatchFlush();
// Now update things for next time.
gstate.cmdmem[GE_CMD_CULL] ^= 1;
gstate_c.Dirty(DIRTY_RASTER_STATE);
}
}
int cycles = vertexCost_ * totalVertCount;
gpuStats.vertexGPUCycles += cycles;
cyclesExecuted += cycles;
}
void GPUCommonHW::Execute_Bezier(u32 op, u32 diff) {
// We don't dirty on normal changes anymore as we prescale, but it's needed for splines/bezier.
gstate_c.framebufFormat = gstate.FrameBufFormat();
// This also make skipping drawing very effective.
VirtualFramebuffer *vfb = framebufferManager_->SetRenderFrameBuffer(gstate_c.IsDirty(DIRTY_FRAMEBUF), gstate_c.skipDrawReason);
if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) {
// TODO: Should this eat some cycles? Probably yes. Not sure if important.
return;
}
CheckDepthUsage(vfb);
if (!Memory::IsValidAddress(gstate_c.vertexAddr)) {
ERROR_LOG_REPORT(Log::G3D, "Bad vertex address %08x!", gstate_c.vertexAddr);
return;
}
const void *control_points = Memory::GetPointerUnchecked(gstate_c.vertexAddr);
const void *indices = NULL;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
if (!Memory::IsValidAddress(gstate_c.indexAddr)) {
ERROR_LOG_REPORT(Log::G3D, "Bad index address %08x!", gstate_c.indexAddr);
return;
}
indices = Memory::GetPointerUnchecked(gstate_c.indexAddr);
}
if (vertTypeIsSkinningEnabled(gstate.vertType)) {
DEBUG_LOG_REPORT(Log::G3D, "Unusual bezier/spline vtype: %08x, morph: %d, bones: %d", gstate.vertType, (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) >> GE_VTYPE_MORPHCOUNT_SHIFT, vertTypeGetNumBoneWeights(gstate.vertType));
}
// Can't flush after setting gstate_c.submitType below since it'll be a mess - it must be done already.
if (flushOnParams_)
drawEngineCommon_->DispatchFlush();
Spline::BezierSurface surface;
surface.tess_u = gstate.getPatchDivisionU();
surface.tess_v = gstate.getPatchDivisionV();
surface.num_points_u = op & 0xFF;
surface.num_points_v = (op >> 8) & 0xFF;
surface.num_patches_u = (surface.num_points_u - 1) / 3;
surface.num_patches_v = (surface.num_points_v - 1) / 3;
surface.primType = gstate.getPatchPrimitiveType();
surface.patchFacing = gstate.patchfacing & 1;
SetDrawType(DRAW_BEZIER, PatchPrimToPrim(surface.primType));
// We need to dirty UVSCALEOFFSET here because we look at the submit type when setting that uniform.
gstate_c.Dirty(DIRTY_RASTER_STATE | DIRTY_VERTEXSHADER_STATE | DIRTY_GEOMETRYSHADER_STATE | DIRTY_UVSCALEOFFSET);
if (drawEngineCommon_->CanUseHardwareTessellation(surface.primType)) {
gstate_c.submitType = SubmitType::HW_BEZIER;
if (gstate_c.spline_num_points_u != surface.num_points_u) {
gstate_c.Dirty(DIRTY_BEZIERSPLINE);
gstate_c.spline_num_points_u = surface.num_points_u;
}
} else {
gstate_c.submitType = SubmitType::BEZIER;
}
int bytesRead = 0;
gstate_c.UpdateUVScaleOffset();
drawEngineCommon_->SubmitCurve(control_points, indices, surface, gstate.vertType, &bytesRead, "bezier");
gstate_c.Dirty(DIRTY_RASTER_STATE | DIRTY_VERTEXSHADER_STATE | DIRTY_GEOMETRYSHADER_STATE | DIRTY_UVSCALEOFFSET);
gstate_c.submitType = SubmitType::DRAW;
// After drawing, we advance pointers - see SubmitPrim which does the same.
int count = surface.num_points_u * surface.num_points_v;
AdvanceVerts(gstate.vertType, count, bytesRead);
}
void GPUCommonHW::Execute_Spline(u32 op, u32 diff) {
// We don't dirty on normal changes anymore as we prescale, but it's needed for splines/bezier.
gstate_c.framebufFormat = gstate.FrameBufFormat();
// This also make skipping drawing very effective.
VirtualFramebuffer *vfb = framebufferManager_->SetRenderFrameBuffer(gstate_c.IsDirty(DIRTY_FRAMEBUF), gstate_c.skipDrawReason);
if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) {
// TODO: Should this eat some cycles? Probably yes. Not sure if important.
return;
}
CheckDepthUsage(vfb);
if (!Memory::IsValidAddress(gstate_c.vertexAddr)) {
ERROR_LOG_REPORT(Log::G3D, "Bad vertex address %08x!", gstate_c.vertexAddr);
return;
}
const void *control_points = Memory::GetPointerUnchecked(gstate_c.vertexAddr);
const void *indices = NULL;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
if (!Memory::IsValidAddress(gstate_c.indexAddr)) {
ERROR_LOG_REPORT(Log::G3D, "Bad index address %08x!", gstate_c.indexAddr);
return;
}
indices = Memory::GetPointerUnchecked(gstate_c.indexAddr);
}
if (vertTypeIsSkinningEnabled(gstate.vertType)) {
DEBUG_LOG_REPORT(Log::G3D, "Unusual bezier/spline vtype: %08x, morph: %d, bones: %d", gstate.vertType, (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) >> GE_VTYPE_MORPHCOUNT_SHIFT, vertTypeGetNumBoneWeights(gstate.vertType));
}
// Can't flush after setting gstate_c.submitType below since it'll be a mess - it must be done already.
if (flushOnParams_)
drawEngineCommon_->DispatchFlush();
Spline::SplineSurface surface;
surface.tess_u = gstate.getPatchDivisionU();
surface.tess_v = gstate.getPatchDivisionV();
surface.type_u = (op >> 16) & 0x3;
surface.type_v = (op >> 18) & 0x3;
surface.num_points_u = op & 0xFF;
surface.num_points_v = (op >> 8) & 0xFF;
surface.num_patches_u = surface.num_points_u - 3;
surface.num_patches_v = surface.num_points_v - 3;
surface.primType = gstate.getPatchPrimitiveType();
surface.patchFacing = gstate.patchfacing & 1;
SetDrawType(DRAW_SPLINE, PatchPrimToPrim(surface.primType));
// We need to dirty UVSCALEOFFSET here because we look at the submit type when setting that uniform.
gstate_c.Dirty(DIRTY_RASTER_STATE | DIRTY_VERTEXSHADER_STATE | DIRTY_GEOMETRYSHADER_STATE | DIRTY_UVSCALEOFFSET);
if (drawEngineCommon_->CanUseHardwareTessellation(surface.primType)) {
gstate_c.submitType = SubmitType::HW_SPLINE;
if (gstate_c.spline_num_points_u != surface.num_points_u) {
gstate_c.Dirty(DIRTY_BEZIERSPLINE);
gstate_c.spline_num_points_u = surface.num_points_u;
}
} else {
gstate_c.submitType = SubmitType::SPLINE;
}
int bytesRead = 0;
gstate_c.UpdateUVScaleOffset();
drawEngineCommon_->SubmitCurve(control_points, indices, surface, gstate.vertType, &bytesRead, "spline");
gstate_c.Dirty(DIRTY_RASTER_STATE | DIRTY_VERTEXSHADER_STATE | DIRTY_GEOMETRYSHADER_STATE | DIRTY_UVSCALEOFFSET);
gstate_c.submitType = SubmitType::DRAW;
// After drawing, we advance pointers - see SubmitPrim which does the same.
int count = surface.num_points_u * surface.num_points_v;
AdvanceVerts(gstate.vertType, count, bytesRead);
}
void GPUCommonHW::Execute_BlockTransferStart(u32 op, u32 diff) {
Flush();
PROFILE_THIS_SCOPE("block"); // don't include the flush in the profile, would be misleading.
gstate_c.framebufFormat = gstate.FrameBufFormat();
// and take appropriate action. This is a block transfer between RAM and VRAM, or vice versa.
// Can we skip this on SkipDraw?
DoBlockTransfer(gstate_c.skipDrawReason);
}
void GPUCommonHW::Execute_TexSize0(u32 op, u32 diff) {
// Render to texture may have overridden the width/height.
// Don't reset it unless the size is different / the texture has changed.
if (diff || gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS)) {
gstate_c.curTextureWidth = gstate.getTextureWidth(0);
gstate_c.curTextureHeight = gstate.getTextureHeight(0);
// We will need to reset the texture now.
gstate_c.Dirty(DIRTY_TEXTURE_PARAMS);
}
}
void GPUCommonHW::Execute_TexLevel(u32 op, u32 diff) {
// TODO: If you change the rules here, don't forget to update the inner interpreter in Execute_Prim.
if (diff == 0xFFFFFFFF)
return;
gstate.texlevel ^= diff;
if (diff & 0xFF0000) {
// Piggyback on this flag for 3D textures.
gstate_c.Dirty(DIRTY_MIPBIAS);
}
if (gstate.getTexLevelMode() != GE_TEXLEVEL_MODE_AUTO && (0x00FF0000 & gstate.texlevel) != 0) {
Flush();
}
gstate.texlevel ^= diff;
gstate_c.Dirty(DIRTY_TEXTURE_PARAMS | DIRTY_FRAGMENTSHADER_STATE);
}
void GPUCommonHW::Execute_LoadClut(u32 op, u32 diff) {
gstate_c.Dirty(DIRTY_TEXTURE_PARAMS);
textureCache_->LoadClut(gstate.getClutAddress(), gstate.getClutLoadBytes());
}
void GPUCommonHW::Execute_WorldMtxNum(u32 op, u32 diff) {
if (!currentList) {
gstate.worldmtxnum = (GE_CMD_WORLDMATRIXNUMBER << 24) | (op & 0xF);
return;
}
// This is almost always followed by GE_CMD_WORLDMATRIXDATA.
const u32_le *src = (const u32_le *)Memory::GetPointerUnchecked(currentList->pc + 4);
u32 *dst = (u32 *)(gstate.worldMatrix + (op & 0xF));
const int end = 12 - (op & 0xF);
int i = 0;
// We must record the individual data commands while debugRecording_.
bool fastLoad = !debugRecording_ && end > 0;
// Stalling in the middle of a matrix would be stupid, I doubt this check is necessary.
if (currentList->pc < currentList->stall && currentList->pc + end * 4 >= currentList->stall) {
fastLoad = false;
}
if (fastLoad) {
while ((src[i] >> 24) == GE_CMD_WORLDMATRIXDATA) {
const u32 newVal = src[i] << 8;
if (dst[i] != newVal) {
Flush();
dst[i] = newVal;
gstate_c.Dirty(DIRTY_WORLDMATRIX);
}
if (++i >= end) {
break;
}
}
}
const int count = i;
gstate.worldmtxnum = (GE_CMD_WORLDMATRIXNUMBER << 24) | ((op & 0xF) + count);
// Skip over the loaded data, it's done now.
UpdatePC(currentList->pc, currentList->pc + count * 4);
currentList->pc += count * 4;
}
void GPUCommonHW::Execute_WorldMtxData(u32 op, u32 diff) {
// Note: it's uncommon to get here now, see above.
int num = gstate.worldmtxnum & 0x00FFFFFF;
u32 newVal = op << 8;
if (num < 12 && newVal != ((const u32 *)gstate.worldMatrix)[num]) {
Flush();
((u32 *)gstate.worldMatrix)[num] = newVal;
gstate_c.Dirty(DIRTY_WORLDMATRIX);
}
num++;
gstate.worldmtxnum = (GE_CMD_WORLDMATRIXNUMBER << 24) | (num & 0x00FFFFFF);
gstate.worldmtxdata = GE_CMD_WORLDMATRIXDATA << 24;
}
void GPUCommonHW::Execute_ViewMtxNum(u32 op, u32 diff) {
if (!currentList) {
gstate.viewmtxnum = (GE_CMD_VIEWMATRIXNUMBER << 24) | (op & 0xF);
return;
}
// This is almost always followed by GE_CMD_VIEWMATRIXDATA.
const u32_le *src = (const u32_le *)Memory::GetPointerUnchecked(currentList->pc + 4);
u32 *dst = (u32 *)(gstate.viewMatrix + (op & 0xF));
const int end = 12 - (op & 0xF);
int i = 0;
bool fastLoad = !debugRecording_ && end > 0;
if (currentList->pc < currentList->stall && currentList->pc + end * 4 >= currentList->stall) {
fastLoad = false;
}
if (fastLoad) {
while ((src[i] >> 24) == GE_CMD_VIEWMATRIXDATA) {
const u32 newVal = src[i] << 8;
if (dst[i] != newVal) {
Flush();
dst[i] = newVal;
gstate_c.Dirty(DIRTY_VIEWMATRIX | DIRTY_CULL_PLANES);
}
if (++i >= end) {
break;
}
}
}
const int count = i;
gstate.viewmtxnum = (GE_CMD_VIEWMATRIXNUMBER << 24) | ((op & 0xF) + count);
// Skip over the loaded data, it's done now.
UpdatePC(currentList->pc, currentList->pc + count * 4);
currentList->pc += count * 4;
}
void GPUCommonHW::Execute_ViewMtxData(u32 op, u32 diff) {
// Note: it's uncommon to get here now, see above.
int num = gstate.viewmtxnum & 0x00FFFFFF;
u32 newVal = op << 8;
if (num < 12 && newVal != ((const u32 *)gstate.viewMatrix)[num]) {
Flush();
((u32 *)gstate.viewMatrix)[num] = newVal;
gstate_c.Dirty(DIRTY_VIEWMATRIX | DIRTY_CULL_PLANES);
}
num++;
gstate.viewmtxnum = (GE_CMD_VIEWMATRIXNUMBER << 24) | (num & 0x00FFFFFF);
gstate.viewmtxdata = GE_CMD_VIEWMATRIXDATA << 24;
}
void GPUCommonHW::Execute_ProjMtxNum(u32 op, u32 diff) {
if (!currentList) {
gstate.projmtxnum = (GE_CMD_PROJMATRIXNUMBER << 24) | (op & 0xF);
return;
}
// This is almost always followed by GE_CMD_PROJMATRIXDATA.
const u32_le *src = (const u32_le *)Memory::GetPointerUnchecked(currentList->pc + 4);
u32 *dst = (u32 *)(gstate.projMatrix + (op & 0xF));
const int end = 16 - (op & 0xF);
int i = 0;
bool fastLoad = !debugRecording_;
if (currentList->pc < currentList->stall && currentList->pc + end * 4 >= currentList->stall) {
fastLoad = false;
}
if (fastLoad) {
while ((src[i] >> 24) == GE_CMD_PROJMATRIXDATA) {
const u32 newVal = src[i] << 8;
if (dst[i] != newVal) {
Flush();
dst[i] = newVal;
gstate_c.Dirty(DIRTY_PROJMATRIX | DIRTY_CULL_PLANES);
}
if (++i >= end) {
break;
}
}
}
const int count = i;
gstate.projmtxnum = (GE_CMD_PROJMATRIXNUMBER << 24) | ((op & 0xF) + count);
// Skip over the loaded data, it's done now.
UpdatePC(currentList->pc, currentList->pc + count * 4);
currentList->pc += count * 4;
}
void GPUCommonHW::Execute_ProjMtxData(u32 op, u32 diff) {
// Note: it's uncommon to get here now, see above.
int num = gstate.projmtxnum & 0x00FFFFFF;
u32 newVal = op << 8;
if (num < 16 && newVal != ((const u32 *)gstate.projMatrix)[num]) {
Flush();
((u32 *)gstate.projMatrix)[num] = newVal;
gstate_c.Dirty(DIRTY_PROJMATRIX | DIRTY_CULL_PLANES);
}
num++;
if (num <= 16)
gstate.projmtxnum = (GE_CMD_PROJMATRIXNUMBER << 24) | (num & 0x00FFFFFF);
gstate.projmtxdata = GE_CMD_PROJMATRIXDATA << 24;
}
void GPUCommonHW::Execute_TgenMtxNum(u32 op, u32 diff) {
if (!currentList) {
gstate.texmtxnum = (GE_CMD_TGENMATRIXNUMBER << 24) | (op & 0xF);
return;
}
// This is almost always followed by GE_CMD_TGENMATRIXDATA.
const u32_le *src = (const u32_le *)Memory::GetPointerUnchecked(currentList->pc + 4);
u32 *dst = (u32 *)(gstate.tgenMatrix + (op & 0xF));
const int end = 12 - (op & 0xF);
int i = 0;
bool fastLoad = !debugRecording_ && end > 0;
if (currentList->pc < currentList->stall && currentList->pc + end * 4 >= currentList->stall) {
fastLoad = false;
}
if (fastLoad) {
while ((src[i] >> 24) == GE_CMD_TGENMATRIXDATA) {
const u32 newVal = src[i] << 8;
if (dst[i] != newVal) {
Flush();
dst[i] = newVal;
// We check the matrix to see if we need projection.
gstate_c.Dirty(DIRTY_TEXMATRIX | DIRTY_FRAGMENTSHADER_STATE);
}
if (++i >= end) {
break;
}
}
}
const int count = i;
gstate.texmtxnum = (GE_CMD_TGENMATRIXNUMBER << 24) | ((op & 0xF) + count);
// Skip over the loaded data, it's done now.
UpdatePC(currentList->pc, currentList->pc + count * 4);
currentList->pc += count * 4;
}
void GPUCommonHW::Execute_TgenMtxData(u32 op, u32 diff) {
// Note: it's uncommon to get here now, see above.
int num = gstate.texmtxnum & 0x00FFFFFF;
u32 newVal = op << 8;
if (num < 12 && newVal != ((const u32 *)gstate.tgenMatrix)[num]) {
Flush();
((u32 *)gstate.tgenMatrix)[num] = newVal;
gstate_c.Dirty(DIRTY_TEXMATRIX | DIRTY_FRAGMENTSHADER_STATE); // We check the matrix to see if we need projection
}
num++;
gstate.texmtxnum = (GE_CMD_TGENMATRIXNUMBER << 24) | (num & 0x00FFFFFF);
gstate.texmtxdata = GE_CMD_TGENMATRIXDATA << 24;
}
void GPUCommonHW::Execute_BoneMtxNum(u32 op, u32 diff) {
if (!currentList) {
gstate.boneMatrixNumber = (GE_CMD_BONEMATRIXNUMBER << 24) | (op & 0x7F);
return;
}
// This is almost always followed by GE_CMD_BONEMATRIXDATA.
const u32_le *src = (const u32_le *)Memory::GetPointerUnchecked(currentList->pc + 4);
u32 *dst = (u32 *)(gstate.boneMatrix + (op & 0x7F));
const int end = 12 * 8 - (op & 0x7F);
int i = 0;
bool fastLoad = !debugRecording_ && end > 0;
if (currentList->pc < currentList->stall && currentList->pc + end * 4 >= currentList->stall) {
fastLoad = false;
}
if (fastLoad) {
// If we can't use software skinning, we have to flush and dirty.
if (!g_Config.bSoftwareSkinning) {
while ((src[i] >> 24) == GE_CMD_BONEMATRIXDATA) {
const u32 newVal = src[i] << 8;
if (dst[i] != newVal) {
Flush();
dst[i] = newVal;
}
if (++i >= end) {
break;
}
}
const unsigned int numPlusCount = (op & 0x7F) + i;
for (unsigned int num = op & 0x7F; num < numPlusCount; num += 12) {
gstate_c.Dirty(DIRTY_BONEMATRIX0 << (num / 12));
}
} else {
while ((src[i] >> 24) == GE_CMD_BONEMATRIXDATA) {
dst[i] = src[i] << 8;
if (++i >= end) {
break;
}
}
const unsigned int numPlusCount = (op & 0x7F) + i;
for (unsigned int num = op & 0x7F; num < numPlusCount; num += 12) {
gstate_c.deferredVertTypeDirty |= DIRTY_BONEMATRIX0 << (num / 12);
}
}
}
const int count = i;
gstate.boneMatrixNumber = (GE_CMD_BONEMATRIXNUMBER << 24) | ((op & 0x7F) + count);
// Skip over the loaded data, it's done now.
UpdatePC(currentList->pc, currentList->pc + count * 4);
currentList->pc += count * 4;
}
void GPUCommonHW::Execute_BoneMtxData(u32 op, u32 diff) {
// Note: it's uncommon to get here now, see above.
int num = gstate.boneMatrixNumber & 0x00FFFFFF;
u32 newVal = op << 8;
if (num < 96 && newVal != ((const u32 *)gstate.boneMatrix)[num]) {
// Bone matrices should NOT flush when software skinning is enabled!
if (!g_Config.bSoftwareSkinning) {
Flush();
gstate_c.Dirty(DIRTY_BONEMATRIX0 << (num / 12));
} else {
gstate_c.deferredVertTypeDirty |= DIRTY_BONEMATRIX0 << (num / 12);
}
((u32 *)gstate.boneMatrix)[num] = newVal;
}
num++;
gstate.boneMatrixNumber = (GE_CMD_BONEMATRIXNUMBER << 24) | (num & 0x00FFFFFF);
gstate.boneMatrixData = GE_CMD_BONEMATRIXDATA << 24;
}
void GPUCommonHW::Execute_TexFlush(u32 op, u32 diff) {
// Games call this when they need the effect of drawing to be visible to texturing.
// And for a bunch of other reasons, but either way, this is what we need to do.
// It's possible we could also use this as a hint for the texture cache somehow.
framebufferManager_->DiscardFramebufferCopy();
}
size_t GPUCommonHW::FormatGPUStatsCommon(char *buffer, size_t size) {
float vertexAverageCycles = gpuStats.numVertsSubmitted > 0 ? (float)gpuStats.vertexGPUCycles / (float)gpuStats.numVertsSubmitted : 0.0f;
return snprintf(buffer, size,
"DL processing time: %0.2f ms, %d drawsync, %d listsync\n"
"Draw: %d (%d dec, %d culled), flushes %d, clears %d, bbox jumps %d (%d updates)\n"
"Vertices: %d dec: %d drawn: %d\n"
"FBOs active: %d (evaluations: %d)\n"
"Textures: %d, dec: %d, invalidated: %d, hashed: %d kB\n"
"readbacks %d (%d non-block), upload %d (cached %d), depal %d\n"
"block transfers: %d\n"
"replacer: tracks %d references, %d unique textures\n"
"Cpy: depth %d, color %d, reint %d, blend %d, self %d\n"
"GPU cycles: %d (%0.1f per vertex)\n%s",
gpuStats.msProcessingDisplayLists * 1000.0f,
gpuStats.numDrawSyncs,
gpuStats.numListSyncs,
gpuStats.numDrawCalls,
gpuStats.numVertexDecodes,
gpuStats.numCulledDraws,
gpuStats.numFlushes,
gpuStats.numClears,
gpuStats.numBBOXJumps,
gpuStats.numPlaneUpdates,
gpuStats.numVertsSubmitted,
gpuStats.numVertsDecoded,
gpuStats.numUncachedVertsDrawn,
(int)framebufferManager_->NumVFBs(),
gpuStats.numFramebufferEvaluations,
(int)textureCache_->NumLoadedTextures(),
gpuStats.numTexturesDecoded,
gpuStats.numTextureInvalidations,
gpuStats.numTextureDataBytesHashed / 1024,
gpuStats.numBlockingReadbacks,
gpuStats.numReadbacks,
gpuStats.numUploads,
gpuStats.numCachedUploads,
gpuStats.numDepal,
gpuStats.numBlockTransfers,
gpuStats.numReplacerTrackedTex,
gpuStats.numCachedReplacedTextures,
gpuStats.numDepthCopies,
gpuStats.numColorCopies,
gpuStats.numReinterpretCopies,
gpuStats.numCopiesForShaderBlend,
gpuStats.numCopiesForSelfTex,
gpuStats.vertexGPUCycles + gpuStats.otherGPUCycles,
vertexAverageCycles,
debugRecording_ ? "(debug-recording)" : ""
);
}