ppsspp/GPU/GLES/ShaderManager.cpp

523 lines
16 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#ifdef _WIN32
#define SHADERLOG
#endif
#ifdef SHADERLOG
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include <map>
#include "math/lin/matrix4x4.h"
#include "Core/Reporting.h"
#include "../GPUState.h"
#include "../ge_constants.h"
#include "ShaderManager.h"
#include "TransformPipeline.h"
Shader::Shader(const char *code, uint32_t shaderType) {
source_ = code;
#ifdef SHADERLOG
OutputDebugString(code);
#endif
shader = glCreateShader(shaderType);
glShaderSource(shader, 1, &code, 0);
glCompileShader(shader);
GLint success;
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
if (!success) {
#define MAX_INFO_LOG_SIZE 2048
GLchar infoLog[MAX_INFO_LOG_SIZE];
GLsizei len;
glGetShaderInfoLog(shader, MAX_INFO_LOG_SIZE, &len, infoLog);
infoLog[len] = '\0';
ERROR_LOG(G3D, "Error in shader compilation!\n");
ERROR_LOG(G3D, "Info log: %s\n", infoLog);
ERROR_LOG(G3D, "Shader source:\n%s\n", (const char *)code);
Reporting::ReportMessage("Error in shader compilation: info: %s / code: %s", infoLog, (const char *)code);
#ifdef SHADERLOG
OutputDebugString(infoLog);
#endif
} else {
DEBUG_LOG(G3D, "Compiled shader:\n%s\n", (const char *)code);
}
}
LinkedShader::LinkedShader(Shader *vs, Shader *fs)
: program(0), dirtyUniforms(0) {
program = glCreateProgram();
glAttachShader(program, vs->shader);
glAttachShader(program, fs->shader);
glLinkProgram(program);
GLint linkStatus;
glGetProgramiv(program, GL_LINK_STATUS, &linkStatus);
if (linkStatus != GL_TRUE) {
GLint bufLength = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &bufLength);
if (bufLength) {
char* buf = new char[bufLength];
glGetProgramInfoLog(program, bufLength, NULL, buf);
ERROR_LOG(G3D, "Could not link program:\n %s", buf);
ERROR_LOG(G3D, "VS:\n%s", vs->source().c_str());
ERROR_LOG(G3D, "FS:\n%s", fs->source().c_str());
#ifdef SHADERLOG
OutputDebugString(buf);
OutputDebugString(vs->source().c_str());
OutputDebugString(fs->source().c_str());
#endif
delete [] buf; // we're dead!
}
return;
}
INFO_LOG(G3D, "Linked shader: vs %i fs %i", (int)vs->shader, (int)fs->shader);
u_tex = glGetUniformLocation(program, "tex");
u_proj = glGetUniformLocation(program, "u_proj");
u_proj_through = glGetUniformLocation(program, "u_proj_through");
u_texenv = glGetUniformLocation(program, "u_texenv");
u_fogcolor = glGetUniformLocation(program, "u_fogcolor");
u_fogcoef = glGetUniformLocation(program, "u_fogcoef");
u_alphacolorref = glGetUniformLocation(program, "u_alphacolorref");
u_colormask = glGetUniformLocation(program, "u_colormask");
// Transform
u_view = glGetUniformLocation(program, "u_view");
u_world = glGetUniformLocation(program, "u_world");
u_texmtx = glGetUniformLocation(program, "u_texmtx");
numBones = gstate.getNumBoneWeights();
#ifdef USE_BONE_ARRAY
u_bone = glGetUniformLocation(program, "u_bone");
#else
for (int i = 0; i < numBones; i++) {
char name[10];
sprintf(name, "u_bone%i", i);
u_bone[i] = glGetUniformLocation(program, name);
}
#endif
// Lighting, texturing
u_ambient = glGetUniformLocation(program, "u_ambient");
u_matambientalpha = glGetUniformLocation(program, "u_matambientalpha");
u_matdiffuse = glGetUniformLocation(program, "u_matdiffuse");
u_matspecular = glGetUniformLocation(program, "u_matspecular");
u_matemissive = glGetUniformLocation(program, "u_matemissive");
u_uvscaleoffset = glGetUniformLocation(program, "u_uvscaleoffset");
for (int i = 0; i < 4; i++) {
char temp[64];
sprintf(temp, "u_lightpos%i", i);
u_lightpos[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightdir%i", i);
u_lightdir[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightatt%i", i);
u_lightatt[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightangle%i", i);
u_lightangle[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightspotCoef%i", i);
u_lightspotCoef[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightambient%i", i);
u_lightambient[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightdiffuse%i", i);
u_lightdiffuse[i] = glGetUniformLocation(program, temp);
sprintf(temp, "u_lightspecular%i", i);
u_lightspecular[i] = glGetUniformLocation(program, temp);
}
a_position = glGetAttribLocation(program, "a_position");
a_color0 = glGetAttribLocation(program, "a_color0");
a_color1 = glGetAttribLocation(program, "a_color1");
a_texcoord = glGetAttribLocation(program, "a_texcoord");
a_normal = glGetAttribLocation(program, "a_normal");
a_weight0123 = glGetAttribLocation(program, "a_w1");
a_weight4567 = glGetAttribLocation(program, "a_w2");
glUseProgram(program);
// Default uniform values
glUniform1i(u_tex, 0);
// The rest, use the "dirty" mechanism.
dirtyUniforms = DIRTY_ALL;
use();
}
LinkedShader::~LinkedShader() {
glDeleteProgram(program);
}
// Utility
static void SetColorUniform3(int uniform, u32 color)
{
const float col[3] = {
((color & 0xFF)) / 255.0f,
((color & 0xFF00) >> 8) / 255.0f,
((color & 0xFF0000) >> 16) / 255.0f
};
glUniform3fv(uniform, 1, col);
}
static void SetColorUniform3Alpha(int uniform, u32 color, u8 alpha)
{
const float col[4] = {
((color & 0xFF)) / 255.0f,
((color & 0xFF00) >> 8) / 255.0f,
((color & 0xFF0000) >> 16) / 255.0f,
alpha/255.0f
};
glUniform4fv(uniform, 1, col);
}
// This passes colors unscaled (e.g. 0 - 255 not 0 - 1.)
static void SetColorUniform3Alpha255(int uniform, u32 color, u8 alpha)
{
const float col[4] = {
(float)((color & 0xFF)),
(float)((color & 0xFF00) >> 8),
(float)((color & 0xFF0000) >> 16),
(float)alpha
};
glUniform4fv(uniform, 1, col);
}
static void SetColorUniform3ExtraFloat(int uniform, u32 color, float extra)
{
const float col[4] = {
((color & 0xFF)) / 255.0f,
((color & 0xFF00) >> 8) / 255.0f,
((color & 0xFF0000) >> 16) / 255.0f,
extra
};
glUniform4fv(uniform, 1, col);
}
static void ConvertMatrix4x3To4x4(const float *m4x3, float *m4x4) {
m4x4[0] = m4x3[0];
m4x4[1] = m4x3[1];
m4x4[2] = m4x3[2];
m4x4[3] = 0.0f;
m4x4[4] = m4x3[3];
m4x4[5] = m4x3[4];
m4x4[6] = m4x3[5];
m4x4[7] = 0.0f;
m4x4[8] = m4x3[6];
m4x4[9] = m4x3[7];
m4x4[10] = m4x3[8];
m4x4[11] = 0.0f;
m4x4[12] = m4x3[9];
m4x4[13] = m4x3[10];
m4x4[14] = m4x3[11];
m4x4[15] = 1.0f;
}
static void SetMatrix4x3(int uniform, const float *m4x3) {
float m4x4[16];
ConvertMatrix4x3To4x4(m4x3, m4x4);
glUniformMatrix4fv(uniform, 1, GL_FALSE, m4x4);
}
void LinkedShader::use() {
glUseProgram(program);
updateUniforms();
glEnableVertexAttribArray(a_position);
if (a_texcoord != -1) glEnableVertexAttribArray(a_texcoord);
if (a_color0 != -1) glEnableVertexAttribArray(a_color0);
if (a_color1 != -1) glEnableVertexAttribArray(a_color1);
if (a_normal != -1) glEnableVertexAttribArray(a_normal);
if (a_weight0123 != -1) glEnableVertexAttribArray(a_weight0123);
if (a_weight4567 != -1) glEnableVertexAttribArray(a_weight4567);
}
void LinkedShader::stop() {
glDisableVertexAttribArray(a_position);
if (a_texcoord != -1) glDisableVertexAttribArray(a_texcoord);
if (a_color0 != -1) glDisableVertexAttribArray(a_color0);
if (a_color1 != -1) glDisableVertexAttribArray(a_color1);
if (a_normal != -1) glDisableVertexAttribArray(a_normal);
if (a_weight0123 != -1) glDisableVertexAttribArray(a_weight0123);
if (a_weight4567 != -1) glDisableVertexAttribArray(a_weight4567);
}
void LinkedShader::updateUniforms() {
if (!dirtyUniforms)
return;
// Update any dirty uniforms before we draw
if (u_proj != -1 && (dirtyUniforms & DIRTY_PROJMATRIX)) {
glUniformMatrix4fv(u_proj, 1, GL_FALSE, gstate.projMatrix);
float flippedMatrix[16];
memcpy(flippedMatrix, gstate.projMatrix, 16 * sizeof(float));
if (gstate_c.vpHeight < 0) {
flippedMatrix[5] = -flippedMatrix[5];
flippedMatrix[13] = -flippedMatrix[13];
}
if (gstate_c.vpWidth < 0) {
flippedMatrix[0] = -flippedMatrix[0];
flippedMatrix[12] = -flippedMatrix[12];
}
glUniformMatrix4fv(u_proj, 1, GL_FALSE, flippedMatrix);
}
if (u_proj_through != -1 && (dirtyUniforms & DIRTY_PROJTHROUGHMATRIX))
{
Matrix4x4 proj_through;
proj_through.setOrtho(0.0f, gstate_c.curRTWidth, gstate_c.curRTHeight, 0, 0, 1);
glUniformMatrix4fv(u_proj_through, 1, GL_FALSE, proj_through.getReadPtr());
}
if (u_texenv != -1 && (dirtyUniforms & DIRTY_TEXENV)) {
SetColorUniform3(u_texenv, gstate.texenvcolor);
}
if (u_alphacolorref != -1 && (dirtyUniforms & DIRTY_ALPHACOLORREF)) {
SetColorUniform3Alpha255(u_alphacolorref, gstate.colorref, (gstate.alphatest >> 8) & 0xFF);
}
if (u_colormask != -1 && (dirtyUniforms & DIRTY_COLORMASK)) {
SetColorUniform3(u_colormask, gstate.colormask);
}
if (u_fogcolor != -1 && (dirtyUniforms & DIRTY_FOGCOLOR)) {
SetColorUniform3(u_fogcolor, gstate.fogcolor);
}
if (u_fogcoef != -1 && (dirtyUniforms & DIRTY_FOGCOEF)) {
const float fogcoef[2] = {
getFloat24(gstate.fog1),
getFloat24(gstate.fog2),
};
glUniform2fv(u_fogcoef, 1, fogcoef);
}
// Texturing
if (u_uvscaleoffset != -1 && (dirtyUniforms & DIRTY_UVSCALEOFFSET)) {
float uvscaleoff[4] = {gstate_c.uScale, gstate_c.vScale, gstate_c.uOff, gstate_c.vOff};
if (gstate.isModeThrough()) {
// We never get here because we don't use HW transform with through mode.
// Although - why don't we?
uvscaleoff[0] /= gstate_c.curTextureWidth;
uvscaleoff[1] /= gstate_c.curTextureHeight;
uvscaleoff[2] /= gstate_c.curTextureWidth;
uvscaleoff[3] /= gstate_c.curTextureHeight;
} else {
uvscaleoff[0] *= 2.0f;
uvscaleoff[1] *= 2.0f;
}
glUniform4fv(u_uvscaleoffset, 1, uvscaleoff);
}
// Transform
if (u_world != -1 && (dirtyUniforms & DIRTY_WORLDMATRIX)) {
SetMatrix4x3(u_world, gstate.worldMatrix);
}
if (u_view != -1 && (dirtyUniforms & DIRTY_VIEWMATRIX)) {
SetMatrix4x3(u_view, gstate.viewMatrix);
}
if (u_texmtx != -1 && (dirtyUniforms & DIRTY_TEXMATRIX)) {
SetMatrix4x3(u_texmtx, gstate.tgenMatrix);
}
// TODO: Could even set all bones in one go if they're all dirty.
#ifdef USE_BONE_ARRAY
if (u_bone != -1) {
float allBones[8 * 16];
bool allDirty = true;
for (int i = 0; i < numBones; i++) {
if (dirtyUniforms & (DIRTY_BONEMATRIX0 << i)) {
ConvertMatrix4x3To4x4(gstate.boneMatrix + 12 * i, allBones + 16 * i);
} else {
allDirty = false;
}
}
if (allDirty) {
// Set them all with one call
glUniformMatrix4fv(u_bone, numBones, GL_FALSE, allBones);
} else {
// Set them one by one. Could try to coalesce two in a row etc but too lazy.
for (int i = 0; i < numBones; i++) {
if (dirtyUniforms & (DIRTY_BONEMATRIX0 << i)) {
glUniformMatrix4fv(u_bone + i, 1, GL_FALSE, allBones + 16 * i);
}
}
}
}
#else
float bonetemp[16];
for (int i = 0; i < numBones; i++) {
if (dirtyUniforms & (DIRTY_BONEMATRIX0 << i)) {
ConvertMatrix4x3To4x4(gstate.boneMatrix + 12 * i, bonetemp);
glUniformMatrix4fv(u_bone[i], 1, GL_FALSE, bonetemp);
}
}
#endif
// Lighting
if (u_ambient != -1 && (dirtyUniforms & DIRTY_AMBIENT)) {
SetColorUniform3Alpha(u_ambient, gstate.ambientcolor, gstate.ambientalpha & 0xFF);
}
if (u_matambientalpha != -1 && (dirtyUniforms & DIRTY_MATAMBIENTALPHA)) {
SetColorUniform3Alpha(u_matambientalpha, gstate.materialambient, gstate.materialalpha & 0xFF);
}
if (u_matdiffuse != -1 && (dirtyUniforms & DIRTY_MATDIFFUSE)) {
SetColorUniform3(u_matdiffuse, gstate.materialdiffuse);
}
if (u_matemissive != -1 && (dirtyUniforms & DIRTY_MATEMISSIVE)) {
SetColorUniform3(u_matemissive, gstate.materialemissive);
}
if (u_matspecular != -1 && (dirtyUniforms & DIRTY_MATSPECULAR)) {
SetColorUniform3ExtraFloat(u_matspecular, gstate.materialspecular, getFloat24(gstate.materialspecularcoef));
}
for (int i = 0; i < 4; i++) {
if (dirtyUniforms & (DIRTY_LIGHT0 << i)) {
if (u_lightpos[i] != -1) glUniform3fv(u_lightpos[i], 1, gstate_c.lightpos[i]);
if (u_lightdir[i] != -1) glUniform3fv(u_lightdir[i], 1, gstate_c.lightdir[i]);
if (u_lightatt[i] != -1) glUniform3fv(u_lightatt[i], 1, gstate_c.lightatt[i]);
if (u_lightangle[i] != -1) glUniform1f(u_lightangle[i], gstate_c.lightangle[i]);
if (u_lightspotCoef[i] != -1) glUniform1f(u_lightspotCoef[i], gstate_c.lightspotCoef[i]);
if (u_lightambient[i] != -1) glUniform3fv(u_lightambient[i], 1, gstate_c.lightColor[0][i]);
if (u_lightdiffuse[i] != -1) glUniform3fv(u_lightdiffuse[i], 1, gstate_c.lightColor[1][i]);
if (u_lightspecular[i] != -1) glUniform3fv(u_lightspecular[i], 1, gstate_c.lightColor[2][i]);
}
}
dirtyUniforms = 0;
}
ShaderManager::ShaderManager() : lastShader(NULL), globalDirty(0xFFFFFFFF), shaderSwitchDirty(0) {
codeBuffer_ = new char[16384];
}
ShaderManager::~ShaderManager() {
delete [] codeBuffer_;
}
void ShaderManager::DirtyUniform(u32 what) {
globalDirty |= what;
}
void ShaderManager::Clear() {
for (LinkedShaderCache::iterator iter = linkedShaderCache.begin(); iter != linkedShaderCache.end(); ++iter) {
delete iter->second;
}
for (FSCache::iterator iter = fsCache.begin(); iter != fsCache.end(); ++iter) {
delete iter->second;
}
for (VSCache::iterator iter = vsCache.begin(); iter != vsCache.end(); ++iter) {
delete iter->second;
}
linkedShaderCache.clear();
fsCache.clear();
vsCache.clear();
globalDirty = 0xFFFFFFFF;
DirtyShader();
}
void ShaderManager::ClearCache(bool deleteThem)
{
Clear();
}
void ShaderManager::DirtyShader()
{
// Forget the last shader ID
lastFSID.clear();
lastVSID.clear();
lastShader = 0;
}
void ShaderManager::EndFrame() // disables vertex arrays
{
if (lastShader)
lastShader->stop();
lastShader = 0;
}
LinkedShader *ShaderManager::ApplyShader(int prim) {
if (globalDirty) {
if (lastShader)
lastShader->dirtyUniforms |= globalDirty;
shaderSwitchDirty |= globalDirty;
globalDirty = 0;
}
VertexShaderID VSID;
FragmentShaderID FSID;
ComputeVertexShaderID(&VSID, prim);
ComputeFragmentShaderID(&FSID);
// Just update uniforms if this is the same shader as last time.
if (lastShader != 0 && VSID == lastVSID && FSID == lastFSID) {
lastShader->updateUniforms();
return lastShader; // Already all set.
}
if (lastShader != 0) {
// There was a previous shader and we're switching.
lastShader->stop();
}
// Deferred dirtying! Let's see if we can make this even more clever later.
for (LinkedShaderCache::iterator iter = linkedShaderCache.begin(); iter != linkedShaderCache.end(); ++iter) {
iter->second->dirtyUniforms |= shaderSwitchDirty;
}
shaderSwitchDirty = 0;
lastVSID = VSID;
lastFSID = FSID;
VSCache::iterator vsIter = vsCache.find(VSID);
Shader *vs;
if (vsIter == vsCache.end()) {
// Vertex shader not in cache. Let's compile it.
GenerateVertexShader(prim, codeBuffer_);
vs = new Shader(codeBuffer_, GL_VERTEX_SHADER);
vsCache[VSID] = vs;
} else {
vs = vsIter->second;
}
FSCache::iterator fsIter = fsCache.find(FSID);
Shader *fs;
if (fsIter == fsCache.end()) {
// Fragment shader not in cache. Let's compile it.
GenerateFragmentShader(codeBuffer_);
fs = new Shader(codeBuffer_, GL_FRAGMENT_SHADER);
fsCache[FSID] = fs;
} else {
fs = fsIter->second;
}
// Okay, we have both shaders. Let's see if there's a linked one.
std::pair<Shader*, Shader*> linkedID(vs, fs);
LinkedShaderCache::iterator iter = linkedShaderCache.find(linkedID);
LinkedShader *ls;
if (iter == linkedShaderCache.end()) {
ls = new LinkedShader(vs, fs); // This does "use" automatically
linkedShaderCache[linkedID] = ls;
} else {
ls = iter->second;
ls->use();
}
lastShader = ls;
return ls;
}