ppsspp/GPU/Common/VertexDecoderCommon.h
2024-05-11 10:00:35 +02:00

620 lines
16 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#pragma once
#include <cstring>
#include "ppsspp_config.h"
#include "Common/CommonTypes.h"
#include "Common/Data/Collections/Hashmaps.h"
#include "Common/Data/Convert/SmallDataConvert.h"
#include "Common/Log.h"
#include "Common/LogReporting.h"
#include "GPU/ge_constants.h"
#include "GPU/Common/ShaderCommon.h"
#include "GPU/GPUCommon.h"
#include "GPU/GPUState.h"
#if PPSSPP_ARCH(ARM)
#include "Common/ArmEmitter.h"
#elif PPSSPP_ARCH(ARM64)
#include "Common/Arm64Emitter.h"
#elif PPSSPP_ARCH(X86) || PPSSPP_ARCH(AMD64)
#include "Common/x64Emitter.h"
#elif PPSSPP_ARCH(RISCV64)
#include "Common/RiscVEmitter.h"
#else
#include "Common/FakeEmitter.h"
#endif
// DecVtxFormat - vertex formats for PC
// Kind of like a D3D VertexDeclaration.
// Can write code to easily bind these using OpenGL, or read these manually.
// No morph support, that is taken care of by the VertexDecoder.
// Keep this in 4 bits.
enum {
DEC_NONE,
DEC_FLOAT_1,
DEC_FLOAT_2,
DEC_FLOAT_3,
DEC_FLOAT_4,
DEC_S8_3,
DEC_S16_3,
DEC_U8_1,
DEC_U8_2,
DEC_U8_3,
DEC_U8_4,
DEC_U16_1,
DEC_U16_2,
DEC_U16_3,
DEC_U16_4,
};
struct DecVtxFormat {
u8 w0fmt; u8 w0off; // first 4 weights
u8 w1fmt; u8 w1off; // second 4 weights
u8 uvfmt; u8 uvoff;
u8 c0fmt; u8 c0off; // First color
u8 c1fmt; u8 c1off;
u8 nrmfmt; u8 nrmoff;
u8 posoff; // Output position format is always DEC_FLOAT_3.
u8 stride;
uint32_t id;
void ComputeID();
void InitializeFromID(uint32_t id);
static u8 PosFmt() { return DEC_FLOAT_3; }
};
void GetIndexBounds(const void *inds, int count, u32 vertType, u16 *indexLowerBound, u16 *indexUpperBound);
inline int RoundUp4(int x) {
return (x + 3) & ~3;
}
class IndexConverter {
private:
union {
const void *indices;
const u8 *indices8;
const u16_le *indices16;
const u32_le *indices32;
};
u32 indexType;
public:
IndexConverter(u32 vertType, const void *indices)
: indices(indices), indexType(vertType & GE_VTYPE_IDX_MASK) {
}
u32 operator() (u32 index) const {
switch (indexType) {
case GE_VTYPE_IDX_8BIT:
return indices8[index];
case GE_VTYPE_IDX_16BIT:
return indices16[index];
case GE_VTYPE_IDX_32BIT:
return indices32[index];
default:
return index;
}
}
};
// Reads decoded vertex formats in a convenient way. For software transform and debugging.
class VertexReader {
public:
VertexReader(u8 *base, const DecVtxFormat &decFmt, int vtype) : base_(base), data_(base), decFmt_(decFmt), vtype_(vtype) {}
void ReadPos(float pos[3]) const {
// Only DEC_FLOAT_3 is supported.
const float *f = (const float *)(data_ + decFmt_.posoff);
pos[0] = f[0];
pos[1] = f[1];
if (!isThrough()) {
pos[2] = f[2];
} else {
// Integer value passed in a float. Clamped to 0, 65535.
pos[2] = (int)f[2] * (1.0f / 65535.0f);
}
}
void ReadPosThroughZ16(float pos[3]) const {
// Only DEC_FLOAT_3 is supported.
const float *f = (const float *)(data_ + decFmt_.posoff);
memcpy(pos, f, 12);
}
void ReadNrm(float nrm[3]) const {
switch (decFmt_.nrmfmt) {
case DEC_FLOAT_3:
//memcpy(nrm, data_ + decFmt_.nrmoff, 12);
{
const float *f = (const float *)(data_ + decFmt_.nrmoff);
for (int i = 0; i < 3; i++)
nrm[i] = f[i];
}
break;
case DEC_S16_3:
{
const s16 *s = (const s16 *)(data_ + decFmt_.nrmoff);
for (int i = 0; i < 3; i++)
nrm[i] = s[i] * (1.f / 32767.f);
}
break;
case DEC_S8_3:
{
const s8 *b = (const s8 *)(data_ + decFmt_.nrmoff);
for (int i = 0; i < 3; i++)
nrm[i] = b[i] * (1.f / 127.f);
}
break;
default:
memset(nrm, 0, sizeof(float) * 3);
break;
}
}
void ReadUV(float uv[2]) const {
// Only DEC_FLOAT_2 is supported.
const float *f = (const float *)(data_ + decFmt_.uvoff);
uv[0] = f[0];
uv[1] = f[1];
}
void ReadColor0(float color[4]) const {
switch (decFmt_.c0fmt) {
case DEC_U8_4:
Uint8x4ToFloat4(color, *(const u32 *)(data_ + decFmt_.c0off));
break;
case DEC_FLOAT_4:
memcpy(color, data_ + decFmt_.c0off, 16);
break;
default:
memset(color, 0, sizeof(float) * 4);
break;
}
}
u32 ReadColor0_8888() const {
switch (decFmt_.c0fmt) {
case DEC_U8_4:
{
const u8 *b = (const u8 *)(data_ + decFmt_.c0off);
u32 value;
memcpy(&value, b, 4);
return value;
}
break;
case DEC_FLOAT_4:
{
const float *f = (const float *)(data_ + decFmt_.c0off);
return Float4ToUint8x4_NoClamp(f);
}
break;
default:
return 0;
}
}
void ReadColor1(float color[3]) const {
switch (decFmt_.c1fmt) {
case DEC_U8_4:
{
const u8 *b = (const u8 *)(data_ + decFmt_.c1off);
for (int i = 0; i < 3; i++)
color[i] = b[i] * (1.f / 255.f);
}
break;
case DEC_FLOAT_4:
memcpy(color, data_ + decFmt_.c1off, 12);
break;
default:
memset(color, 0, sizeof(float) * 3);
break;
}
}
void ReadWeights(float weights[8]) const {
const float *f = (const float *)(data_ + decFmt_.w0off);
const u8 *b = (const u8 *)(data_ + decFmt_.w0off);
const u16 *s = (const u16 *)(data_ + decFmt_.w0off);
switch (decFmt_.w0fmt) {
case DEC_FLOAT_1:
case DEC_FLOAT_2:
case DEC_FLOAT_3:
case DEC_FLOAT_4:
for (int i = 0; i <= decFmt_.w0fmt - DEC_FLOAT_1; i++)
weights[i] = f[i];
break;
case DEC_U8_1: weights[0] = b[0] * (1.f / 128.f); break;
case DEC_U8_2: for (int i = 0; i < 2; i++) weights[i] = b[i] * (1.f / 128.f); break;
case DEC_U8_3: for (int i = 0; i < 3; i++) weights[i] = b[i] * (1.f / 128.f); break;
case DEC_U8_4: for (int i = 0; i < 4; i++) weights[i] = b[i] * (1.f / 128.f); break;
case DEC_U16_1: weights[0] = s[0] * (1.f / 32768.f); break;
case DEC_U16_2: for (int i = 0; i < 2; i++) weights[i] = s[i] * (1.f / 32768.f); break;
case DEC_U16_3: for (int i = 0; i < 3; i++) weights[i] = s[i] * (1.f / 32768.f); break;
case DEC_U16_4: for (int i = 0; i < 4; i++) weights[i] = s[i] * (1.f / 32768.f); break;
default:
ERROR_LOG_REPORT_ONCE(fmtw0, G3D, "Reader: Unsupported W0 Format %d", decFmt_.w0fmt);
memset(weights, 0, sizeof(float) * 8);
break;
}
f = (const float *)(data_ + decFmt_.w1off);
b = (const u8 *)(data_ + decFmt_.w1off);
s = (const u16 *)(data_ + decFmt_.w1off);
switch (decFmt_.w1fmt) {
case 0:
// It's fine for there to be w0 weights but not w1.
break;
case DEC_FLOAT_1:
case DEC_FLOAT_2:
case DEC_FLOAT_3:
case DEC_FLOAT_4:
for (int i = 0; i <= decFmt_.w1fmt - DEC_FLOAT_1; i++)
weights[i+4] = f[i];
break;
case DEC_U8_1: weights[4] = b[0] * (1.f / 128.f); break;
case DEC_U8_2: for (int i = 0; i < 2; i++) weights[i+4] = b[i] * (1.f / 128.f); break;
case DEC_U8_3: for (int i = 0; i < 3; i++) weights[i+4] = b[i] * (1.f / 128.f); break;
case DEC_U8_4: for (int i = 0; i < 4; i++) weights[i+4] = b[i] * (1.f / 128.f); break;
case DEC_U16_1: weights[4] = s[0] * (1.f / 32768.f); break;
case DEC_U16_2: for (int i = 0; i < 2; i++) weights[i+4] = s[i] * (1.f / 32768.f); break;
case DEC_U16_3: for (int i = 0; i < 3; i++) weights[i+4] = s[i] * (1.f / 32768.f); break;
case DEC_U16_4: for (int i = 0; i < 4; i++) weights[i+4] = s[i] * (1.f / 32768.f); break;
default:
memset(weights + 4, 0, sizeof(float) * 4);
break;
}
}
bool hasColor0() const { return decFmt_.c0fmt != 0; }
bool hasColor1() const { return decFmt_.c1fmt != 0; }
bool hasNormal() const { return decFmt_.nrmfmt != 0; }
bool hasUV() const { return decFmt_.uvfmt != 0; }
bool isThrough() const { return (vtype_ & GE_VTYPE_THROUGH) != 0; }
void Goto(int index) {
data_ = base_ + index * decFmt_.stride;
}
private:
u8 *base_;
u8 *data_;
DecVtxFormat decFmt_;
int vtype_;
};
// Debugging utilities
void PrintDecodedVertex(const VertexReader &vtx);
class VertexDecoder;
class VertexDecoderJitCache;
typedef void (VertexDecoder::*StepFunction)() const;
typedef void (VertexDecoderJitCache::*JitStepFunction)();
struct JitLookup {
StepFunction func;
JitStepFunction jitFunc;
};
// Collapse to less skinning shaders to reduce shader switching, which is expensive.
int TranslateNumBones(int bones);
typedef void (*JittedVertexDecoder)(const u8 *src, u8 *dst, int count, const UVScale *uvScaleOffset);
struct VertexDecoderOptions {
bool expandAllWeightsToFloat;
bool expand8BitNormalsToFloat;
bool applySkinInDecode;
};
class VertexDecoder {
public:
// A jit cache is not mandatory.
void SetVertexType(u32 vtype, const VertexDecoderOptions &options, VertexDecoderJitCache *jitCache = nullptr);
u32 VertexType() const { return fmt_; }
const DecVtxFormat &GetDecVtxFmt() const { return decFmt; }
void DecodeVerts(u8 *decoded, const void *verts, const UVScale *uvScaleOffset, int indexLowerBound, int indexUpperBound) const;
int VertexSize() const { return size; } // PSP format size
std::string GetString(DebugShaderStringType stringType) const;
void Step_WeightsU8() const;
void Step_WeightsU16() const;
void Step_WeightsU8ToFloat() const;
void Step_WeightsU16ToFloat() const;
void Step_WeightsFloat() const;
void ComputeSkinMatrix(const float weights[8]) const;
void Step_WeightsU8Skin() const;
void Step_WeightsU16Skin() const;
void Step_WeightsFloatSkin() const;
void Step_TcU8ToFloat() const;
void Step_TcU16ToFloat() const;
void Step_TcFloat() const;
void Step_TcU8Prescale() const;
void Step_TcU16Prescale() const;
void Step_TcU16DoublePrescale() const;
void Step_TcFloatPrescale() const;
void Step_TcU16DoubleToFloat() const;
void Step_TcU16ThroughToFloat() const;
void Step_TcU16ThroughDoubleToFloat() const;
void Step_TcFloatThrough() const;
void Step_TcU8MorphToFloat() const;
void Step_TcU16MorphToFloat() const;
void Step_TcU16DoubleMorphToFloat() const;
void Step_TcFloatMorph() const;
void Step_TcU8PrescaleMorph() const;
void Step_TcU16PrescaleMorph() const;
void Step_TcU16DoublePrescaleMorph() const;
void Step_TcFloatPrescaleMorph() const;
void Step_ColorInvalid() const;
void Step_Color4444() const;
void Step_Color565() const;
void Step_Color5551() const;
void Step_Color8888() const;
void Step_Color4444Morph() const;
void Step_Color565Morph() const;
void Step_Color5551Morph() const;
void Step_Color8888Morph() const;
void Step_NormalS8() const;
void Step_NormalS8ToFloat() const;
void Step_NormalS16() const;
void Step_NormalFloat() const;
void Step_NormalS8Skin() const;
void Step_NormalS16Skin() const;
void Step_NormalFloatSkin() const;
void Step_NormalS8Morph() const;
void Step_NormalS16Morph() const;
void Step_NormalFloatMorph() const;
void Step_NormalS8MorphSkin() const;
void Step_NormalS16MorphSkin() const;
void Step_NormalFloatMorphSkin() const;
void Step_PosS8() const;
void Step_PosS16() const;
void Step_PosFloat() const;
void Step_PosS8Skin() const;
void Step_PosS16Skin() const;
void Step_PosFloatSkin() const;
void Step_PosS8Morph() const;
void Step_PosS16Morph() const;
void Step_PosFloatMorph() const;
void Step_PosS8MorphSkin() const;
void Step_PosS16MorphSkin() const;
void Step_PosFloatMorphSkin() const;
void Step_PosInvalid() const;
void Step_PosS8Through() const;
void Step_PosS16Through() const;
void Step_PosFloatThrough() const;
// output must be big for safety.
// Returns number of chars written.
// Ugly for speed.
int ToString(char *output, bool spaces) const;
bool IsInSpace(const uint8_t *ptr) const {
return ptr >= (const uint8_t *)jitted_ && ptr < ((const uint8_t *)jitted_ + jittedSize_);
}
// Mutable decoder state
mutable u8 *decoded_ = nullptr;
mutable const u8 *ptr_ = nullptr;
mutable const UVScale *prescaleUV_ = nullptr;
JittedVertexDecoder jitted_ = 0;
int32_t jittedSize_ = 0;
// "Immutable" state, set at startup
// The decoding steps. Never more than 5.
StepFunction steps_[5];
int numSteps_;
u32 fmt_;
DecVtxFormat decFmt;
bool throughmode;
bool skinInDecode;
// With morph and weights, this can be more than 256 bytes.
u16 size;
u8 onesize_;
u8 weightoff;
u8 tcoff;
u8 coloff;
u8 nrmoff;
u8 posoff;
u8 tc;
u8 col;
u8 nrm;
u8 pos;
u8 weighttype;
u8 idx;
u8 morphcount;
u8 nweights;
u8 biggest; // in practice, alignment.
friend class VertexDecoderJitCache;
private:
void CompareToJit(const u8 *startPtr, u8 *decodedptr, int count, const UVScale *uvScaleOffset) const;
};
// A compiled vertex decoder takes the following arguments (C calling convention):
// u8 *src, u8 *dst, int count
//
// x86:
// src is placed in esi and dst in edi
// for every vertex, we step esi and edi forwards by the two vertex sizes
// all movs are done relative to esi and edi
//
// that's it!
#if PPSSPP_ARCH(ARM)
#define VERTEXDECODER_JIT_BACKEND ArmGen::ARMXCodeBlock
#elif PPSSPP_ARCH(ARM64)
#define VERTEXDECODER_JIT_BACKEND Arm64Gen::ARM64CodeBlock
#elif PPSSPP_ARCH(X86) || PPSSPP_ARCH(AMD64)
#define VERTEXDECODER_JIT_BACKEND Gen::XCodeBlock
#elif PPSSPP_ARCH(RISCV64)
#define VERTEXDECODER_JIT_BACKEND RiscVGen::RiscVCodeBlock
#endif
#ifdef VERTEXDECODER_JIT_BACKEND
class VertexDecoderJitCache : public VERTEXDECODER_JIT_BACKEND {
public:
VertexDecoderJitCache();
// Returns a pointer to the code to run.
JittedVertexDecoder Compile(const VertexDecoder &dec, int32_t *jittedSize);
bool DescribeCodePtr(const u8 *ptr, std::string &name) const;
void Clear();
void Jit_WeightsU8();
void Jit_WeightsU16();
void Jit_WeightsU8ToFloat();
void Jit_WeightsU16ToFloat();
void Jit_WeightsFloat();
void Jit_WeightsU8Skin();
void Jit_WeightsU16Skin();
void Jit_WeightsFloatSkin();
void Jit_TcU8ToFloat();
void Jit_TcU16ToFloat();
void Jit_TcFloat();
void Jit_TcU8Prescale();
void Jit_TcU16Prescale();
void Jit_TcFloatPrescale();
void Jit_TcAnyMorph(int bits);
void Jit_TcU8MorphToFloat();
void Jit_TcU16MorphToFloat();
void Jit_TcFloatMorph();
void Jit_TcU8PrescaleMorph();
void Jit_TcU16PrescaleMorph();
void Jit_TcFloatPrescaleMorph();
void Jit_TcU16ThroughToFloat();
void Jit_TcFloatThrough();
void Jit_Color8888();
void Jit_Color4444();
void Jit_Color565();
void Jit_Color5551();
void Jit_NormalS8();
void Jit_NormalS8ToFloat();
void Jit_NormalS16();
void Jit_NormalFloat();
void Jit_NormalS8Skin();
void Jit_NormalS16Skin();
void Jit_NormalFloatSkin();
void Jit_PosS8();
void Jit_PosS16();
void Jit_PosFloat();
void Jit_PosS8Through();
void Jit_PosS16Through();
void Jit_PosFloatThrough();
void Jit_PosS8Skin();
void Jit_PosS16Skin();
void Jit_PosFloatSkin();
void Jit_NormalS8Morph();
void Jit_NormalS16Morph();
void Jit_NormalFloatMorph();
void Jit_NormalS8MorphSkin();
void Jit_NormalS16MorphSkin();
void Jit_NormalFloatMorphSkin();
void Jit_PosS8Morph();
void Jit_PosS16Morph();
void Jit_PosFloatMorph();
void Jit_PosS8MorphSkin();
void Jit_PosS16MorphSkin();
void Jit_PosFloatMorphSkin();
void Jit_Color8888Morph();
void Jit_Color4444Morph();
void Jit_Color565Morph();
void Jit_Color5551Morph();
private:
bool CompileStep(const VertexDecoder &dec, int i);
void Jit_ApplyWeights();
void Jit_WriteMatrixMul(int outOff, bool pos);
void Jit_WriteMorphColor(int outOff, bool checkAlpha = true);
void Jit_AnyS8ToFloat(int srcoff);
void Jit_AnyS16ToFloat(int srcoff);
void Jit_AnyU8ToFloat(int srcoff, u32 bits = 32);
void Jit_AnyU16ToFloat(int srcoff, u32 bits = 64);
void Jit_AnyS8Morph(int srcoff, int dstoff);
void Jit_AnyS16Morph(int srcoff, int dstoff);
void Jit_AnyFloatMorph(int srcoff, int dstoff);
const VertexDecoder *dec_ = nullptr;
#if PPSSPP_ARCH(ARM64)
Arm64Gen::ARM64FloatEmitter fp;
#endif
};
#else
class VertexDecoderJitCache : public FakeGen::FakeXCodeBlock {
public:
VertexDecoderJitCache();
JittedVertexDecoder Compile(const VertexDecoder &dec, int32_t *jittedSize) {
return nullptr;
}
void Clear();
};
#endif