ppsspp/GPU/Software/Sampler.cpp

771 lines
24 KiB
C++

// Copyright (c) 2017- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#include <unordered_map>
#include <mutex>
#include "Common/Common.h"
#include "Common/Data/Convert/ColorConv.h"
#include "Common/LogReporting.h"
#include "Common/StringUtils.h"
#include "Core/Config.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/GPUState.h"
#include "GPU/Software/BinManager.h"
#include "GPU/Software/Rasterizer.h"
#include "GPU/Software/RasterizerRegCache.h"
#include "GPU/Software/Sampler.h"
#if defined(_M_SSE)
#include <emmintrin.h>
#endif
#if PPSSPP_ARCH(ARM_NEON)
#if defined(_MSC_VER) && PPSSPP_ARCH(ARM64)
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
#endif
using namespace Math3D;
using namespace Rasterizer;
namespace Sampler {
static Vec4IntResult SOFTRAST_CALL SampleNearest(float s, float t, Vec4IntArg prim_color, const u8 *const *tptr, const uint16_t *bufw, int level, int levelFrac, const SamplerID &samplerID);
static Vec4IntResult SOFTRAST_CALL SampleLinear(float s, float t, Vec4IntArg prim_color, const u8 *const *tptr, const uint16_t *bufw, int level, int levelFrac, const SamplerID &samplerID);
static Vec4IntResult SOFTRAST_CALL SampleFetch(int u, int v, const u8 *tptr, int bufw, int level, const SamplerID &samplerID);
std::mutex jitCacheLock;
SamplerJitCache *jitCache = nullptr;
void Init() {
jitCache = new SamplerJitCache();
}
void FlushJit() {
jitCache->Flush();
}
void Shutdown() {
delete jitCache;
jitCache = nullptr;
}
bool DescribeCodePtr(const u8 *ptr, std::string &name) {
if (!jitCache->IsInSpace(ptr)) {
return false;
}
name = jitCache->DescribeCodePtr(ptr);
return true;
}
NearestFunc GetNearestFunc(SamplerID id, BinManager *binner) {
id.linear = false;
NearestFunc jitted = jitCache->GetNearest(id, binner);
if (jitted) {
return jitted;
}
return &SampleNearest;
}
LinearFunc GetLinearFunc(SamplerID id, BinManager *binner) {
id.linear = true;
LinearFunc jitted = jitCache->GetLinear(id, binner);
if (jitted) {
return jitted;
}
return &SampleLinear;
}
FetchFunc GetFetchFunc(SamplerID id, BinManager *binner) {
id.fetch = true;
FetchFunc jitted = jitCache->GetFetch(id, binner);
if (jitted) {
return jitted;
}
return &SampleFetch;
}
thread_local SamplerJitCache::LastCache SamplerJitCache::lastFetch_;
thread_local SamplerJitCache::LastCache SamplerJitCache::lastNearest_;
thread_local SamplerJitCache::LastCache SamplerJitCache::lastLinear_;
int SamplerJitCache::clearGen_ = 0;
// 256k should be enough.
SamplerJitCache::SamplerJitCache() : Rasterizer::CodeBlock(1024 * 64 * 4), cache_(64) {
lastFetch_.gen = -1;
lastNearest_.gen = -1;
lastLinear_.gen = -1;
clearGen_++;
}
void SamplerJitCache::Clear() {
clearGen_++;
CodeBlock::Clear();
cache_.Clear();
addresses_.clear();
const10All16_ = nullptr;
const10Low_ = nullptr;
const10All8_ = nullptr;
constWidthHeight256f_ = nullptr;
constWidthMinus1i_ = nullptr;
constHeightMinus1i_ = nullptr;
constOnes32_ = nullptr;
constOnes16_ = nullptr;
constUNext_ = nullptr;
constVNext_ = nullptr;
const5551Swizzle_ = nullptr;
const5650Swizzle_ = nullptr;
}
std::string SamplerJitCache::DescribeCodePtr(const u8 *ptr) {
constexpr bool USE_IDS = false;
ptrdiff_t dist = 0x7FFFFFFF;
if (USE_IDS) {
SamplerID found{};
for (const auto &it : addresses_) {
ptrdiff_t it_dist = ptr - it.second;
if (it_dist >= 0 && it_dist < dist) {
found = it.first;
dist = it_dist;
}
}
return DescribeSamplerID(found);
}
return CodeBlock::DescribeCodePtr(ptr);
}
void SamplerJitCache::Flush() {
std::unique_lock<std::mutex> guard(jitCacheLock);
for (const auto &queued : compileQueue_) {
// Might've been compiled after enqueue, but before now.
size_t queuedKey = std::hash<SamplerID>()(queued);
if (!cache_.ContainsKey(queuedKey))
Compile(queued);
}
compileQueue_.clear();
}
NearestFunc SamplerJitCache::GetByID(const SamplerID &id, size_t key, BinManager *binner) {
std::unique_lock<std::mutex> guard(jitCacheLock);
NearestFunc func;
if (cache_.Get(key, &func)) {
return func;
}
if (!binner) {
// Can't compile, let's try to do it later when there's an opportunity.
compileQueue_.insert(id);
return nullptr;
}
guard.unlock();
binner->Flush("compile");
guard.lock();
for (const auto &queued : compileQueue_) {
// Might've been compiled after enqueue, but before now.
size_t queuedKey = std::hash<SamplerID>()(queued);
if (!cache_.ContainsKey(queuedKey))
Compile(queued);
}
compileQueue_.clear();
if (!cache_.ContainsKey(key))
Compile(id);
// Okay, should be there now.
if (cache_.Get(key, &func)) {
return func;
} else {
return nullptr;
}
}
NearestFunc SamplerJitCache::GetNearest(const SamplerID &id, BinManager *binner) {
if (!g_Config.bSoftwareRenderingJit)
return nullptr;
const size_t key = std::hash<SamplerID>()(id);
if (lastNearest_.Match(key, clearGen_))
return (NearestFunc)lastNearest_.func;
auto func = GetByID(id, key, binner);
lastNearest_.Set(key, func, clearGen_);
return (NearestFunc)func;
}
LinearFunc SamplerJitCache::GetLinear(const SamplerID &id, BinManager *binner) {
if (!g_Config.bSoftwareRenderingJit)
return nullptr;
const size_t key = std::hash<SamplerID>()(id);
if (lastLinear_.Match(key, clearGen_))
return (LinearFunc)lastLinear_.func;
auto func = GetByID(id, key, binner);
lastLinear_.Set(key, func, clearGen_);
return (LinearFunc)func;
}
FetchFunc SamplerJitCache::GetFetch(const SamplerID &id, BinManager *binner) {
if (!g_Config.bSoftwareRenderingJit)
return nullptr;
const size_t key = std::hash<SamplerID>()(id);
if (lastFetch_.Match(key, clearGen_))
return (FetchFunc)lastFetch_.func;
auto func = GetByID(id, key, binner);
lastFetch_.Set(key, func, clearGen_);
return (FetchFunc)func;
}
void SamplerJitCache::Compile(const SamplerID &id) {
// This should be sufficient.
if (GetSpaceLeft() < 16384) {
Clear();
}
// We compile them together so the cache can't possibly be cleared in between.
// We might vary between nearest and linear, so we can't clear between.
#if PPSSPP_ARCH(AMD64) && !PPSSPP_PLATFORM(UWP)
SamplerID fetchID = id;
fetchID.linear = false;
fetchID.fetch = true;
addresses_[fetchID] = GetCodePointer();
cache_.Insert(std::hash<SamplerID>()(fetchID), (NearestFunc)CompileFetch(fetchID));
SamplerID nearestID = id;
nearestID.linear = false;
nearestID.fetch = false;
addresses_[nearestID] = GetCodePointer();
cache_.Insert(std::hash<SamplerID>()(nearestID), (NearestFunc)CompileNearest(nearestID));
SamplerID linearID = id;
linearID.linear = true;
linearID.fetch = false;
addresses_[linearID] = GetCodePointer();
cache_.Insert(std::hash<SamplerID>()(linearID), (NearestFunc)CompileLinear(linearID));
#endif
}
template <uint32_t texel_size_bits>
static inline int GetPixelDataOffset(uint32_t row_pitch_pixels, uint32_t u, uint32_t v, bool swizzled) {
if (!swizzled)
return (v * (row_pitch_pixels * texel_size_bits >> 3)) + (u * texel_size_bits >> 3);
const uint32_t tile_size_bits = 32;
const uint32_t tiles_in_block_horizontal = 4;
const uint32_t tiles_in_block_vertical = 8;
constexpr uint32_t texels_per_tile = tile_size_bits / texel_size_bits;
uint32_t tile_u = u / texels_per_tile;
uint32_t tile_idx = (v % tiles_in_block_vertical) * (tiles_in_block_horizontal) +
// TODO: not sure if the *texel_size_bits/8 factor is correct
(v / tiles_in_block_vertical) * ((row_pitch_pixels*texel_size_bits/(tile_size_bits))*tiles_in_block_vertical) +
(tile_u % tiles_in_block_horizontal) +
(tile_u / tiles_in_block_horizontal) * (tiles_in_block_horizontal*tiles_in_block_vertical);
return tile_idx * (tile_size_bits / 8) + ((u % texels_per_tile) * texel_size_bits) / 8;
}
static inline u32 LookupColor(unsigned int index, unsigned int level, const SamplerID &samplerID) {
const int clutSharingOffset = samplerID.useSharedClut ? 0 : level * 16;
switch (samplerID.ClutFmt()) {
case GE_CMODE_16BIT_BGR5650:
return RGB565ToRGBA8888(samplerID.cached.clut16[index + clutSharingOffset]);
case GE_CMODE_16BIT_ABGR5551:
return RGBA5551ToRGBA8888(samplerID.cached.clut16[index + clutSharingOffset]);
case GE_CMODE_16BIT_ABGR4444:
return RGBA4444ToRGBA8888(samplerID.cached.clut16[index + clutSharingOffset]);
case GE_CMODE_32BIT_ABGR8888:
return samplerID.cached.clut32[index + clutSharingOffset];
default:
ERROR_LOG_REPORT(G3D, "Software: Unsupported palette format: %x", samplerID.ClutFmt());
return 0;
}
}
uint32_t TransformClutIndex(uint32_t index, const SamplerID &samplerID) {
if (samplerID.hasClutShift || samplerID.hasClutMask || samplerID.hasClutOffset) {
const uint8_t shift = (samplerID.cached.clutFormat >> 2) & 0x1F;
const uint8_t mask = (samplerID.cached.clutFormat >> 8) & 0xFF;
const uint16_t offset = ((samplerID.cached.clutFormat >> 16) & 0x1F) << 4;
// We need to wrap any entries beyond the first 1024 bytes.
const uint16_t offsetMask = samplerID.ClutFmt() == GE_CMODE_32BIT_ABGR8888 ? 0xFF : 0x1FF;
return ((index >> shift) & mask) | (offset & offsetMask);
}
return index & 0xFF;
}
struct Nearest4 {
alignas(16) u32 v[4];
operator u32() const {
return v[0];
}
};
template <int N>
inline static Nearest4 SOFTRAST_CALL SampleNearest(const int u[N], const int v[N], const u8 *srcptr, uint16_t texbufw, int level, const SamplerID &samplerID) {
Nearest4 res;
if (!srcptr) {
memset(res.v, 0, sizeof(res.v));
return res;
}
// TODO: Should probably check if textures are aligned properly...
switch (samplerID.TexFmt()) {
case GE_TFMT_4444:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<16>(texbufw, u[i], v[i], samplerID.swizzle);
res.v[i] = RGBA4444ToRGBA8888(*(const u16 *)src);
}
return res;
case GE_TFMT_5551:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<16>(texbufw, u[i], v[i], samplerID.swizzle);
res.v[i] = RGBA5551ToRGBA8888(*(const u16 *)src);
}
return res;
case GE_TFMT_5650:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<16>(texbufw, u[i], v[i], samplerID.swizzle);
res.v[i] = RGB565ToRGBA8888(*(const u16 *)src);
}
return res;
case GE_TFMT_8888:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<32>(texbufw, u[i], v[i], samplerID.swizzle);
res.v[i] = *(const u32 *)src;
}
return res;
case GE_TFMT_CLUT32:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<32>(texbufw, u[i], v[i], samplerID.swizzle);
u32 val = src[0] + (src[1] << 8) + (src[2] << 16) + (src[3] << 24);
res.v[i] = LookupColor(TransformClutIndex(val, samplerID), 0, samplerID);
}
return res;
case GE_TFMT_CLUT16:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<16>(texbufw, u[i], v[i], samplerID.swizzle);
u16 val = src[0] + (src[1] << 8);
res.v[i] = LookupColor(TransformClutIndex(val, samplerID), 0, samplerID);
}
return res;
case GE_TFMT_CLUT8:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<8>(texbufw, u[i], v[i], samplerID.swizzle);
u8 val = *src;
res.v[i] = LookupColor(TransformClutIndex(val, samplerID), 0, samplerID);
}
return res;
case GE_TFMT_CLUT4:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<4>(texbufw, u[i], v[i], samplerID.swizzle);
u8 val = (u[i] & 1) ? (src[0] >> 4) : (src[0] & 0xF);
// Only CLUT4 uses separate mipmap palettes.
res.v[i] = LookupColor(TransformClutIndex(val, samplerID), level, samplerID);
}
return res;
case GE_TFMT_DXT1:
for (int i = 0; i < N; ++i) {
const DXT1Block *block = (const DXT1Block *)srcptr + (v[i] >> 2) * (texbufw >> 2) + (u[i] >> 2);
res.v[i] = GetDXT1Texel(block, u[i] & 3, v[i] & 3);
}
return res;
case GE_TFMT_DXT3:
for (int i = 0; i < N; ++i) {
const DXT3Block *block = (const DXT3Block *)srcptr + (v[i] >> 2) * (texbufw >> 2) + (u[i] >> 2);
res.v[i] = GetDXT3Texel(block, u[i] & 3, v[i] & 3);
}
return res;
case GE_TFMT_DXT5:
for (int i = 0; i < N; ++i) {
const DXT5Block *block = (const DXT5Block *)srcptr + (v[i] >> 2) * (texbufw >> 2) + (u[i] >> 2);
res.v[i] = GetDXT5Texel(block, u[i] & 3, v[i] & 3);
}
return res;
default:
ERROR_LOG_REPORT(G3D, "Software: Unsupported texture format: %x", samplerID.TexFmt());
memset(res.v, 0, sizeof(res.v));
return res;
}
}
static inline int ClampUV(int v, int height) {
if (v >= height - 1)
return height - 1;
if (v >= 511)
return 511;
else if (v < 0)
return 0;
return v;
}
static inline int WrapUV(int v, int height) {
return v & (height - 1) & 511;
}
template <int N>
static inline void ApplyTexelClamp(int out_u[N], int out_v[N], const int u[N], const int v[N], int width, int height, const SamplerID &samplerID) {
if (samplerID.clampS) {
for (int i = 0; i < N; ++i) {
out_u[i] = ClampUV(u[i], width);
}
} else {
for (int i = 0; i < N; ++i) {
out_u[i] = WrapUV(u[i], width);
}
}
if (samplerID.clampT) {
for (int i = 0; i < N; ++i) {
out_v[i] = ClampUV(v[i], height);
}
} else {
for (int i = 0; i < N; ++i) {
out_v[i] = WrapUV(v[i], height);
}
}
}
static inline void GetTexelCoordinates(int level, float s, float t, int &out_u, int &out_v, const SamplerID &samplerID) {
int width = samplerID.cached.sizes[level].w;
int height = samplerID.cached.sizes[level].h;
int base_u = (int)(s * width * 256.0f);
int base_v = (int)(t * height * 256.0f);
base_u >>= 8;
base_v >>= 8;
ApplyTexelClamp<1>(&out_u, &out_v, &base_u, &base_v, width, height, samplerID);
}
Vec4IntResult SOFTRAST_CALL GetTextureFunctionOutput(Vec4IntArg prim_color_in, Vec4IntArg texcolor_in, const SamplerID &samplerID) {
const Vec4<int> prim_color = prim_color_in;
const Vec4<int> texcolor = texcolor_in;
Vec3<int> out_rgb;
int out_a;
bool rgba = samplerID.useTextureAlpha;
switch (samplerID.TexFunc()) {
case GE_TEXFUNC_MODULATE:
{
#if defined(_M_SSE)
// Modulate weights slightly on the tex color, by adding one to prim and dividing by 256.
const __m128i p = _mm_slli_epi16(_mm_packs_epi32(prim_color.ivec, prim_color.ivec), 4);
const __m128i pboost = _mm_add_epi16(p, _mm_set1_epi16(1 << 4));
__m128i t = _mm_slli_epi16(_mm_packs_epi32(texcolor.ivec, texcolor.ivec), 4);
if (samplerID.useColorDoubling) {
const __m128i amask = _mm_set_epi16(-1, 0, 0, 0, -1, 0, 0, 0);
const __m128i a = _mm_and_si128(t, amask);
const __m128i rgb = _mm_andnot_si128(amask, t);
t = _mm_or_si128(_mm_slli_epi16(rgb, 1), a);
}
const __m128i b = _mm_mulhi_epi16(pboost, t);
out_rgb.ivec = _mm_unpacklo_epi16(b, _mm_setzero_si128());
if (rgba) {
return ToVec4IntResult(Vec4<int>(out_rgb.ivec));
} else {
out_a = prim_color.a();
}
#elif PPSSPP_ARCH(ARM64_NEON)
int32x4_t pboost = vaddq_s32(prim_color.ivec, vdupq_n_s32(1));
int32x4_t t = texcolor.ivec;
if (samplerID.useColorDoubling) {
static const int32_t rgbDouble[4] = { 1, 1, 1, 0 };
t = vshlq_s32(t, vld1q_s32(rgbDouble));
}
out_rgb.ivec = vshrq_n_s32(vmulq_s32(pboost, t), 8);
if (rgba) {
return ToVec4IntResult(Vec4<int>(out_rgb.ivec));
}
out_a = prim_color.a();
#else
if (samplerID.useColorDoubling) {
out_rgb = ((prim_color.rgb() + Vec3<int>::AssignToAll(1)) * texcolor.rgb() * 2) / 256;
} else {
out_rgb = (prim_color.rgb() + Vec3<int>::AssignToAll(1)) * texcolor.rgb() / 256;
}
out_a = (rgba) ? ((prim_color.a() + 1) * texcolor.a() / 256) : prim_color.a();
#endif
break;
}
case GE_TEXFUNC_DECAL:
if (rgba) {
int t = texcolor.a();
int invt = 255 - t;
// Both colors are boosted here, making the alpha have more weight.
Vec3<int> one = Vec3<int>::AssignToAll(1);
out_rgb = ((prim_color.rgb() + one) * invt + (texcolor.rgb() + one) * t);
// Keep the bits of accuracy when doubling.
if (samplerID.useColorDoubling)
out_rgb /= 128;
else
out_rgb /= 256;
} else {
if (samplerID.useColorDoubling)
out_rgb = texcolor.rgb() * 2;
else
out_rgb = texcolor.rgb();
}
out_a = prim_color.a();
break;
case GE_TEXFUNC_BLEND:
{
const Vec3<int> const255(255, 255, 255);
const Vec3<int> texenv = Vec3<int>::FromRGB(samplerID.cached.texBlendColor);
// Unlike the others (and even alpha), this one simply always rounds up.
const Vec3<int> roundup = Vec3<int>::AssignToAll(255);
out_rgb = ((const255 - texcolor.rgb()) * prim_color.rgb() + texcolor.rgb() * texenv + roundup);
// Must divide by less to keep the precision for doubling to be accurate.
if (samplerID.useColorDoubling)
out_rgb /= 128;
else
out_rgb /= 256;
out_a = (rgba) ? ((prim_color.a() + 1) * texcolor.a() / 256) : prim_color.a();
break;
}
case GE_TEXFUNC_REPLACE:
out_rgb = texcolor.rgb();
// Doubling even happens for replace.
if (samplerID.useColorDoubling)
out_rgb *= 2;
out_a = (rgba) ? texcolor.a() : prim_color.a();
break;
case GE_TEXFUNC_ADD:
case GE_TEXFUNC_UNKNOWN1:
case GE_TEXFUNC_UNKNOWN2:
case GE_TEXFUNC_UNKNOWN3:
// Don't need to clamp afterward, we always clamp before tests.
out_rgb = prim_color.rgb() + texcolor.rgb();
if (samplerID.useColorDoubling)
out_rgb *= 2;
// Alpha is still blended the common way.
out_a = (rgba) ? ((prim_color.a() + 1) * texcolor.a() / 256) : prim_color.a();
break;
}
return ToVec4IntResult(Vec4<int>(out_rgb, out_a));
}
static Vec4IntResult SOFTRAST_CALL SampleNearest(float s, float t, Vec4IntArg prim_color, const u8 *const *tptr, const uint16_t *bufw, int level, int levelFrac, const SamplerID &samplerID) {
int u, v;
// Nearest filtering only. Round texcoords.
GetTexelCoordinates(level, s, t, u, v, samplerID);
Vec4<int> c0 = Vec4<int>::FromRGBA(SampleNearest<1>(&u, &v, tptr[0], bufw[0], level, samplerID).v[0]);
if (levelFrac) {
GetTexelCoordinates(level + 1, s, t, u, v, samplerID);
Vec4<int> c1 = Vec4<int>::FromRGBA(SampleNearest<1>(&u, &v, tptr[1], bufw[1], level + 1, samplerID).v[0]);
c0 = (c1 * levelFrac + c0 * (16 - levelFrac)) >> 4;
}
return GetTextureFunctionOutput(prim_color, ToVec4IntArg(c0), samplerID);
}
static Vec4IntResult SOFTRAST_CALL SampleFetch(int u, int v, const u8 *tptr, int bufw, int level, const SamplerID &samplerID) {
Nearest4 c = SampleNearest<1>(&u, &v, tptr, bufw, level, samplerID);
return ToVec4IntResult(Vec4<int>::FromRGBA(c.v[0]));
}
static inline Vec4IntResult SOFTRAST_CALL ApplyTexelClampQuad(bool clamp, Vec4IntArg vec, int width) {
Vec4<int> result = vec;
#ifdef _M_SSE
if (clamp) {
// First, clamp to zero.
__m128i negmask = _mm_cmpgt_epi32(_mm_setzero_si128(), result.ivec);
result.ivec = _mm_andnot_si128(negmask, result.ivec);
// Now the high bound.
__m128i bound = _mm_set1_epi32(width > 512 ? 511 : width - 1);
__m128i goodmask = _mm_cmpgt_epi32(bound, result.ivec);
// Clear the ones that were too high, then or in the high bound to those.
result.ivec = _mm_and_si128(goodmask, result.ivec);
result.ivec = _mm_or_si128(result.ivec, _mm_andnot_si128(goodmask, bound));
} else {
result.ivec = _mm_and_si128(result.ivec, _mm_set1_epi32((width - 1) & 511));
}
#elif PPSSPP_ARCH(ARM64_NEON)
if (clamp) {
// Let's start by clamping to the maximum.
result.ivec = vminq_s32(result.ivec, vdupq_n_s32(width > 512 ? 511 : width - 1));
// And then to zero.
result.ivec = vmaxq_s32(result.ivec, vdupq_n_s32(0));
} else {
result.ivec = vandq_s32(result.ivec, vdupq_n_s32((width - 1) & 511));
}
#else
if (clamp) {
for (int i = 0; i < 4; ++i) {
result[i] = ClampUV(result[i], width);
}
} else {
for (int i = 0; i < 4; ++i) {
result[i] = WrapUV(result[i], width);
}
}
#endif
return ToVec4IntResult(result);
}
static inline Vec4IntResult SOFTRAST_CALL ApplyTexelClampQuadS(bool clamp, int u, int width) {
#ifdef _M_SSE
__m128i uvec = _mm_add_epi32(_mm_set1_epi32(u), _mm_set_epi32(1, 0, 1, 0));
return ApplyTexelClampQuad(clamp, uvec, width);
#elif PPSSPP_ARCH(ARM64_NEON)
static const int32_t u2[4] = { 0, 1, 0, 1 };
int32x4_t uvec = vaddq_s32(vdupq_n_s32(u), vld1q_s32(u2));
return ApplyTexelClampQuad(clamp, uvec, width);
#else
Vec4<int> result = Vec4<int>::AssignToAll(u) + Vec4<int>(0, 1, 0, 1);
return ApplyTexelClampQuad(clamp, ToVec4IntArg(result), width);
#endif
}
static inline Vec4IntResult SOFTRAST_CALL ApplyTexelClampQuadT(bool clamp, int v, int height) {
#ifdef _M_SSE
__m128i vvec = _mm_add_epi32(_mm_set1_epi32(v), _mm_set_epi32(1, 1, 0, 0));
return ApplyTexelClampQuad(clamp, vvec, height);
#elif PPSSPP_ARCH(ARM64_NEON)
static const int32_t v2[4] = { 0, 0, 1, 1 };
int32x4_t vvec = vaddq_s32(vdupq_n_s32(v), vld1q_s32(v2));
return ApplyTexelClampQuad(clamp, vvec, height);
#else
Vec4<int> result = Vec4<int>::AssignToAll(v) + Vec4<int>(0, 0, 1, 1);
return ApplyTexelClampQuad(clamp, ToVec4IntArg(result), height);
#endif
}
static inline Vec4IntResult SOFTRAST_CALL GetTexelCoordinatesQuadS(int level, float in_s, int &frac_u, const SamplerID &samplerID) {
int width = samplerID.cached.sizes[level].w;
int base_u = (int)(in_s * width * 256) - 128;
frac_u = (int)(base_u >> 4) & 0x0F;
base_u >>= 8;
// Need to generate and individually wrap/clamp the four sample coordinates. Ugh.
return ApplyTexelClampQuadS(samplerID.clampS, base_u, width);
}
static inline Vec4IntResult SOFTRAST_CALL GetTexelCoordinatesQuadT(int level, float in_t, int &frac_v, const SamplerID &samplerID) {
int height = samplerID.cached.sizes[level].h;
int base_v = (int)(in_t * height * 256) - 128;
frac_v = (int)(base_v >> 4) & 0x0F;
base_v >>= 8;
// Need to generate and individually wrap/clamp the four sample coordinates. Ugh.
return ApplyTexelClampQuadT(samplerID.clampT, base_v, height);
}
static Vec4IntResult SOFTRAST_CALL SampleLinearLevel(float s, float t, const u8 *const *tptr, const uint16_t *bufw, int texlevel, const SamplerID &samplerID) {
int frac_u, frac_v;
const Vec4<int> u = GetTexelCoordinatesQuadS(texlevel, s, frac_u, samplerID);
const Vec4<int> v = GetTexelCoordinatesQuadT(texlevel, t, frac_v, samplerID);
Nearest4 c = SampleNearest<4>(u.AsArray(), v.AsArray(), tptr[0], bufw[0], texlevel, samplerID);
#ifdef _M_SSE
__m128i zero = _mm_setzero_si128();
__m128i samples = _mm_loadu_si128((const __m128i*)(c.v));
__m128i top = _mm_unpacklo_epi8(samples, zero);
__m128i bot = _mm_unpackhi_epi8(samples, zero);
// I just a want reasonably efficient
// __m128i mul_u = _mm_setr_epi16(0x10 - frac_u, 0x10 - frac_u, 0x10 - frac_u, 0x10 - frac_u, frac_u, frac_u, frac_u, frac_u);
// GCC/clang do something decent for that, MSVC - not so much.
// Hence this. (0x10 - frac_u) is expressed as (frac_u ^ 0xF) + 1,
// which REQUIRES 0 <= frac_u < 0x10.
__m128i mul_u = _mm_set1_epi16(frac_u);
mul_u = _mm_xor_si128(mul_u, _mm_setr_epi16(0xF, 0xF, 0xF, 0xF, 0x0, 0x0, 0x0, 0x0));
mul_u = _mm_add_epi16(mul_u, _mm_setr_epi16(0x1, 0x1, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0));
top = _mm_mullo_epi16(top, _mm_set1_epi16(0x10 - frac_v));
bot = _mm_mullo_epi16(bot, _mm_set1_epi16(frac_v));
__m128i sum = _mm_add_epi16(top, bot);
sum = _mm_mullo_epi16(sum, mul_u);
sum = _mm_add_epi16(sum, _mm_shuffle_epi32(sum, _MM_SHUFFLE(3, 2, 3, 2)));
sum = _mm_srli_epi16(sum, 8);
sum = _mm_unpacklo_epi16(sum, zero);
return sum;
#else
Vec4<int> texcolor_tl = Vec4<int>::FromRGBA(c.v[0]);
Vec4<int> texcolor_tr = Vec4<int>::FromRGBA(c.v[1]);
Vec4<int> texcolor_bl = Vec4<int>::FromRGBA(c.v[2]);
Vec4<int> texcolor_br = Vec4<int>::FromRGBA(c.v[3]);
Vec4<int> top = texcolor_tl * (0x10 - frac_u) + texcolor_tr * frac_u;
Vec4<int> bot = texcolor_bl * (0x10 - frac_u) + texcolor_br * frac_u;
return ToVec4IntResult((top * (0x10 - frac_v) + bot * frac_v) >> (4 + 4));
#endif
}
static Vec4IntResult SOFTRAST_CALL SampleLinear(float s, float t, Vec4IntArg prim_color, const u8 *const *tptr, const uint16_t *bufw, int texlevel, int levelFrac, const SamplerID &samplerID) {
Vec4<int> c0 = SampleLinearLevel(s, t, tptr, bufw, texlevel, samplerID);
if (levelFrac) {
const Vec4<int> c1 = SampleLinearLevel(s, t, tptr + 1, bufw + 1, texlevel + 1, samplerID);
c0 = (c1 * levelFrac + c0 * (16 - levelFrac)) >> 4;
}
return GetTextureFunctionOutput(prim_color, ToVec4IntArg(c0), samplerID);
}
};