mirror of
https://github.com/hrydgard/ppsspp.git
synced 2024-12-18 02:48:28 +00:00
183 lines
5.3 KiB
C++
183 lines
5.3 KiB
C++
#include <cstdio>
|
|
#include <algorithm>
|
|
#include <thread>
|
|
#include <deque>
|
|
#include <condition_variable>
|
|
#include <mutex>
|
|
#include <vector>
|
|
#include <atomic>
|
|
|
|
#include "Common/Log.h"
|
|
#include "Common/Thread/ThreadUtil.h"
|
|
#include "Common/Thread/ThreadManager.h"
|
|
|
|
// Threads and task scheduling
|
|
//
|
|
// * The threadpool should contain a number of threads that's the the number of cores,
|
|
// plus a fixed number more for I/O-limited background tasks.
|
|
// * Parallel compute-limited loops should use as many threads as there are cores.
|
|
// They should always be scheduled to the first N threads.
|
|
// * For some tasks, splitting the input values up linearly between the threads
|
|
// is not fair. However, we ignore that for now.
|
|
|
|
const int MAX_CORES_TO_USE = 16;
|
|
const int EXTRA_THREADS = 4; // For I/O limited tasks
|
|
|
|
struct GlobalThreadContext {
|
|
std::mutex mutex; // associated with each respective condition variable
|
|
std::deque<Task *> queue;
|
|
std::vector<ThreadContext *> threads_;
|
|
|
|
int roundRobin = 0;
|
|
};
|
|
|
|
struct ThreadContext {
|
|
std::thread thread; // the worker thread
|
|
std::condition_variable cond; // used to signal new work
|
|
std::mutex mutex; // protects the local queue.
|
|
std::atomic<int> queueSize;
|
|
int index;
|
|
std::atomic<bool> cancelled;
|
|
std::deque<Task *> private_queue;
|
|
};
|
|
|
|
ThreadManager::ThreadManager() : global_(new GlobalThreadContext()) {
|
|
|
|
}
|
|
|
|
ThreadManager::~ThreadManager() {
|
|
delete global_;
|
|
}
|
|
|
|
void ThreadManager::Teardown() {
|
|
for (size_t i = 0; i < global_->threads_.size(); i++) {
|
|
global_->threads_[i]->cancelled = true;
|
|
global_->threads_[i]->cond.notify_one();
|
|
}
|
|
for (size_t i = 0; i < global_->threads_.size(); i++) {
|
|
global_->threads_[i]->thread.join();
|
|
delete global_->threads_[i];
|
|
}
|
|
global_->threads_.clear();
|
|
}
|
|
|
|
static void WorkerThreadFunc(GlobalThreadContext *global, ThreadContext *thread) {
|
|
char threadName[16];
|
|
snprintf(threadName, sizeof(threadName), "PoolWorker %d", thread->index);
|
|
SetCurrentThreadName(threadName);
|
|
while (!thread->cancelled) {
|
|
Task *task = nullptr;
|
|
|
|
// Check the global queue first, then check the private queue and wait if there's nothing to do.
|
|
{
|
|
// Grab one from the global queue if there is any.
|
|
std::unique_lock<std::mutex> lock(global->mutex);
|
|
if (!global->queue.empty()) {
|
|
task = global->queue.front();
|
|
global->queue.pop_front();
|
|
}
|
|
}
|
|
|
|
if (!task) {
|
|
std::unique_lock<std::mutex> lock(thread->mutex);
|
|
if (!thread->private_queue.empty()) {
|
|
task = thread->private_queue.front();
|
|
thread->private_queue.pop_front();
|
|
thread->queueSize.store((int)thread->private_queue.size());
|
|
} else {
|
|
thread->cond.wait(lock);
|
|
}
|
|
}
|
|
// The task itself takes care of notifying anyone waiting on it. Not the
|
|
// responsibility of the ThreadManager (although it could be!).
|
|
if (task) {
|
|
task->Run();
|
|
delete task;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ThreadManager::Init(int numRealCores, int numLogicalCoresPerCpu) {
|
|
if (IsInitialized()) {
|
|
Teardown();
|
|
}
|
|
|
|
numComputeThreads_ = std::min(numRealCores * numLogicalCoresPerCpu, MAX_CORES_TO_USE);
|
|
int numThreads = numComputeThreads_ + EXTRA_THREADS;
|
|
numThreads_ = numThreads;
|
|
|
|
INFO_LOG(SYSTEM, "ThreadManager::Init(compute threads: %d, all: %d)", numComputeThreads_, numThreads_);
|
|
|
|
for (int i = 0; i < numThreads; i++) {
|
|
ThreadContext *thread = new ThreadContext();
|
|
thread->cancelled.store(false);
|
|
thread->thread = std::thread(&WorkerThreadFunc, global_, thread);
|
|
thread->index = i;
|
|
global_->threads_.push_back(thread);
|
|
}
|
|
}
|
|
|
|
void ThreadManager::EnqueueTask(Task *task, TaskType taskType) {
|
|
_assert_msg_(IsInitialized(), "ThreadManager not initialized");
|
|
|
|
int maxThread;
|
|
int threadOffset = 0;
|
|
if (taskType == TaskType::CPU_COMPUTE) {
|
|
// only the threads reserved for heavy compute.
|
|
maxThread = numComputeThreads_;
|
|
threadOffset = 0;
|
|
} else {
|
|
// any free thread
|
|
maxThread = numThreads_;
|
|
threadOffset = numComputeThreads_;
|
|
}
|
|
|
|
// Find a thread with no outstanding work.
|
|
int threadNum = threadOffset;
|
|
for (int i = 0; i < maxThread; i++, threadNum++) {
|
|
if (threadNum >= global_->threads_.size()) {
|
|
threadNum = 0;
|
|
}
|
|
ThreadContext *thread = global_->threads_[threadNum];
|
|
if (thread->queueSize.load() == 0) {
|
|
std::unique_lock<std::mutex> lock(thread->mutex);
|
|
thread->private_queue.push_back(task);
|
|
thread->queueSize.store((int)thread->private_queue.size());
|
|
thread->cond.notify_one();
|
|
// Found it - done.
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Still not scheduled? Put it on the global queue and notify a thread chosen by round-robin.
|
|
// Not particularly scientific, but hopefully we should not run into this too much.
|
|
{
|
|
std::unique_lock<std::mutex> lock(global_->mutex);
|
|
global_->queue.push_back(task);
|
|
global_->threads_[global_->roundRobin % maxThread]->cond.notify_one();
|
|
global_->roundRobin++;
|
|
}
|
|
}
|
|
|
|
void ThreadManager::EnqueueTaskOnThread(int threadNum, Task *task, TaskType taskType) {
|
|
_assert_msg_(threadNum >= 0 && threadNum < (int)global_->threads_.size(), "Bad threadnum or not initialized");
|
|
ThreadContext *thread = global_->threads_[threadNum];
|
|
{
|
|
std::unique_lock<std::mutex> lock(thread->mutex);
|
|
thread->private_queue.push_back(task);
|
|
thread->cond.notify_one();
|
|
}
|
|
}
|
|
|
|
int ThreadManager::GetNumLooperThreads() const {
|
|
return numComputeThreads_;
|
|
}
|
|
|
|
void ThreadManager::TryCancelTask(uint64_t taskID) {
|
|
// Do nothing for now, just let it finish.
|
|
}
|
|
|
|
bool ThreadManager::IsInitialized() const {
|
|
return !global_->threads_.empty();
|
|
}
|