ppsspp/GPU/Common/VertexDecoderArm.cpp
2020-08-15 19:08:54 +02:00

1655 lines
55 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#if PPSSPP_ARCH(ARM)
// This allows highlighting to work. Yay.
#ifdef __INTELLISENSE__
#define ARM
#endif
#include <stddef.h>
#include "Common/CPUDetect.h"
#include "Core/Config.h"
#include "Core/Reporting.h"
#include "GPU/GPUState.h"
#include "GPU/Common/VertexDecoderCommon.h"
extern void DisassembleArm(const u8 *data, int size);
bool NEONSkinning = false;
bool NEONMorphing = false;
// Used only in non-NEON mode.
alignas(16) static float skinMatrix[12];
// Will be used only in NEON mode.
alignas(16) static float bones[16 * 8]; // First two are kept in registers
alignas(16) static float boneMask[4] = {1.0f, 1.0f, 1.0f, 0.0f};
// NEON register allocation:
// Q0: Texture scaling parameters
// Q1: Temp storage
// Q2: Vector-by-matrix accumulator
// Q3: Unused (multiplier temp when morphing)
//
// When skinning, we'll use Q4-Q7 as the "matrix accumulator".
// First two matrices will be preloaded into Q8-Q11 and Q12-Q15 to reduce
// memory bandwidth requirements.
// The rest will be dumped to bones as on x86.
//
// When morphing, we never skin. So we're free to use Q4+.
// Q4 is for color shift values, and Q5 is a secondary multipler inside the morph.
// TODO: Maybe load all morph weights to Q6+ to avoid memory access?
static const float by128 = 1.0f / 128.0f;
static const float by16384 = 1.0f / 16384.0f;
static const float by32768 = 1.0f / 32768.0f;
using namespace ArmGen;
// NOTE: Avoid R9, it's dangerous on iOS.
//
// r0-r3: parameters
// r4-r11: local vars. save, except R9.
// r12: interprocedure scratch
// r13: stack8
static const ARMReg tempReg1 = R3;
static const ARMReg tempReg2 = R4;
static const ARMReg tempReg3 = R5;
static const ARMReg scratchReg = R6;
static const ARMReg scratchReg2 = R7;
static const ARMReg scratchReg3 = R8;
static const ARMReg fullAlphaReg = R12;
static const ARMReg srcReg = R0;
static const ARMReg dstReg = R1;
static const ARMReg counterReg = R2;
static const ARMReg fpScratchReg = S4;
static const ARMReg fpScratchReg2 = S5;
static const ARMReg fpScratchReg3 = S6;
static const ARMReg fpScratchReg4 = S7;
static const ARMReg fpUscaleReg = S0;
static const ARMReg fpVscaleReg = S1;
static const ARMReg fpUoffsetReg = S2;
static const ARMReg fpVoffsetReg = S3;
// Simpler aliases for NEON. Overlaps with corresponding VFP regs.
static const ARMReg neonUVScaleReg = D0;
static const ARMReg neonUVOffsetReg = D1;
static const ARMReg neonScratchReg = D2;
static const ARMReg neonScratchReg2 = D3;
static const ARMReg neonScratchRegQ = Q1; // Overlaps with all the scratch regs
// Everything above S6 is fair game for skinning
// S8-S15 are used during matrix generation
// These only live through the matrix multiplication
static const ARMReg src[3] = {S8, S9, S10}; // skin source
static const ARMReg acc[3] = {S11, S12, S13}; // skin accumulator
static const ARMReg srcNEON = Q2;
static const ARMReg accNEON = Q3;
static const JitLookup jitLookup[] = {
{&VertexDecoder::Step_WeightsU8, &VertexDecoderJitCache::Jit_WeightsU8},
{&VertexDecoder::Step_WeightsU16, &VertexDecoderJitCache::Jit_WeightsU16},
{&VertexDecoder::Step_WeightsFloat, &VertexDecoderJitCache::Jit_WeightsFloat},
{&VertexDecoder::Step_WeightsU8Skin, &VertexDecoderJitCache::Jit_WeightsU8Skin},
{&VertexDecoder::Step_WeightsU16Skin, &VertexDecoderJitCache::Jit_WeightsU16Skin},
{&VertexDecoder::Step_WeightsFloatSkin, &VertexDecoderJitCache::Jit_WeightsFloatSkin},
{&VertexDecoder::Step_TcFloat, &VertexDecoderJitCache::Jit_TcFloat},
{&VertexDecoder::Step_TcU8ToFloat, &VertexDecoderJitCache::Jit_TcU8ToFloat},
{&VertexDecoder::Step_TcU16ToFloat, &VertexDecoderJitCache::Jit_TcU16ToFloat},
{&VertexDecoder::Step_TcU8Prescale, &VertexDecoderJitCache::Jit_TcU8Prescale},
{&VertexDecoder::Step_TcU16Prescale, &VertexDecoderJitCache::Jit_TcU16Prescale},
{&VertexDecoder::Step_TcFloatPrescale, &VertexDecoderJitCache::Jit_TcFloatPrescale},
{&VertexDecoder::Step_TcFloatThrough, &VertexDecoderJitCache::Jit_TcFloatThrough},
{&VertexDecoder::Step_TcU16ThroughToFloat, &VertexDecoderJitCache::Jit_TcU16ThroughToFloat},
{&VertexDecoder::Step_NormalS8, &VertexDecoderJitCache::Jit_NormalS8},
{&VertexDecoder::Step_NormalS16, &VertexDecoderJitCache::Jit_NormalS16},
{&VertexDecoder::Step_NormalFloat, &VertexDecoderJitCache::Jit_NormalFloat},
{&VertexDecoder::Step_NormalS8Skin, &VertexDecoderJitCache::Jit_NormalS8Skin},
{&VertexDecoder::Step_NormalS16Skin, &VertexDecoderJitCache::Jit_NormalS16Skin},
{&VertexDecoder::Step_NormalFloatSkin, &VertexDecoderJitCache::Jit_NormalFloatSkin},
{&VertexDecoder::Step_Color8888, &VertexDecoderJitCache::Jit_Color8888},
{&VertexDecoder::Step_Color4444, &VertexDecoderJitCache::Jit_Color4444},
{&VertexDecoder::Step_Color565, &VertexDecoderJitCache::Jit_Color565},
{&VertexDecoder::Step_Color5551, &VertexDecoderJitCache::Jit_Color5551},
{&VertexDecoder::Step_PosS8Through, &VertexDecoderJitCache::Jit_PosS8Through},
{&VertexDecoder::Step_PosS16Through, &VertexDecoderJitCache::Jit_PosS16Through},
{&VertexDecoder::Step_PosFloatThrough, &VertexDecoderJitCache::Jit_PosFloat},
{&VertexDecoder::Step_PosS8, &VertexDecoderJitCache::Jit_PosS8},
{&VertexDecoder::Step_PosS16, &VertexDecoderJitCache::Jit_PosS16},
{&VertexDecoder::Step_PosFloat, &VertexDecoderJitCache::Jit_PosFloat},
{&VertexDecoder::Step_PosS8Skin, &VertexDecoderJitCache::Jit_PosS8Skin},
{&VertexDecoder::Step_PosS16Skin, &VertexDecoderJitCache::Jit_PosS16Skin},
{&VertexDecoder::Step_PosFloatSkin, &VertexDecoderJitCache::Jit_PosFloatSkin},
{&VertexDecoder::Step_NormalS8Morph, &VertexDecoderJitCache::Jit_NormalS8Morph},
{&VertexDecoder::Step_NormalS16Morph, &VertexDecoderJitCache::Jit_NormalS16Morph},
{&VertexDecoder::Step_NormalFloatMorph, &VertexDecoderJitCache::Jit_NormalFloatMorph},
{&VertexDecoder::Step_PosS8Morph, &VertexDecoderJitCache::Jit_PosS8Morph},
{&VertexDecoder::Step_PosS16Morph, &VertexDecoderJitCache::Jit_PosS16Morph},
{&VertexDecoder::Step_PosFloatMorph, &VertexDecoderJitCache::Jit_PosFloatMorph},
{&VertexDecoder::Step_Color8888Morph, &VertexDecoderJitCache::Jit_Color8888Morph},
{&VertexDecoder::Step_Color4444Morph, &VertexDecoderJitCache::Jit_Color4444Morph},
{&VertexDecoder::Step_Color565Morph, &VertexDecoderJitCache::Jit_Color565Morph},
{&VertexDecoder::Step_Color5551Morph, &VertexDecoderJitCache::Jit_Color5551Morph},
};
JittedVertexDecoder VertexDecoderJitCache::Compile(const VertexDecoder &dec, int32_t *jittedSize) {
dec_ = &dec;
BeginWrite();
const u8 *start = AlignCode16();
bool prescaleStep = false;
bool skinning = false;
NEONSkinning = cpu_info.bNEON;
NEONMorphing = cpu_info.bNEON;
// Look for prescaled texcoord steps
for (int i = 0; i < dec.numSteps_; i++) {
if (dec.steps_[i] == &VertexDecoder::Step_TcU8Prescale ||
dec.steps_[i] == &VertexDecoder::Step_TcU16Prescale ||
dec.steps_[i] == &VertexDecoder::Step_TcFloatPrescale) {
prescaleStep = true;
}
if (dec.steps_[i] == &VertexDecoder::Step_WeightsU8Skin ||
dec.steps_[i] == &VertexDecoder::Step_WeightsU16Skin ||
dec.steps_[i] == &VertexDecoder::Step_WeightsFloatSkin) {
skinning = true;
}
}
// Not used below, but useful for logging.
(void)skinning;
SetCC(CC_AL);
PUSH(8, R4, R5, R6, R7, R8, R10, R11, R_LR);
if (NEONSkinning || NEONMorphing) {
VPUSH(D8, 8);
}
// Keep the scale/offset in a few fp registers if we need it.
if (prescaleStep) {
MOVP2R(R3, &gstate_c.uv);
if (cpu_info.bNEON) {
VLD1(F_32, neonUVScaleReg, R3, 2, ALIGN_NONE);
if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_8BIT) {
VMOV_neon(F_32, neonScratchReg, by128);
VMUL(F_32, neonUVScaleReg, neonUVScaleReg, neonScratchReg);
} else if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_16BIT) {
VMOV_neon(F_32, neonScratchReg, by32768);
VMUL(F_32, neonUVScaleReg, neonUVScaleReg, neonScratchReg);
}
} else {
VLDMIA(R3, false, fpUscaleReg, 4); // fp{Uscale, Yscale, Uoffset, Voffset}Reg = {S0-S4}
if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_8BIT) {
MOVI2F(fpScratchReg, by128, scratchReg);
VMUL(fpUscaleReg, fpUscaleReg, fpScratchReg);
VMUL(fpVscaleReg, fpVscaleReg, fpScratchReg);
} else if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_16BIT) {
MOVI2F(fpScratchReg, by32768, scratchReg);
VMUL(fpUscaleReg, fpUscaleReg, fpScratchReg);
VMUL(fpVscaleReg, fpVscaleReg, fpScratchReg);
}
}
}
// Add code to convert matrices to 4x4.
// Later we might want to do this when the matrices are loaded instead.
int boneCount = 0;
if (NEONSkinning && dec.weighttype && g_Config.bSoftwareSkinning) {
// Copying from R3 to R4
MOVP2R(R3, gstate.boneMatrix);
MOVP2R(R4, bones);
MOVP2R(R5, boneMask);
VLD1(F_32, Q3, R5, 2, ALIGN_128);
for (int i = 0; i < dec.nweights; i++) {
VLD1(F_32, Q4, R3, 2); // Load 128 bits even though we just want 96
VMUL(F_32, Q4, Q4, Q3);
ADD(R3, R3, 12);
VLD1(F_32, Q5, R3, 2);
VMUL(F_32, Q5, Q5, Q3);
ADD(R3, R3, 12);
VLD1(F_32, Q6, R3, 2);
VMUL(F_32, Q6, Q6, Q3);
ADD(R3, R3, 12);
VLD1(F_32, Q7, R3, 2);
VMUL(F_32, Q7, Q7, Q3);
ADD(R3, R3, 12);
// First two matrices are in registers.
if (i == 0) {
VMOV(Q8, Q4);
VMOV(Q9, Q5);
VMOV(Q10, Q6);
VMOV(Q11, Q7);
ADD(R4, R4, 16 * 4);
} else if (i == 1) {
VMOV(Q12, Q4);
VMOV(Q13, Q5);
VMOV(Q14, Q6);
VMOV(Q15, Q7);
ADD(R4, R4, 16 * 4);
} else {
VST1(F_32, Q4, R4, 2, ALIGN_128, REG_UPDATE);
VST1(F_32, Q5, R4, 2, ALIGN_128, REG_UPDATE);
VST1(F_32, Q6, R4, 2, ALIGN_128, REG_UPDATE);
VST1(F_32, Q7, R4, 2, ALIGN_128, REG_UPDATE);
}
}
}
if (dec.col) {
// Or LDB and skip the conditional? This is probably cheaper.
MOV(fullAlphaReg, 0xFF);
}
JumpTarget loopStart = GetCodePtr();
// Preload data cache ahead of reading. This offset seems pretty good.
PLD(srcReg, 64);
for (int i = 0; i < dec.numSteps_; i++) {
if (!CompileStep(dec, i)) {
EndWrite();
// Reset the code ptr and return zero to indicate that we failed.
ResetCodePtr(GetOffset(start));
char temp[1024] = {0};
dec.ToString(temp);
INFO_LOG(G3D, "Could not compile vertex decoder: %s", temp);
return 0;
}
}
ADDI2R(srcReg, srcReg, dec.VertexSize(), scratchReg);
ADDI2R(dstReg, dstReg, dec.decFmt.stride, scratchReg);
SUBS(counterReg, counterReg, 1);
B_CC(CC_NEQ, loopStart);
if (dec.col) {
MOVP2R(tempReg1, &gstate_c.vertexFullAlpha);
CMP(fullAlphaReg, 0);
SetCC(CC_EQ);
STRB(fullAlphaReg, tempReg1, 0);
SetCC(CC_AL);
}
if (NEONSkinning || NEONMorphing) {
VPOP(D8, 8);
}
POP(8, R4, R5, R6, R7, R8, R10, R11, R_PC);
FlushLitPool();
FlushIcache();
/*
DisassembleArm(start, GetCodePtr() - start);
char temp[1024] = {0};
dec.ToString(temp);
INFO_LOG(G3D, "%s", temp);
*/
*jittedSize = GetCodePtr() - start;
EndWrite();
return (JittedVertexDecoder)start;
}
void VertexDecoderJitCache::Jit_WeightsU8() {
// Basic implementation - a byte at a time. TODO: Optimize
int j;
for (j = 0; j < dec_->nweights; j++) {
LDRB(tempReg1, srcReg, dec_->weightoff + j);
STRB(tempReg1, dstReg, dec_->decFmt.w0off + j);
}
if (j & 3) {
// Create a zero register. Might want to make a fixed one.
EOR(scratchReg, scratchReg, scratchReg);
}
while (j & 3) {
STRB(scratchReg, dstReg, dec_->decFmt.w0off + j);
j++;
}
}
void VertexDecoderJitCache::Jit_WeightsU16() {
// Basic implementation - a short at a time. TODO: Optimize
int j;
for (j = 0; j < dec_->nweights; j++) {
LDRH(tempReg1, srcReg, dec_->weightoff + j * 2);
STRH(tempReg1, dstReg, dec_->decFmt.w0off + j * 2);
}
if (j & 3) {
// Create a zero register. Might want to make a fixed one.
EOR(scratchReg, scratchReg, scratchReg);
}
while (j & 3) {
STRH(scratchReg, dstReg, dec_->decFmt.w0off + j * 2);
j++;
}
}
void VertexDecoderJitCache::Jit_WeightsFloat() {
int j;
for (j = 0; j < dec_->nweights; j++) {
LDR(tempReg1, srcReg, dec_->weightoff + j * 4);
STR(tempReg1, dstReg, dec_->decFmt.w0off + j * 4);
}
if (j & 3) {
EOR(tempReg1, tempReg1, tempReg1);
}
while (j & 3) { // Zero additional weights rounding up to 4.
STR(tempReg1, dstReg, dec_->decFmt.w0off + j * 4);
j++;
}
}
static const ARMReg weightRegs[8] = { S8, S9, S10, S11, S12, S13, S14, S15 };
static const ARMReg neonWeightRegsD[4] = { D4, D5, D6, D7 };
static const ARMReg neonWeightRegsQ[2] = { Q2, Q3 };
void VertexDecoderJitCache::Jit_ApplyWeights() {
if (NEONSkinning) {
// We construct a matrix in Q4-Q7
// We can use Q1 as temp.
if (dec_->nweights >= 2) {
MOVP2R(scratchReg, bones + 16 * 2);
}
for (int i = 0; i < dec_->nweights; i++) {
switch (i) {
case 0:
VMUL_scalar(F_32, Q4, Q8, QScalar(neonWeightRegsQ[0], 0));
VMUL_scalar(F_32, Q5, Q9, QScalar(neonWeightRegsQ[0], 0));
VMUL_scalar(F_32, Q6, Q10, QScalar(neonWeightRegsQ[0], 0));
VMUL_scalar(F_32, Q7, Q11, QScalar(neonWeightRegsQ[0], 0));
break;
case 1:
// Krait likes VDUP + VFMA better than VMLA, and it's easy to do here.
if (cpu_info.bVFPv4) {
VDUP(F_32, Q1, neonWeightRegsQ[i >> 2], i & 1);
VFMA(F_32, Q4, Q12, Q1);
VFMA(F_32, Q5, Q13, Q1);
VFMA(F_32, Q6, Q14, Q1);
VFMA(F_32, Q7, Q15, Q1);
} else {
VMLA_scalar(F_32, Q4, Q12, QScalar(neonWeightRegsQ[0], 1));
VMLA_scalar(F_32, Q5, Q13, QScalar(neonWeightRegsQ[0], 1));
VMLA_scalar(F_32, Q6, Q14, QScalar(neonWeightRegsQ[0], 1));
VMLA_scalar(F_32, Q7, Q15, QScalar(neonWeightRegsQ[0], 1));
}
break;
default:
// Matrices 2+ need to be loaded from memory.
// Wonder if we can free up one more register so we could get some parallelism.
// Actually Q3 is free if there are fewer than 5 weights...
if (dec_->nweights <= 4) {
VLD1(F_32, Q1, scratchReg, 2, ALIGN_128, REG_UPDATE);
VLD1(F_32, Q3, scratchReg, 2, ALIGN_128, REG_UPDATE);
VMLA_scalar(F_32, Q4, Q1, QScalar(neonWeightRegsQ[i >> 2], i & 3));
VMLA_scalar(F_32, Q5, Q3, QScalar(neonWeightRegsQ[i >> 2], i & 3));
VLD1(F_32, Q1, scratchReg, 2, ALIGN_128, REG_UPDATE);
VLD1(F_32, Q3, scratchReg, 2, ALIGN_128, REG_UPDATE);
VMLA_scalar(F_32, Q6, Q1, QScalar(neonWeightRegsQ[i >> 2], i & 3));
VMLA_scalar(F_32, Q7, Q3, QScalar(neonWeightRegsQ[i >> 2], i & 3));
} else {
VLD1(F_32, Q1, scratchReg, 2, ALIGN_128, REG_UPDATE);
VMLA_scalar(F_32, Q4, Q1, QScalar(neonWeightRegsQ[i >> 2], i & 3));
VLD1(F_32, Q1, scratchReg, 2, ALIGN_128, REG_UPDATE);
VMLA_scalar(F_32, Q5, Q1, QScalar(neonWeightRegsQ[i >> 2], i & 3));
VLD1(F_32, Q1, scratchReg, 2, ALIGN_128, REG_UPDATE);
VMLA_scalar(F_32, Q6, Q1, QScalar(neonWeightRegsQ[i >> 2], i & 3));
VLD1(F_32, Q1, scratchReg, 2, ALIGN_128, REG_UPDATE);
VMLA_scalar(F_32, Q7, Q1, QScalar(neonWeightRegsQ[i >> 2], i & 3));
}
break;
}
}
} else {
MOVP2R(tempReg2, skinMatrix);
// This approach saves a few stores but accesses the matrices in a more
// sparse order.
const float *bone = &gstate.boneMatrix[0];
MOVP2R(tempReg1, bone);
for (int i = 0; i < 12; i++) {
VLDR(fpScratchReg3, tempReg1, i * 4);
VMUL(fpScratchReg3, fpScratchReg3, weightRegs[0]);
for (int j = 1; j < dec_->nweights; j++) {
VLDR(fpScratchReg2, tempReg1, i * 4 + j * 4 * 12);
VMLA(fpScratchReg3, fpScratchReg2, weightRegs[j]);
}
VSTR(fpScratchReg3, tempReg2, i * 4);
}
}
}
void VertexDecoderJitCache::Jit_WeightsU8Skin() {
if (NEONSkinning) {
// Weight is first so srcReg is correct.
switch (dec_->nweights) {
case 1: VLD1_lane(I_8, neonScratchReg, srcReg, 0, false); break;
case 2: VLD1_lane(I_16, neonScratchReg, srcReg, 0, false); break;
default:
// For 3, we over read, for over 4, we read more later.
VLD1_lane(I_32, neonScratchReg, srcReg, 0, false);
break;
}
// This can be represented as a constant.
VMOV_neon(F_32, Q3, by128);
VMOVL(I_8 | I_UNSIGNED, neonScratchRegQ, neonScratchReg);
VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg);
VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ);
VMUL(F_32, neonWeightRegsQ[0], neonScratchRegQ, Q3);
if (dec_->nweights > 4) {
ADD(tempReg1, srcReg, 4 * sizeof(u8));
switch (dec_->nweights) {
case 5: VLD1_lane(I_8, neonScratchReg, tempReg1, 0, false); break;
case 6: VLD1_lane(I_16, neonScratchReg, tempReg1, 0, false); break;
case 7:
case 8:
VLD1_lane(I_32, neonScratchReg, tempReg1, 0, false);
break;
}
VMOVL(I_8 | I_UNSIGNED, neonScratchRegQ, neonScratchReg);
VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg);
VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ);
VMUL(F_32, neonWeightRegsQ[1], neonScratchRegQ, Q3);
}
} else {
for (int j = 0; j < dec_->nweights; j++) {
LDRB(tempReg1, srcReg, dec_->weightoff + j);
VMOV(fpScratchReg, tempReg1);
VCVT(fpScratchReg, fpScratchReg, TO_FLOAT);
MOVI2F(fpScratchReg2, by128, scratchReg);
VMUL(weightRegs[j], fpScratchReg, fpScratchReg2);
}
}
Jit_ApplyWeights();
}
void VertexDecoderJitCache::Jit_WeightsU16Skin() {
if (NEONSkinning) {
switch (dec_->nweights) {
case 1: VLD1_lane(I_16, neonScratchReg, srcReg, 0, true); break;
case 2: VLD1_lane(I_32, neonScratchReg, srcReg, 0, false); break;
default:
// For 3, we over read, for over 4, we read more later.
VLD1(I_32, neonScratchReg, srcReg, 1, ALIGN_NONE);
break;
}
// This can be represented as a constant.
VMOV_neon(F_32, Q3, by32768);
VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg);
VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ);
VMUL(F_32, neonWeightRegsQ[0], neonScratchRegQ, Q3);
if (dec_->nweights > 4) {
ADD(tempReg1, srcReg, 4 * sizeof(u16));
switch (dec_->nweights) {
case 5: VLD1_lane(I_16, neonScratchReg, tempReg1, 0, true); break;
case 6: VLD1_lane(I_32, neonScratchReg, tempReg1, 0, false); break;
case 7:
case 8:
VLD1(I_32, neonScratchReg, tempReg1, 1, ALIGN_NONE);
break;
}
VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg);
VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ);
VMUL(F_32, neonWeightRegsQ[1], neonScratchRegQ, Q3);
}
} else {
// Fallback and non-neon
for (int j = 0; j < dec_->nweights; j++) {
LDRH(tempReg1, srcReg, dec_->weightoff + j * 2);
VMOV(fpScratchReg, tempReg1);
VCVT(fpScratchReg, fpScratchReg, TO_FLOAT);
MOVI2F(fpScratchReg2, by32768, scratchReg);
VMUL(weightRegs[j], fpScratchReg, fpScratchReg2);
}
}
Jit_ApplyWeights();
}
void VertexDecoderJitCache::Jit_WeightsFloatSkin() {
for (int i = 1; i < dec_->nweights; ++i) {
_dbg_assert_msg_(weightRegs[i - 1] + 1 == weightRegs[i], "VertexDecoder weightRegs must be in order.");
}
// Weights are always first, so we can use srcReg directly.
if (NEONSkinning) {
// if (false) because this path breaks Daxter. VLDMIA with d registers doesn't seem to work as expected.
if (dec_->nweights == 1) {
VLD1_lane(F_32, neonWeightRegsD[0], srcReg, 0, true);
} else {
// We may over-read by one float but this is not a tragedy.
VLD1(F_32, neonWeightRegsD[0], srcReg, (dec_->nweights + 1) / 2);
}
} else {
VLDMIA(srcReg, false, weightRegs[0], dec_->nweights);
}
Jit_ApplyWeights();
}
void VertexDecoderJitCache::Jit_TcFloat() {
LDR(tempReg1, srcReg, dec_->tcoff);
LDR(tempReg2, srcReg, dec_->tcoff + 4);
STR(tempReg1, dstReg, dec_->decFmt.uvoff);
STR(tempReg2, dstReg, dec_->decFmt.uvoff + 4);
}
void VertexDecoderJitCache::Jit_TcU16ThroughToFloat() {
LDRH(tempReg1, srcReg, dec_->tcoff);
LDRH(tempReg2, srcReg, dec_->tcoff + 2);
MOVP2R(scratchReg, &gstate_c.vertBounds.minU);
auto updateSide = [&](ARMReg r, CCFlags cc, u32 off) {
LDRH(tempReg3, scratchReg, off);
CMP(r, tempReg3);
SetCC(cc);
STRH(r, scratchReg, off);
SetCC(CC_AL);
};
// TODO: Can this actually be fast? Hmm, floats aren't better.
updateSide(tempReg1, CC_LT, offsetof(KnownVertexBounds, minU));
updateSide(tempReg1, CC_GT, offsetof(KnownVertexBounds, maxU));
updateSide(tempReg2, CC_LT, offsetof(KnownVertexBounds, minV));
updateSide(tempReg2, CC_GT, offsetof(KnownVertexBounds, maxV));
if (cpu_info.bNEON) {
ADD(scratchReg, srcReg, dec_->tcoff);
VLD1_lane(I_32, neonScratchReg, scratchReg, 0, false);
VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg); // Widen to 32-bit
VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ);
ADD(scratchReg2, dstReg, dec_->decFmt.uvoff);
VST1(F_32, neonScratchReg, scratchReg2, 1, ALIGN_NONE);
} else {
VMOV(fpScratchReg, tempReg1);
VMOV(fpScratchReg2, tempReg2);
VCVT(fpScratchReg, fpScratchReg, TO_FLOAT);
VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT);
VSTR(fpScratchReg, dstReg, dec_->decFmt.uvoff);
VSTR(fpScratchReg2, dstReg, dec_->decFmt.uvoff + 4);
}
}
void VertexDecoderJitCache::Jit_TcFloatThrough() {
LDR(tempReg1, srcReg, dec_->tcoff);
LDR(tempReg2, srcReg, dec_->tcoff + 4);
STR(tempReg1, dstReg, dec_->decFmt.uvoff);
STR(tempReg2, dstReg, dec_->decFmt.uvoff + 4);
}
void VertexDecoderJitCache::Jit_TcU8Prescale() {
if (cpu_info.bNEON) {
// TODO: Needs testing
ADD(scratchReg, srcReg, dec_->tcoff);
VLD1_lane(I_16, neonScratchReg, scratchReg, 0, false);
VMOVL(I_8 | I_UNSIGNED, neonScratchRegQ, neonScratchReg); // Widen to 16-bit
VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg); // Widen to 32-bit
VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ);
ADD(scratchReg2, dstReg, dec_->decFmt.uvoff);
VMUL(F_32, neonScratchReg, neonScratchReg, neonUVScaleReg);
VADD(F_32, neonScratchReg, neonScratchReg, neonUVOffsetReg);
VST1(F_32, neonScratchReg, scratchReg2, 1, ALIGN_NONE);
} else {
LDRB(tempReg1, srcReg, dec_->tcoff);
LDRB(tempReg2, srcReg, dec_->tcoff + 1);
VMOV(fpScratchReg, tempReg1);
VMOV(fpScratchReg2, tempReg2);
VCVT(fpScratchReg, fpScratchReg, TO_FLOAT);
VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT);
// Could replace VMUL + VADD with VMLA but would require 2 more regs as we don't want to destroy fp*offsetReg. Later.
VMUL(fpScratchReg, fpScratchReg, fpUscaleReg);
VMUL(fpScratchReg2, fpScratchReg2, fpVscaleReg);
VADD(fpScratchReg, fpScratchReg, fpUoffsetReg);
VADD(fpScratchReg2, fpScratchReg2, fpVoffsetReg);
VSTR(fpScratchReg, dstReg, dec_->decFmt.uvoff);
VSTR(fpScratchReg2, dstReg, dec_->decFmt.uvoff + 4);
}
}
void VertexDecoderJitCache::Jit_TcU8ToFloat() {
if (cpu_info.bNEON) {
// TODO: Needs testing
ADD(scratchReg, srcReg, dec_->tcoff);
VLD1_lane(I_16, neonScratchReg, scratchReg, 0, false);
VMOVL(I_8 | I_UNSIGNED, neonScratchRegQ, neonScratchReg); // Widen to 16-bit
VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg); // Widen to 32-bit
VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ);
VMOV_neon(F_32, neonScratchReg2, by128);
VMUL(F_32, neonScratchReg, neonScratchReg, neonScratchReg2);
ADD(scratchReg2, dstReg, dec_->decFmt.uvoff);
VST1(F_32, neonScratchReg, scratchReg2, 1, ALIGN_NONE);
} else {
LDRB(tempReg1, srcReg, dec_->tcoff);
LDRB(tempReg2, srcReg, dec_->tcoff + 1);
VMOV(fpScratchReg, tempReg1);
VMOV(fpScratchReg2, tempReg2);
VCVT(fpScratchReg, fpScratchReg, TO_FLOAT);
VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT);
MOVI2F(S15, by128, scratchReg);
VMUL(fpScratchReg, fpScratchReg, S15);
VMUL(fpScratchReg2, fpScratchReg2, S15);
VSTR(fpScratchReg, dstReg, dec_->decFmt.uvoff);
VSTR(fpScratchReg2, dstReg, dec_->decFmt.uvoff + 4);
}
}
void VertexDecoderJitCache::Jit_TcU16Prescale() {
if (cpu_info.bNEON) {
// TODO: Needs testing
ADD(scratchReg, srcReg, dec_->tcoff);
VLD1_lane(I_32, neonScratchReg, scratchReg, 0, false);
VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg); // Widen to 32-bit
VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ);
ADD(scratchReg2, dstReg, dec_->decFmt.uvoff);
VMUL(F_32, neonScratchReg, neonScratchReg, neonUVScaleReg);
VADD(F_32, neonScratchReg, neonScratchReg, neonUVOffsetReg);
VST1(F_32, neonScratchReg, scratchReg2, 1, ALIGN_NONE);
} else {
LDRH(tempReg1, srcReg, dec_->tcoff);
LDRH(tempReg2, srcReg, dec_->tcoff + 2);
VMOV(fpScratchReg, tempReg1);
VMOV(fpScratchReg2, tempReg2);
VCVT(fpScratchReg, fpScratchReg, TO_FLOAT);
VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT);
VMUL(fpScratchReg, fpScratchReg, fpUscaleReg);
VMUL(fpScratchReg2, fpScratchReg2, fpVscaleReg);
VADD(fpScratchReg, fpScratchReg, fpUoffsetReg);
VADD(fpScratchReg2, fpScratchReg2, fpVoffsetReg);
VSTR(fpScratchReg, dstReg, dec_->decFmt.uvoff);
VSTR(fpScratchReg2, dstReg, dec_->decFmt.uvoff + 4);
}
}
void VertexDecoderJitCache::Jit_TcU16ToFloat() {
if (cpu_info.bNEON) {
// TODO: Needs testing
ADD(scratchReg, srcReg, dec_->tcoff);
VLD1_lane(I_32, neonScratchReg, scratchReg, 0, false);
VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg); // Widen to 32-bit
VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ);
ADD(scratchReg2, dstReg, dec_->decFmt.uvoff);
VMOV_neon(F_32, neonScratchReg2, by32768);
VMUL(F_32, neonScratchReg, neonScratchReg, neonScratchReg2);
VST1(F_32, neonScratchReg, scratchReg2, 1, ALIGN_NONE);
} else {
LDRH(tempReg1, srcReg, dec_->tcoff);
LDRH(tempReg2, srcReg, dec_->tcoff + 2);
VMOV(fpScratchReg, tempReg1);
VMOV(fpScratchReg2, tempReg2);
VCVT(fpScratchReg, fpScratchReg, TO_FLOAT);
VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT);
MOVI2F(S15, by32768, scratchReg);
VMUL(fpScratchReg, fpScratchReg, S15);
VMUL(fpScratchReg2, fpScratchReg2, S15);
VSTR(fpScratchReg, dstReg, dec_->decFmt.uvoff);
VSTR(fpScratchReg2, dstReg, dec_->decFmt.uvoff + 4);
}
}
void VertexDecoderJitCache::Jit_TcFloatPrescale() {
if (cpu_info.bNEON) {
ADD(scratchReg, srcReg, dec_->tcoff);
VLD1(F_32, neonScratchReg, scratchReg, 1, ALIGN_NONE);
ADD(scratchReg2, dstReg, dec_->decFmt.uvoff);
VMUL(F_32, neonScratchReg, neonScratchReg, neonUVScaleReg);
VADD(F_32, neonScratchReg, neonScratchReg, neonUVOffsetReg);
VST1(F_32, neonScratchReg, scratchReg2, 1, ALIGN_NONE);
} else {
VLDR(fpScratchReg, srcReg, dec_->tcoff);
VLDR(fpScratchReg2, srcReg, dec_->tcoff + 4);
VMUL(fpScratchReg, fpScratchReg, fpUscaleReg);
VMUL(fpScratchReg2, fpScratchReg2, fpVscaleReg);
VADD(fpScratchReg, fpScratchReg, fpUoffsetReg);
VADD(fpScratchReg2, fpScratchReg2, fpVoffsetReg);
VSTR(fpScratchReg, dstReg, dec_->decFmt.uvoff);
VSTR(fpScratchReg2, dstReg, dec_->decFmt.uvoff + 4);
}
}
void VertexDecoderJitCache::Jit_Color8888() {
LDR(tempReg1, srcReg, dec_->coloff);
// Set flags to determine if alpha != 0xFF.
MVNS(tempReg2, Operand2(tempReg1, ST_ASR, 24));
STR(tempReg1, dstReg, dec_->decFmt.c0off);
SetCC(CC_NEQ);
MOV(fullAlphaReg, 0);
SetCC(CC_AL);
}
void VertexDecoderJitCache::Jit_Color4444() {
LDRH(tempReg1, srcReg, dec_->coloff);
// Spread out the components.
ANDI2R(tempReg2, tempReg1, 0x000F, scratchReg);
ANDI2R(tempReg3, tempReg1, 0x00F0, scratchReg);
ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 4));
ANDI2R(tempReg3, tempReg1, 0x0F00, scratchReg);
ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 8));
ANDI2R(tempReg3, tempReg1, 0xF000, scratchReg);
ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 12));
// And expand to 8 bits.
ORR(tempReg1, tempReg2, Operand2(tempReg2, ST_LSL, 4));
STR(tempReg1, dstReg, dec_->decFmt.c0off);
// Set flags to determine if alpha != 0xFF.
MVNS(tempReg2, Operand2(tempReg1, ST_ASR, 24));
SetCC(CC_NEQ);
MOV(fullAlphaReg, 0);
SetCC(CC_AL);
}
void VertexDecoderJitCache::Jit_Color565() {
LDRH(tempReg1, srcReg, dec_->coloff);
// Spread out R and B first. This puts them in 0x001F001F.
ANDI2R(tempReg2, tempReg1, 0x001F, scratchReg);
ANDI2R(tempReg3, tempReg1, 0xF800, scratchReg);
ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 5));
// Expand 5 -> 8.
LSL(tempReg3, tempReg2, 3);
ORR(tempReg2, tempReg3, Operand2(tempReg2, ST_LSR, 2));
ANDI2R(tempReg2, tempReg2, 0xFFFF00FF, scratchReg);
// Now finally G. We start by shoving it into a wall.
LSR(tempReg1, tempReg1, 5);
ANDI2R(tempReg1, tempReg1, 0x003F, scratchReg);
LSL(tempReg3, tempReg1, 2);
// Don't worry, shifts into a wall.
ORR(tempReg3, tempReg3, Operand2(tempReg1, ST_LSR, 4));
ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 8));
// Add in full alpha. No need to update fullAlphaReg.
ORI2R(tempReg1, tempReg2, 0xFF000000, scratchReg);
STR(tempReg1, dstReg, dec_->decFmt.c0off);
}
void VertexDecoderJitCache::Jit_Color5551() {
LDRSH(tempReg1, srcReg, dec_->coloff);
ANDI2R(tempReg2, tempReg1, 0x001F, scratchReg);
ANDI2R(tempReg3, tempReg1, 0x03E0, scratchReg);
ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 3));
ANDI2R(tempReg3, tempReg1, 0x7C00, scratchReg);
ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 6));
// Expand 5 -> 8.
LSR(tempReg3, tempReg2, 2);
// Clean up the bits that were shifted right.
BIC(tempReg3, tempReg3, AssumeMakeOperand2(0x000000F8));
BIC(tempReg3, tempReg3, AssumeMakeOperand2(0x0000F800));
ORR(tempReg2, tempReg3, Operand2(tempReg2, ST_LSL, 3));
// Now we just need alpha. Since we loaded as signed, it'll be extended.
ANDI2R(tempReg1, tempReg1, 0xFF000000, scratchReg);
ORR(tempReg2, tempReg2, tempReg1);
// Set flags to determine if alpha != 0xFF.
MVNS(tempReg3, Operand2(tempReg1, ST_ASR, 24));
STR(tempReg2, dstReg, dec_->decFmt.c0off);
SetCC(CC_NEQ);
MOV(fullAlphaReg, 0);
SetCC(CC_AL);
}
void VertexDecoderJitCache::Jit_Color8888Morph() {
const bool useNEON = NEONMorphing;
ADDI2R(tempReg1, srcReg, dec_->coloff, scratchReg);
MOVP2R(tempReg2, &gstate_c.morphWeights[0]);
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
if (useNEON) {
VLD1_lane(I_32, neonScratchReg, tempReg1, 0, true);
VLD1_all_lanes(F_32, Q3, tempReg2, true, REG_UPDATE);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
VMOVL(I_8 | I_UNSIGNED, neonScratchRegQ, neonScratchReg);
VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg);
VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ);
if (first) {
first = false;
VMUL(F_32, Q2, neonScratchRegQ, Q3);
} else if (cpu_info.bVFPv4) {
VFMA(F_32, Q2, neonScratchRegQ, Q3);
} else {
VMLA(F_32, Q2, neonScratchRegQ, Q3);
}
} else {
LDRB(scratchReg, tempReg1, 0);
LDRB(scratchReg2, tempReg1, 1);
LDRB(scratchReg3, tempReg1, 2);
LDRB(tempReg3, tempReg1, 3);
VMOV(fpScratchReg, scratchReg);
VMOV(fpScratchReg2, scratchReg2);
VMOV(fpScratchReg3, scratchReg3);
VMOV(fpScratchReg4, tempReg3);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
VCVT(fpScratchReg, fpScratchReg, TO_FLOAT);
VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT);
VCVT(fpScratchReg3, fpScratchReg3, TO_FLOAT);
VCVT(fpScratchReg4, fpScratchReg4, TO_FLOAT);
VLDR(S12, tempReg2, sizeof(float) * n);
if (first) {
first = false;
VMUL(S8, fpScratchReg, S12);
VMUL(S9, fpScratchReg2, S12);
VMUL(S10, fpScratchReg3, S12);
VMUL(S11, fpScratchReg4, S12);
} else {
VMLA(S8, fpScratchReg, S12);
VMLA(S9, fpScratchReg2, S12);
VMLA(S10, fpScratchReg3, S12);
VMLA(S11, fpScratchReg4, S12);
}
}
}
Jit_WriteMorphColor(dec_->decFmt.c0off);
}
// First is the left shift, second is the right shift (against walls, to get the RGBA values.)
alignas(16) static const s16 color4444Shift[2][4] = {{12, 8, 4, 0}, {-12, -12, -12, -12}};
void VertexDecoderJitCache::Jit_Color4444Morph() {
const bool useNEON = NEONMorphing;
ADDI2R(tempReg1, srcReg, dec_->coloff, scratchReg);
MOVP2R(tempReg2, &gstate_c.morphWeights[0]);
if (useNEON) {
MOVP2R(scratchReg, color4444Shift);
MOVI2FR(scratchReg2, 255.0f / 15.0f);
VDUP(I_32, Q5, scratchReg2);
VLD1(I_16, D8, scratchReg, 2, ALIGN_128);
} else {
MOVI2F(S13, 255.0f / 15.0f, scratchReg);
}
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
if (useNEON) {
VLD1_all_lanes(I_16, neonScratchReg, tempReg1, true);
VLD1_all_lanes(F_32, Q3, tempReg2, true, REG_UPDATE);
// Shift against walls and then back to get R, G, B, A in each 16-bit lane.
VSHL(I_16 | I_UNSIGNED, neonScratchReg, neonScratchReg, D8);
VSHL(I_16 | I_UNSIGNED, neonScratchReg, neonScratchReg, D9);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg);
VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ);
VMUL(F_32, Q3, Q3, Q5);
if (first) {
first = false;
VMUL(F_32, Q2, neonScratchRegQ, Q3);
} else if (cpu_info.bVFPv4) {
VFMA(F_32, Q2, neonScratchRegQ, Q3);
} else {
VMLA(F_32, Q2, neonScratchRegQ, Q3);
}
} else {
LDRB(scratchReg, tempReg1, 0);
ANDI2R(scratchReg2, scratchReg, 0x000F, scratchReg3);
VMOV(fpScratchReg, scratchReg2);
MOV(scratchReg2, Operand2(scratchReg, ST_LSR, 4));
VMOV(fpScratchReg2, scratchReg2);
LDRB(scratchReg, tempReg1, 1);
ANDI2R(scratchReg2, scratchReg, 0x000F, scratchReg3);
VMOV(fpScratchReg3, scratchReg2);
MOV(scratchReg2, Operand2(scratchReg, ST_LSR, 4));
VMOV(fpScratchReg4, scratchReg2);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
VCVT(fpScratchReg, fpScratchReg, TO_FLOAT);
VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT);
VCVT(fpScratchReg3, fpScratchReg3, TO_FLOAT);
VCVT(fpScratchReg4, fpScratchReg4, TO_FLOAT);
VLDR(S12, tempReg2, sizeof(float) * n);
VMUL(S12, S12, S13);
if (first) {
first = false;
VMUL(S8, fpScratchReg, S12);
VMUL(S9, fpScratchReg2, S12);
VMUL(S10, fpScratchReg3, S12);
VMUL(S11, fpScratchReg4, S12);
} else {
VMLA(S8, fpScratchReg, S12);
VMLA(S9, fpScratchReg2, S12);
VMLA(S10, fpScratchReg3, S12);
VMLA(S11, fpScratchReg4, S12);
}
}
}
Jit_WriteMorphColor(dec_->decFmt.c0off);
}
// First is the left shift, second is the right shift (against walls, to get the RGBA values.)
alignas(16) static const s16 color565Shift[2][4] = {{11, 5, 0, 0}, {-11, -10, -11, 0}};
alignas(16) static const float byColor565[4] = {255.0f / 31.0f, 255.0f / 63.0f, 255.0f / 31.0f, 0.0f};
void VertexDecoderJitCache::Jit_Color565Morph() {
const bool useNEON = NEONMorphing;
ADDI2R(tempReg1, srcReg, dec_->coloff, scratchReg);
MOVP2R(tempReg2, &gstate_c.morphWeights[0]);
MOVI2FR(tempReg3, 255.0f);
if (useNEON) {
MOVP2R(scratchReg, color565Shift);
MOVP2R(scratchReg2, byColor565);
VLD1(I_16, D8, scratchReg, 2, ALIGN_128);
VLD1(F_32, D10, scratchReg2, 2, ALIGN_128);
} else {
MOVI2F(S14, 255.0f / 31.0f, scratchReg);
MOVI2F(S15, 255.0f / 63.0f, scratchReg);
}
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
if (useNEON) {
VLD1_all_lanes(I_16, neonScratchReg, tempReg1, true);
VLD1_all_lanes(F_32, Q3, tempReg2, true, REG_UPDATE);
VSHL(I_16 | I_UNSIGNED, neonScratchReg, neonScratchReg, D8);
VSHL(I_16 | I_UNSIGNED, neonScratchReg, neonScratchReg, D9);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg);
VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ);
VMUL(F_32, Q3, Q3, Q5);
if (first) {
first = false;
VMUL(F_32, Q2, neonScratchRegQ, Q3);
} else if (cpu_info.bVFPv4) {
VFMA(F_32, Q2, neonScratchRegQ, Q3);
} else {
VMLA(F_32, Q2, neonScratchRegQ, Q3);
}
} else {
LDRH(scratchReg, tempReg1, 0);
ANDI2R(scratchReg2, scratchReg, 0x001F, scratchReg3);
VMOV(fpScratchReg, scratchReg2);
MOV(scratchReg2, Operand2(scratchReg, ST_LSR, 6));
ANDI2R(scratchReg2, scratchReg2, 0x003F, scratchReg3);
VMOV(fpScratchReg2, scratchReg2);
MOV(scratchReg2, Operand2(scratchReg, ST_LSR, 11));
VMOV(fpScratchReg3, scratchReg2);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
VCVT(fpScratchReg, fpScratchReg, TO_FLOAT);
VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT);
VCVT(fpScratchReg3, fpScratchReg3, TO_FLOAT);
VLDR(S12, tempReg2, sizeof(float) * n);
VMUL(S13, S12, S15);
VMUL(S12, S12, S14);
if (first) {
first = false;
VMUL(S8, fpScratchReg, S12);
VMUL(S9, fpScratchReg2, S13);
VMUL(S10, fpScratchReg3, S12);
} else {
VMLA(S8, fpScratchReg, S12);
VMLA(S9, fpScratchReg2, S13);
VMLA(S10, fpScratchReg3, S12);
}
}
}
// Overwrite A with 255.0f.
if (useNEON) {
VMOV_neon(F_32, D5, tempReg3, 1);
} else {
VMOV(S11, tempReg3);
}
Jit_WriteMorphColor(dec_->decFmt.c0off, false);
}
// First is the left shift, second is the right shift (against walls, to get the RGBA values.)
alignas(16) static const s16 color5551Shift[2][4] = {{11, 6, 1, 0}, {-11, -11, -11, -15}};
alignas(16) static const float byColor5551[4] = {255.0f / 31.0f, 255.0f / 31.0f, 255.0f / 31.0f, 255.0f / 1.0f};
void VertexDecoderJitCache::Jit_Color5551Morph() {
const bool useNEON = NEONMorphing;
ADDI2R(tempReg1, srcReg, dec_->coloff, scratchReg);
MOVP2R(tempReg2, &gstate_c.morphWeights[0]);
if (useNEON) {
MOVP2R(scratchReg, color5551Shift);
MOVP2R(scratchReg2, byColor5551);
VLD1(I_16, D8, scratchReg, 2, ALIGN_128);
VLD1(F_32, D10, scratchReg2, 2, ALIGN_128);
} else {
MOVI2F(S14, 255.0f / 31.0f, scratchReg);
MOVI2F(S15, 255.0f, scratchReg);
}
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
if (useNEON) {
VLD1_all_lanes(I_16, neonScratchReg, tempReg1, true);
VLD1_all_lanes(F_32, Q3, tempReg2, true, REG_UPDATE);
VSHL(I_16 | I_UNSIGNED, neonScratchReg, neonScratchReg, D8);
VSHL(I_16 | I_UNSIGNED, neonScratchReg, neonScratchReg, D9);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg);
VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ);
VMUL(F_32, Q3, Q3, Q5);
if (first) {
first = false;
VMUL(F_32, Q2, neonScratchRegQ, Q3);
} else if (cpu_info.bVFPv4) {
VFMA(F_32, Q2, neonScratchRegQ, Q3);
} else {
VMLA(F_32, Q2, neonScratchRegQ, Q3);
}
} else {
LDRH(scratchReg, tempReg1, 0);
ANDI2R(scratchReg2, scratchReg, 0x001F, scratchReg3);
VMOV(fpScratchReg, scratchReg2);
MOV(scratchReg2, Operand2(scratchReg, ST_LSR, 5));
ANDI2R(scratchReg2, scratchReg2, 0x001F, scratchReg3);
VMOV(fpScratchReg2, scratchReg2);
MOV(scratchReg2, Operand2(scratchReg, ST_LSR, 10));
ANDI2R(scratchReg2, scratchReg2, 0x001F, scratchReg3);
VMOV(fpScratchReg3, scratchReg2);
MOV(scratchReg2, Operand2(scratchReg, ST_LSR, 15));
VMOV(fpScratchReg4, scratchReg2);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
VCVT(fpScratchReg, fpScratchReg, TO_FLOAT);
VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT);
VCVT(fpScratchReg3, fpScratchReg3, TO_FLOAT);
VCVT(fpScratchReg4, fpScratchReg4, TO_FLOAT);
VLDR(S12, tempReg2, sizeof(float) * n);
VMUL(S13, S12, S15);
VMUL(S12, S12, S14);
if (first) {
first = false;
VMUL(S8, fpScratchReg, S12);
VMUL(S9, fpScratchReg2, S12);
VMUL(S10, fpScratchReg3, S12);
VMUL(S11, fpScratchReg4, S13);
} else {
VMLA(S8, fpScratchReg, S12);
VMLA(S9, fpScratchReg2, S12);
VMLA(S10, fpScratchReg3, S12);
VMLA(S11, fpScratchReg4, S13);
}
}
}
Jit_WriteMorphColor(dec_->decFmt.c0off);
}
// Expects RGBA color in S8 - S11, which is Q2.
void VertexDecoderJitCache::Jit_WriteMorphColor(int outOff, bool checkAlpha) {
if (NEONMorphing) {
ADDI2R(tempReg1, dstReg, outOff, scratchReg);
VCVT(I_32 | I_UNSIGNED, Q2, Q2);
VQMOVN(I_32 | I_UNSIGNED, D4, Q2);
VQMOVN(I_16 | I_UNSIGNED, D4, Q2);
VST1_lane(I_32, D4, tempReg1, 0, true);
if (checkAlpha) {
VMOV_neon(I_32, scratchReg, D4, 0);
}
} else {
VCVT(S8, S8, TO_INT | ROUND_TO_ZERO);
VCVT(S9, S9, TO_INT | ROUND_TO_ZERO);
VCVT(S10, S10, TO_INT | ROUND_TO_ZERO);
VCVT(S11, S11, TO_INT | ROUND_TO_ZERO);
VMOV(scratchReg, S8);
VMOV(scratchReg2, S9);
VMOV(scratchReg3, S10);
VMOV(tempReg3, S11);
ORR(scratchReg, scratchReg, Operand2(scratchReg2, ST_LSL, 8));
ORR(scratchReg, scratchReg, Operand2(scratchReg3, ST_LSL, 16));
ORR(scratchReg, scratchReg, Operand2(tempReg3, ST_LSL, 24));
STR(scratchReg, dstReg, outOff);
}
// Set flags to determine if alpha != 0xFF.
if (checkAlpha) {
MVNS(tempReg2, Operand2(scratchReg, ST_ASR, 24));
SetCC(CC_NEQ);
MOV(fullAlphaReg, 0);
SetCC(CC_AL);
}
}
void VertexDecoderJitCache::Jit_NormalS8() {
LDRB(tempReg1, srcReg, dec_->nrmoff);
LDRB(tempReg2, srcReg, dec_->nrmoff + 1);
LDRB(tempReg3, srcReg, dec_->nrmoff + 2);
ORR(tempReg1, tempReg1, Operand2(tempReg2, ST_LSL, 8));
ORR(tempReg1, tempReg1, Operand2(tempReg3, ST_LSL, 16));
STR(tempReg1, dstReg, dec_->decFmt.nrmoff);
// Copy 3 bytes and then a zero. Might as well copy four.
// LDR(tempReg1, srcReg, dec_->nrmoff);
// ANDI2R(tempReg1, tempReg1, 0x00FFFFFF, scratchReg);
// STR(tempReg1, dstReg, dec_->decFmt.nrmoff);
}
// Copy 6 bytes and then 2 zeroes.
void VertexDecoderJitCache::Jit_NormalS16() {
LDRH(tempReg1, srcReg, dec_->nrmoff);
LDRH(tempReg2, srcReg, dec_->nrmoff + 2);
LDRH(tempReg3, srcReg, dec_->nrmoff + 4);
ORR(tempReg1, tempReg1, Operand2(tempReg2, ST_LSL, 16));
STR(tempReg1, dstReg, dec_->decFmt.nrmoff);
STR(tempReg3, dstReg, dec_->decFmt.nrmoff + 4);
}
void VertexDecoderJitCache::Jit_NormalFloat() {
ADD(scratchReg, srcReg, dec_->nrmoff);
LDMIA(scratchReg, false, 3, tempReg1, tempReg2, tempReg3);
ADD(scratchReg, dstReg, dec_->decFmt.nrmoff);
STMIA(scratchReg, false, 3, tempReg1, tempReg2, tempReg3);
}
// Through expands into floats, always. Might want to look at changing this.
void VertexDecoderJitCache::Jit_PosS8Through() {
DEBUG_LOG_REPORT_ONCE(vertexS8Through, G3D, "Using S8 positions in throughmode");
_dbg_assert_msg_(fpScratchReg + 1 == fpScratchReg2, "VertexDecoder fpScratchRegs must be in order.");
_dbg_assert_msg_(fpScratchReg2 + 1 == fpScratchReg3, "VertexDecoder fpScratchRegs must be in order.");
// TODO: SIMD
LDRSB(tempReg1, srcReg, dec_->posoff);
LDRSB(tempReg2, srcReg, dec_->posoff + 1);
LDRSB(tempReg3, srcReg, dec_->posoff + 2); // signed?
static const ARMReg tr[3] = { tempReg1, tempReg2, tempReg3 };
static const ARMReg fr[3] = { fpScratchReg, fpScratchReg2, fpScratchReg3 };
ADD(scratchReg, dstReg, dec_->decFmt.posoff);
if (cpu_info.bNEON) {
VMOV(neonScratchReg, tempReg1, tempReg2);
VMOV(neonScratchReg2, tempReg3, tempReg3);
VCVT(F_32 | I_SIGNED, neonScratchRegQ, neonScratchRegQ);
VST1(F_32, neonScratchReg, scratchReg, 2, ALIGN_NONE);
} else {
for (int i = 0; i < 3; i++) {
VMOV(fr[i], tr[i]);
VCVT(fr[i], fr[i], TO_FLOAT | IS_SIGNED);
}
VSTMIA(scratchReg, false, fr[0], 3);
}
}
// Through expands into floats, always. Might want to look at changing this.
void VertexDecoderJitCache::Jit_PosS16Through() {
_dbg_assert_msg_(fpScratchReg + 1 == fpScratchReg2, "VertexDecoder fpScratchRegs must be in order.");
_dbg_assert_msg_(fpScratchReg2 + 1 == fpScratchReg3, "VertexDecoder fpScratchRegs must be in order.");
LDRSH(tempReg1, srcReg, dec_->posoff);
LDRSH(tempReg2, srcReg, dec_->posoff + 2);
LDRH(tempReg3, srcReg, dec_->posoff + 4);
static const ARMReg tr[3] = { tempReg1, tempReg2, tempReg3 };
static const ARMReg fr[3] = { fpScratchReg, fpScratchReg2, fpScratchReg3 };
ADD(scratchReg, dstReg, dec_->decFmt.posoff);
if (cpu_info.bNEON) {
VMOV(neonScratchReg, tempReg1, tempReg2);
VMOV(neonScratchReg2, tempReg3, tempReg3);
VCVT(F_32 | I_SIGNED, neonScratchRegQ, neonScratchRegQ);
VST1(F_32, neonScratchReg, scratchReg, 2, ALIGN_NONE);
} else {
for (int i = 0; i < 3; i++) {
VMOV(fr[i], tr[i]);
VCVT(fr[i], fr[i], TO_FLOAT | IS_SIGNED);
}
VSTMIA(scratchReg, false, fr[0], 3);
}
}
void VertexDecoderJitCache::Jit_PosS8() {
Jit_AnyS8ToFloat(dec_->posoff);
ADD(scratchReg, dstReg, dec_->decFmt.posoff);
if (NEONSkinning) {
VST1(F_32, srcNEON, scratchReg, 2);
} else {
VSTMIA(scratchReg, false, src[0], 3);
}
}
void VertexDecoderJitCache::Jit_PosS16() {
Jit_AnyS16ToFloat(dec_->posoff);
ADD(scratchReg, dstReg, dec_->decFmt.posoff);
if (NEONSkinning) {
VST1(F_32, srcNEON, scratchReg, 2);
} else {
VSTMIA(scratchReg, false, src[0], 3);
}
}
// Just copy 12 bytes.
void VertexDecoderJitCache::Jit_PosFloat() {
ADD(scratchReg, srcReg, dec_->posoff);
LDMIA(scratchReg, false, 3, tempReg1, tempReg2, tempReg3);
ADD(scratchReg, dstReg, dec_->decFmt.posoff);
STMIA(scratchReg, false, 3, tempReg1, tempReg2, tempReg3);
}
void VertexDecoderJitCache::Jit_NormalS8Skin() {
Jit_AnyS8ToFloat(dec_->nrmoff);
Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false);
}
void VertexDecoderJitCache::Jit_NormalS16Skin() {
Jit_AnyS16ToFloat(dec_->nrmoff);
Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false);
}
void VertexDecoderJitCache::Jit_NormalFloatSkin() {
for (int i = 1; i < 3; ++i) {
_dbg_assert_msg_(src[i - 1] + 1 == src[i], "VertexDecoder src regs must be in order.");
}
ADD(tempReg1, srcReg, dec_->nrmoff);
if (NEONSkinning) {
VLD1(F_32, srcNEON, tempReg1, 2, ALIGN_NONE);
} else {
VLDMIA(tempReg1, false, src[0], 3);
}
Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false);
}
void VertexDecoderJitCache::Jit_WriteMatrixMul(int outOff, bool pos) {
if (NEONSkinning) {
// Multiply with the matrix sitting in Q4-Q7.
ADD(scratchReg, dstReg, outOff);
VMUL_scalar(F_32, accNEON, Q4, QScalar(srcNEON, 0));
VMLA_scalar(F_32, accNEON, Q5, QScalar(srcNEON, 1));
VMLA_scalar(F_32, accNEON, Q6, QScalar(srcNEON, 2));
if (pos) {
VADD(F_32, accNEON, accNEON, Q7);
}
VST1(F_32, accNEON, scratchReg, 2);
} else {
_dbg_assert_msg_(fpScratchReg + 1 == fpScratchReg2, "VertexDecoder fpScratchRegs must be in order.");
_dbg_assert_msg_(fpScratchReg2 + 1 == fpScratchReg3, "VertexDecoder fpScratchRegs must be in order.");
MOVP2R(tempReg1, skinMatrix);
VLDMIA(tempReg1, true, fpScratchReg, 3);
for (int i = 0; i < 3; i++) {
VMUL(acc[i], ARMReg(fpScratchReg + i), src[0]);
}
VLDMIA(tempReg1, true, fpScratchReg, 3);
for (int i = 0; i < 3; i++) {
VMLA(acc[i], ARMReg(fpScratchReg + i), src[1]);
}
VLDMIA(tempReg1, true, fpScratchReg, 3);
for (int i = 0; i < 3; i++) {
VMLA(acc[i], ARMReg(fpScratchReg + i), src[2]);
}
if (pos) {
VLDMIA(tempReg1, true, fpScratchReg, 3);
for (int i = 0; i < 3; i++) {
VADD(acc[i], acc[i], ARMReg(fpScratchReg + i));
}
}
ADD(tempReg1, dstReg, outOff);
VSTMIA(tempReg1, false, acc[0], 3);
}
}
void VertexDecoderJitCache::Jit_PosS8Skin() {
Jit_AnyS8ToFloat(dec_->posoff);
Jit_WriteMatrixMul(dec_->decFmt.posoff, true);
}
void VertexDecoderJitCache::Jit_PosS16Skin() {
Jit_AnyS16ToFloat(dec_->posoff);
Jit_WriteMatrixMul(dec_->decFmt.posoff, true);
}
void VertexDecoderJitCache::Jit_PosFloatSkin() {
for (int i = 1; i < 3; ++i) {
_dbg_assert_msg_(src[i - 1] + 1 == src[i], "VertexDecoder src regs must be in order.");
}
ADD(tempReg1, srcReg, dec_->posoff);
if (NEONSkinning) {
VLD1(F_32, srcNEON, tempReg1, 2, ALIGN_NONE);
} else {
VLDMIA(tempReg1, false, src[0], 3);
}
Jit_WriteMatrixMul(dec_->decFmt.posoff, true);
}
void VertexDecoderJitCache::Jit_AnyS8ToFloat(int srcoff) {
if (NEONSkinning) {
ADD(scratchReg, srcReg, srcoff);
VMOV_neon(F_32, Q3, by128);
VLD1_lane(I_32, neonScratchReg, scratchReg, 0, false);
VMOVL(I_8 | I_SIGNED, neonScratchRegQ, neonScratchReg); // Widen to 16-bit
VMOVL(I_16 | I_SIGNED, neonScratchRegQ, neonScratchReg); // Widen to 32-bit
VCVT(F_32 | I_SIGNED, neonScratchRegQ, neonScratchRegQ);
VMUL(F_32, srcNEON, neonScratchReg, Q3);
} else {
LDRSB(tempReg1, srcReg, srcoff);
LDRSB(tempReg2, srcReg, srcoff + 1);
LDRSB(tempReg3, srcReg, srcoff + 2);
VMOV(src[0], tempReg1);
VMOV(src[1], tempReg2);
VMOV(src[2], tempReg3);
MOVI2F(S15, by128, scratchReg);
VCVT(src[0], src[0], TO_FLOAT | IS_SIGNED);
VCVT(src[1], src[1], TO_FLOAT | IS_SIGNED);
VCVT(src[2], src[2], TO_FLOAT | IS_SIGNED);
VMUL(src[0], src[0], S15);
VMUL(src[1], src[1], S15);
VMUL(src[2], src[2], S15);
}
}
void VertexDecoderJitCache::Jit_AnyS16ToFloat(int srcoff) {
if (NEONSkinning) {
ADD(scratchReg, srcReg, srcoff);
VMOV_neon(F_32, Q3, by32768);
VLD1(I_32, neonScratchReg, scratchReg, 1, ALIGN_NONE);
VMOVL(I_16 | I_SIGNED, neonScratchRegQ, neonScratchReg); // Widen to 32-bit
VCVT(F_32 | I_SIGNED, neonScratchRegQ, neonScratchRegQ);
VMUL(F_32, srcNEON, neonScratchReg, Q3);
} else {
LDRSH(tempReg1, srcReg, srcoff);
LDRSH(tempReg2, srcReg, srcoff + 2);
LDRSH(tempReg3, srcReg, srcoff + 4);
VMOV(src[0], tempReg1);
VMOV(src[1], tempReg2);
VMOV(src[2], tempReg3);
MOVI2F(S15, by32768, scratchReg);
VCVT(src[0], src[0], TO_FLOAT | IS_SIGNED);
VCVT(src[1], src[1], TO_FLOAT | IS_SIGNED);
VCVT(src[2], src[2], TO_FLOAT | IS_SIGNED);
VMUL(src[0], src[0], S15);
VMUL(src[1], src[1], S15);
VMUL(src[2], src[2], S15);
}
}
void VertexDecoderJitCache::Jit_AnyS8Morph(int srcoff, int dstoff) {
const bool useNEON = NEONMorphing;
ADDI2R(tempReg1, srcReg, srcoff, scratchReg);
MOVP2R(tempReg2, &gstate_c.morphWeights[0]);
if (useNEON) {
MOVI2FR(scratchReg2, by128);
VDUP(I_32, Q5, scratchReg2);
} else {
MOVI2F(S13, by128, scratchReg);
}
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
if (useNEON) {
VLD1_lane(I_32, neonScratchReg, tempReg1, 0, false);
VLD1_all_lanes(F_32, Q3, tempReg2, true, REG_UPDATE);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
VMOVL(I_8 | I_SIGNED, neonScratchRegQ, neonScratchReg);
VMOVL(I_16 | I_SIGNED, neonScratchRegQ, neonScratchReg);
VCVT(F_32 | I_SIGNED, neonScratchRegQ, neonScratchRegQ);
VMUL(F_32, Q3, Q3, Q5);
if (first) {
first = false;
VMUL(F_32, Q2, neonScratchRegQ, Q3);
} else if (cpu_info.bVFPv4) {
VFMA(F_32, Q2, neonScratchRegQ, Q3);
} else {
VMLA(F_32, Q2, neonScratchRegQ, Q3);
}
} else {
LDRSB(scratchReg, tempReg1, 0);
LDRSB(scratchReg2, tempReg1, 1);
LDRSB(scratchReg3, tempReg1, 2);
VMOV(fpScratchReg, scratchReg);
VMOV(fpScratchReg2, scratchReg2);
VMOV(fpScratchReg3, scratchReg3);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
VCVT(fpScratchReg, fpScratchReg, TO_FLOAT | IS_SIGNED);
VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT | IS_SIGNED);
VCVT(fpScratchReg3, fpScratchReg3, TO_FLOAT | IS_SIGNED);
VLDR(S12, tempReg2, sizeof(float) * n);
VMUL(S12, S12, S13);
if (first) {
first = false;
VMUL(S8, fpScratchReg, S12);
VMUL(S9, fpScratchReg2, S12);
VMUL(S10, fpScratchReg3, S12);
} else {
VMLA(S8, fpScratchReg, S12);
VMLA(S9, fpScratchReg2, S12);
VMLA(S10, fpScratchReg3, S12);
}
}
}
ADDI2R(tempReg1, dstReg, dstoff, scratchReg);
if (useNEON) {
// TODO: Is it okay that we're over-writing by 4 bytes? Probably...
VSTMIA(tempReg1, false, D4, 2);
} else {
VSTMIA(tempReg1, false, S8, 3);
}
}
void VertexDecoderJitCache::Jit_AnyS16Morph(int srcoff, int dstoff) {
const bool useNEON = NEONMorphing;
ADDI2R(tempReg1, srcReg, srcoff, scratchReg);
MOVP2R(tempReg2, &gstate_c.morphWeights[0]);
if (useNEON) {
MOVI2FR(scratchReg, by32768);
VDUP(I_32, Q5, scratchReg);
} else {
MOVI2F(S13, by32768, scratchReg);
}
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
if (useNEON) {
VLD1(I_32, neonScratchReg, tempReg1, 1, ALIGN_NONE);
VLD1_all_lanes(F_32, Q3, tempReg2, true, REG_UPDATE);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
VMOVL(I_16 | I_SIGNED, neonScratchRegQ, neonScratchReg);
VCVT(F_32 | I_SIGNED, neonScratchRegQ, neonScratchRegQ);
VMUL(F_32, Q3, Q3, Q5);
if (first) {
first = false;
VMUL(F_32, Q2, neonScratchRegQ, Q3);
} else if (cpu_info.bVFPv4) {
VFMA(F_32, Q2, neonScratchRegQ, Q3);
} else {
VMLA(F_32, Q2, neonScratchRegQ, Q3);
}
} else {
LDRSH(scratchReg, tempReg1, 0);
LDRSH(scratchReg2, tempReg1, 2);
LDRSH(scratchReg3, tempReg1, 4);
VMOV(fpScratchReg, scratchReg);
VMOV(fpScratchReg2, scratchReg2);
VMOV(fpScratchReg3, scratchReg3);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
VCVT(fpScratchReg, fpScratchReg, TO_FLOAT | IS_SIGNED);
VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT | IS_SIGNED);
VCVT(fpScratchReg3, fpScratchReg3, TO_FLOAT | IS_SIGNED);
VLDR(S12, tempReg2, sizeof(float) * n);
VMUL(S12, S12, S13);
if (first) {
first = false;
VMUL(S8, fpScratchReg, S12);
VMUL(S9, fpScratchReg2, S12);
VMUL(S10, fpScratchReg3, S12);
} else {
VMLA(S8, fpScratchReg, S12);
VMLA(S9, fpScratchReg2, S12);
VMLA(S10, fpScratchReg3, S12);
}
}
}
ADDI2R(tempReg1, dstReg, dstoff, scratchReg);
if (useNEON) {
// TODO: Is it okay that we're over-writing by 4 bytes? Probably...
VSTMIA(tempReg1, false, D4, 2);
} else {
VSTMIA(tempReg1, false, S8, 3);
}
}
void VertexDecoderJitCache::Jit_AnyFloatMorph(int srcoff, int dstoff) {
const bool useNEON = NEONMorphing;
ADDI2R(tempReg1, srcReg, srcoff, scratchReg);
MOVP2R(tempReg2, &gstate_c.morphWeights[0]);
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
if (useNEON) {
// Load an extra float to stay in NEON mode.
VLD1(F_32, neonScratchRegQ, tempReg1, 2, ALIGN_NONE);
VLD1_all_lanes(F_32, Q3, tempReg2, true, REG_UPDATE);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
if (first) {
first = false;
VMUL(F_32, Q2, neonScratchRegQ, Q3);
} else if (cpu_info.bVFPv4) {
VFMA(F_32, Q2, neonScratchRegQ, Q3);
} else {
VMLA(F_32, Q2, neonScratchRegQ, Q3);
}
} else {
// Load an extra float to stay in NEON mode.
VLDMIA(tempReg1, false, fpScratchReg, 3);
// Using VLDMIA to get writeback.
VLDMIA(tempReg2, true, S12, 1);
ADDI2R(tempReg1, tempReg1, dec_->onesize_, scratchReg);
if (first) {
first = false;
VMUL(S8, fpScratchReg, S12);
VMUL(S9, fpScratchReg2, S12);
VMUL(S10, fpScratchReg3, S12);
} else {
VMLA(S8, fpScratchReg, S12);
VMLA(S9, fpScratchReg2, S12);
VMLA(S10, fpScratchReg3, S12);
}
}
}
ADDI2R(tempReg1, dstReg, dstoff, scratchReg);
if (useNEON) {
// TODO: Is it okay that we're over-writing by 4 bytes? Probably...
VSTMIA(tempReg1, false, D4, 2);
} else {
VSTMIA(tempReg1, false, S8, 3);
}
}
void VertexDecoderJitCache::Jit_PosS8Morph() {
Jit_AnyS8Morph(dec_->posoff, dec_->decFmt.posoff);
}
void VertexDecoderJitCache::Jit_PosS16Morph() {
Jit_AnyS16Morph(dec_->posoff, dec_->decFmt.posoff);
}
void VertexDecoderJitCache::Jit_PosFloatMorph() {
Jit_AnyFloatMorph(dec_->posoff, dec_->decFmt.posoff);
}
void VertexDecoderJitCache::Jit_NormalS8Morph() {
Jit_AnyS8Morph(dec_->nrmoff, dec_->decFmt.nrmoff);
}
void VertexDecoderJitCache::Jit_NormalS16Morph() {
Jit_AnyS16Morph(dec_->nrmoff, dec_->decFmt.nrmoff);
}
void VertexDecoderJitCache::Jit_NormalFloatMorph() {
Jit_AnyFloatMorph(dec_->nrmoff, dec_->decFmt.nrmoff);
}
bool VertexDecoderJitCache::CompileStep(const VertexDecoder &dec, int step) {
// See if we find a matching JIT function
for (size_t i = 0; i < ARRAY_SIZE(jitLookup); i++) {
if (dec.steps_[step] == jitLookup[i].func) {
((*this).*jitLookup[i].jitFunc)();
return true;
}
}
return false;
}
#endif // PPSSPP_ARCH(ARM)