ppsspp/Core/Debugger/SymbolMap.cpp
2015-01-17 18:42:59 -08:00

1029 lines
28 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
// These functions tends to be slow in debug mode.
// Comment this out if debugging the symbol map itself.
#if defined(_MSC_VER) && defined(_DEBUG)
#pragma optimize("gty", on)
#endif
#ifdef _WIN32
#include "Common/CommonWindows.h"
#include <WindowsX.h>
#else
#include <unistd.h>
#endif
#include <algorithm>
#include "util/text/utf8.h"
#include "zlib.h"
#include "Common/CommonTypes.h"
#include "Common/FileUtil.h"
#include "Core/MemMap.h"
#include "Core/Debugger/SymbolMap.h"
SymbolMap symbolMap;
void SymbolMap::SortSymbols() {
lock_guard guard(lock_);
AssignFunctionIndices();
}
void SymbolMap::Clear() {
lock_guard guard(lock_);
functions.clear();
labels.clear();
data.clear();
activeFunctions.clear();
activeLabels.clear();
activeData.clear();
activeModuleEnds.clear();
modules.clear();
}
bool SymbolMap::LoadSymbolMap(const char *filename) {
Clear(); // let's not recurse the lock
lock_guard guard(lock_);
#if defined(_WIN32) && defined(UNICODE)
gzFile f = gzopen_w(ConvertUTF8ToWString(filename).c_str(), "r");
#else
gzFile f = gzopen(filename, "r");
#endif
if (f == Z_NULL)
return false;
//char temp[256];
//fgets(temp,255,f); //.text section layout
//fgets(temp,255,f); // Starting Virtual
//fgets(temp,255,f); // address Size address
//fgets(temp,255,f); // -----------------------
bool started = false;
bool hasModules = false;
while (!gzeof(f)) {
char line[512], temp[256] = {0};
char *p = gzgets(f, line, 512);
if (p == NULL)
break;
// Chop any newlines off.
for (size_t i = strlen(line) - 1; i > 0; i--) {
if (line[i] == '\r' || line[i] == '\n') {
line[i] = '\0';
}
}
if (strlen(line) < 4 || sscanf(line, "%s", temp) != 1)
continue;
if (strcmp(temp,"UNUSED")==0) continue;
if (strcmp(temp,".text")==0) {started=true;continue;};
if (strcmp(temp,".init")==0) {started=true;continue;};
if (strcmp(temp,"Starting")==0) continue;
if (strcmp(temp,"extab")==0) continue;
if (strcmp(temp,".ctors")==0) break;
if (strcmp(temp,".dtors")==0) break;
if (strcmp(temp,".rodata")==0) continue;
if (strcmp(temp,".data")==0) continue;
if (strcmp(temp,".sbss")==0) continue;
if (strcmp(temp,".sdata")==0) continue;
if (strcmp(temp,".sdata2")==0) continue;
if (strcmp(temp,"address")==0) continue;
if (strcmp(temp,"-----------------------")==0) continue;
if (strcmp(temp,".sbss2")==0) break;
if (temp[1]==']') continue;
if (!started) continue;
u32 address = -1, size, vaddress = -1;
int moduleIndex = 0;
int typeInt;
SymbolType type;
char name[128] = {0};
if (sscanf(line, ".module %x %08x %08x %127c", &moduleIndex, &address, &size, name) == 4) {
// Found a module definition.
ModuleEntry mod;
mod.index = moduleIndex;
strcpy(mod.name, name);
mod.start = address;
mod.size = size;
modules.push_back(mod);
hasModules = true;
continue;
}
sscanf(line, "%08x %08x %x %i %127c", &address, &size, &vaddress, &typeInt, name);
type = (SymbolType) typeInt;
if (!hasModules) {
if (!Memory::IsValidAddress(vaddress)) {
ERROR_LOG(LOADER, "Invalid address in symbol file: %08x (%s)", vaddress, name);
continue;
}
} else {
// The 3rd field is now used for the module index.
moduleIndex = vaddress;
vaddress = GetModuleAbsoluteAddr(address, moduleIndex);
if (!Memory::IsValidAddress(vaddress)) {
ERROR_LOG(LOADER, "Invalid address in symbol file: %08x (%s)", vaddress, name);
continue;
}
}
if (type == ST_DATA && size == 0)
size = 4;
if (!strcmp(name, ".text") || !strcmp(name, ".init") || strlen(name) <= 1) {
} else {
switch (type)
{
case ST_FUNCTION:
AddFunction(name, vaddress, size, moduleIndex);
break;
case ST_DATA:
AddData(vaddress,size,DATATYPE_BYTE, moduleIndex);
if (name[0] != 0)
AddLabel(name, vaddress, moduleIndex);
break;
case ST_NONE:
case ST_ALL:
// Shouldn't be possible.
break;
}
}
}
gzclose(f);
SortSymbols();
return started;
}
void SymbolMap::SaveSymbolMap(const char *filename) const {
lock_guard guard(lock_);
// Don't bother writing a blank file.
if (!File::Exists(filename) && functions.empty() && data.empty()) {
return;
}
#if defined(_WIN32) && defined(UNICODE)
gzFile f = gzopen_w(ConvertUTF8ToWString(filename).c_str(), "w9");
#else
gzFile f = gzopen(filename, "w9");
#endif
if (f == Z_NULL)
return;
gzprintf(f, ".text\n");
for (auto it = modules.begin(), end = modules.end(); it != end; ++it) {
const ModuleEntry &mod = *it;
gzprintf(f, ".module %x %08x %08x %s\n", mod.index, mod.start, mod.size, mod.name);
}
for (auto it = functions.begin(), end = functions.end(); it != end; ++it) {
const FunctionEntry& e = it->second;
gzprintf(f, "%08x %08x %x %i %s\n", e.start, e.size, e.module, ST_FUNCTION, GetLabelNameRel(e.start, e.module));
}
for (auto it = data.begin(), end = data.end(); it != end; ++it) {
const DataEntry& e = it->second;
gzprintf(f, "%08x %08x %x %i %s\n", e.start, e.size, e.module, ST_DATA, GetLabelNameRel(e.start, e.module));
}
gzclose(f);
}
bool SymbolMap::LoadNocashSym(const char *filename) {
lock_guard guard(lock_);
FILE *f = File::OpenCFile(filename, "r");
if (!f)
return false;
while (!feof(f)) {
char line[256], value[256] = {0};
char *p = fgets(line, 256, f);
if (p == NULL)
break;
u32 address;
if (sscanf(line, "%08X %s", &address, value) != 2)
continue;
if (address == 0 && strcmp(value, "0") == 0)
continue;
if (value[0] == '.') {
// data directives
char* s = strchr(value, ':');
if (s != NULL) {
*s = 0;
u32 size = 0;
if (sscanf(s + 1, "%04X", &size) != 1)
continue;
if (strcasecmp(value, ".byt") == 0) {
AddData(address, size, DATATYPE_BYTE, 0);
} else if (strcasecmp(value, ".wrd") == 0) {
AddData(address, size, DATATYPE_HALFWORD, 0);
} else if (strcasecmp(value, ".dbl") == 0) {
AddData(address, size, DATATYPE_WORD, 0);
} else if (strcasecmp(value, ".asc") == 0) {
AddData(address, size, DATATYPE_ASCII, 0);
}
}
} else { // labels
int size = 1;
char* seperator = strchr(value, ',');
if (seperator != NULL) {
*seperator = 0;
sscanf(seperator+1,"%08X",&size);
}
if (size != 1) {
AddFunction(value, address,size, 0);
} else {
AddLabel(value, address, 0);
}
}
}
fclose(f);
return true;
}
void SymbolMap::SaveNocashSym(const char *filename) const {
lock_guard guard(lock_);
// Don't bother writing a blank file.
if (!File::Exists(filename) && functions.empty() && data.empty()) {
return;
}
FILE* f = fopen(filename, "w");
if (f == NULL)
return;
// only write functions, the rest isn't really interesting
for (auto it = functions.begin(), end = functions.end(); it != end; ++it) {
const FunctionEntry& e = it->second;
fprintf(f, "%08X %s,%04X\n", GetModuleAbsoluteAddr(e.start,e.module),GetLabelNameRel(e.start, e.module), e.size);
}
fclose(f);
}
SymbolType SymbolMap::GetSymbolType(u32 address) const {
lock_guard guard(lock_);
if (activeFunctions.find(address) != activeFunctions.end())
return ST_FUNCTION;
if (activeData.find(address) != activeData.end())
return ST_DATA;
return ST_NONE;
}
bool SymbolMap::GetSymbolInfo(SymbolInfo *info, u32 address, SymbolType symmask) const {
u32 functionAddress = INVALID_ADDRESS;
u32 dataAddress = INVALID_ADDRESS;
if (symmask & ST_FUNCTION) {
functionAddress = GetFunctionStart(address);
// If both are found, we always return the function, so just do that early.
if (functionAddress != INVALID_ADDRESS) {
if (info != NULL) {
info->type = ST_FUNCTION;
info->address = functionAddress;
info->size = GetFunctionSize(functionAddress);
info->moduleAddress = GetFunctionModuleAddress(functionAddress);
}
return true;
}
}
if (symmask & ST_DATA) {
dataAddress = GetDataStart(address);
if (dataAddress != INVALID_ADDRESS) {
if (info != NULL) {
info->type = ST_DATA;
info->address = dataAddress;
info->size = GetDataSize(dataAddress);
info->moduleAddress = GetDataModuleAddress(dataAddress);
}
return true;
}
}
return false;
}
u32 SymbolMap::GetNextSymbolAddress(u32 address, SymbolType symmask) {
lock_guard guard(lock_);
const auto functionEntry = symmask & ST_FUNCTION ? activeFunctions.upper_bound(address) : activeFunctions.end();
const auto dataEntry = symmask & ST_DATA ? activeData.upper_bound(address) : activeData.end();
if (functionEntry == activeFunctions.end() && dataEntry == activeData.end())
return INVALID_ADDRESS;
u32 funcAddress = (functionEntry != activeFunctions.end()) ? functionEntry->first : 0xFFFFFFFF;
u32 dataAddress = (dataEntry != activeData.end()) ? dataEntry->first : 0xFFFFFFFF;
if (funcAddress <= dataAddress)
return funcAddress;
else
return dataAddress;
}
std::string SymbolMap::GetDescription(unsigned int address) const {
lock_guard guard(lock_);
const char* labelName = NULL;
u32 funcStart = GetFunctionStart(address);
if (funcStart != INVALID_ADDRESS) {
labelName = GetLabelName(funcStart);
} else {
u32 dataStart = GetDataStart(address);
if (dataStart != INVALID_ADDRESS)
labelName = GetLabelName(dataStart);
}
if (labelName != NULL)
return labelName;
char descriptionTemp[256];
sprintf(descriptionTemp, "(%08x)", address);
return descriptionTemp;
}
std::vector<SymbolEntry> SymbolMap::GetAllSymbols(SymbolType symmask) {
std::vector<SymbolEntry> result;
if (symmask & ST_FUNCTION) {
lock_guard guard(lock_);
for (auto it = activeFunctions.begin(); it != activeFunctions.end(); it++) {
SymbolEntry entry;
entry.address = it->first;
entry.size = GetFunctionSize(entry.address);
const char* name = GetLabelName(entry.address);
if (name != NULL)
entry.name = name;
result.push_back(entry);
}
}
if (symmask & ST_DATA) {
lock_guard guard(lock_);
for (auto it = activeData.begin(); it != activeData.end(); it++) {
SymbolEntry entry;
entry.address = it->first;
entry.size = GetDataSize(entry.address);
const char* name = GetLabelName(entry.address);
if (name != NULL)
entry.name = name;
result.push_back(entry);
}
}
return result;
}
void SymbolMap::AddModule(const char *name, u32 address, u32 size) {
lock_guard guard(lock_);
for (auto it = modules.begin(), end = modules.end(); it != end; ++it) {
if (!strcmp(it->name, name)) {
// Just reactivate that one.
it->start = address;
it->size = size;
activeModuleEnds.insert(std::make_pair(it->start + it->size, *it));
UpdateActiveSymbols();
return;
}
}
ModuleEntry mod;
strncpy(mod.name, name, ARRAY_SIZE(mod.name));
mod.name[ARRAY_SIZE(mod.name) - 1] = '\0';
mod.start = address;
mod.size = size;
mod.index = (int)modules.size() + 1;
modules.push_back(mod);
activeModuleEnds.insert(std::make_pair(mod.start + mod.size, mod));
UpdateActiveSymbols();
}
void SymbolMap::UnloadModule(u32 address, u32 size) {
lock_guard guard(lock_);
activeModuleEnds.erase(address + size);
UpdateActiveSymbols();
}
u32 SymbolMap::GetModuleRelativeAddr(u32 address, int moduleIndex) const {
lock_guard guard(lock_);
if (moduleIndex == -1) {
moduleIndex = GetModuleIndex(address);
}
for (auto it = modules.begin(), end = modules.end(); it != end; ++it) {
if (it->index == moduleIndex) {
return address - it->start;
}
}
return address;
}
u32 SymbolMap::GetModuleAbsoluteAddr(u32 relative, int moduleIndex) const {
lock_guard guard(lock_);
for (auto it = modules.begin(), end = modules.end(); it != end; ++it) {
if (it->index == moduleIndex) {
return it->start + relative;
}
}
return relative;
}
int SymbolMap::GetModuleIndex(u32 address) const {
lock_guard guard(lock_);
auto iter = activeModuleEnds.upper_bound(address);
if (iter == activeModuleEnds.end())
return -1;
return iter->second.index;
}
bool SymbolMap::IsModuleActive(int moduleIndex) const {
if (moduleIndex == 0) {
return true;
}
lock_guard guard(lock_);
for (auto it = activeModuleEnds.begin(), end = activeModuleEnds.end(); it != end; ++it) {
if (it->second.index == moduleIndex) {
return true;
}
}
return false;
}
std::vector<LoadedModuleInfo> SymbolMap::getAllModules() const {
lock_guard guard(lock_);
std::vector<LoadedModuleInfo> result;
for (size_t i = 0; i < modules.size(); i++) {
LoadedModuleInfo m;
m.name = modules[i].name;
m.address = modules[i].start;
m.size = modules[i].size;
u32 key = modules[i].start + modules[i].size;
m.active = activeModuleEnds.find(key) != activeModuleEnds.end();
result.push_back(m);
}
return result;
}
void SymbolMap::AddFunction(const char* name, u32 address, u32 size, int moduleIndex) {
lock_guard guard(lock_);
if (moduleIndex == -1) {
moduleIndex = GetModuleIndex(address);
} else if (moduleIndex == 0) {
sawUnknownModule = true;
}
// Is there an existing one?
u32 relAddress = GetModuleRelativeAddr(address, moduleIndex);
auto symbolKey = std::make_pair(moduleIndex, relAddress);
auto existing = functions.find(symbolKey);
if (sawUnknownModule && existing == functions.end()) {
// Fall back: maybe it's got moduleIndex = 0.
existing = functions.find(std::make_pair(0, address));
}
if (existing != functions.end()) {
existing->second.size = size;
if (existing->second.module != moduleIndex) {
FunctionEntry func = existing->second;
func.start = relAddress;
func.module = moduleIndex;
functions.erase(existing);
functions[symbolKey] = func;
}
// Refresh the active item if it exists.
auto active = activeFunctions.find(address);
if (active != activeFunctions.end() && active->second.module == moduleIndex) {
activeFunctions.erase(active);
activeFunctions.insert(std::make_pair(address, existing->second));
}
} else {
FunctionEntry func;
func.start = relAddress;
func.size = size;
func.index = (int)functions.size();
func.module = moduleIndex;
functions[symbolKey] = func;
if (IsModuleActive(moduleIndex)) {
activeFunctions.insert(std::make_pair(address, func));
}
}
AddLabel(name, address, moduleIndex);
}
u32 SymbolMap::GetFunctionStart(u32 address) const {
lock_guard guard(lock_);
auto it = activeFunctions.upper_bound(address);
if (it == activeFunctions.end()) {
// check last element
auto rit = activeFunctions.rbegin();
if (rit != activeFunctions.rend()) {
u32 start = rit->first;
u32 size = rit->second.size;
if (start <= address && start+size > address)
return start;
}
// otherwise there's no function that contains this address
return INVALID_ADDRESS;
}
if (it != activeFunctions.begin()) {
it--;
u32 start = it->first;
u32 size = it->second.size;
if (start <= address && start+size > address)
return start;
}
return INVALID_ADDRESS;
}
u32 SymbolMap::FindPossibleFunctionAtAfter(u32 address) const {
lock_guard guard(lock_);
auto it = activeFunctions.lower_bound(address);
if (it == activeFunctions.end()) {
return (u32)-1;
}
return it->first;
}
u32 SymbolMap::GetFunctionSize(u32 startAddress) const {
lock_guard guard(lock_);
auto it = activeFunctions.find(startAddress);
if (it == activeFunctions.end())
return INVALID_ADDRESS;
return it->second.size;
}
u32 SymbolMap::GetFunctionModuleAddress(u32 startAddress) const {
lock_guard guard(lock_);
auto it = activeFunctions.find(startAddress);
if (it == activeFunctions.end())
return INVALID_ADDRESS;
return GetModuleAbsoluteAddr(0, it->second.module);
}
int SymbolMap::GetFunctionNum(u32 address) const {
lock_guard guard(lock_);
u32 start = GetFunctionStart(address);
if (start == INVALID_ADDRESS)
return INVALID_ADDRESS;
auto it = activeFunctions.find(start);
if (it == activeFunctions.end())
return INVALID_ADDRESS;
return it->second.index;
}
void SymbolMap::AssignFunctionIndices() {
lock_guard guard(lock_);
int index = 0;
for (auto mod = activeModuleEnds.begin(), modend = activeModuleEnds.end(); mod != modend; ++mod) {
int moduleIndex = mod->second.index;
auto begin = functions.lower_bound(std::make_pair(moduleIndex, 0));
auto end = functions.upper_bound(std::make_pair(moduleIndex, 0xFFFFFFFF));
for (auto it = begin; it != end; ++it) {
it->second.index = index++;
}
}
}
void SymbolMap::UpdateActiveSymbols() {
// return; (slow in debug mode)
lock_guard guard(lock_);
activeFunctions.clear();
activeLabels.clear();
activeData.clear();
// On startup and shutdown, we can skip the rest. Tiny optimization.
if (activeModuleEnds.empty() || (functions.empty() && labels.empty() && data.empty())) {
return;
}
std::map<int, u32> activeModuleIndexes;
for (auto it = activeModuleEnds.begin(), end = activeModuleEnds.end(); it != end; ++it) {
activeModuleIndexes[it->second.index] = it->second.start;
}
for (auto it = functions.begin(), end = functions.end(); it != end; ++it) {
const auto mod = activeModuleIndexes.find(it->second.module);
if (it->second.module == 0) {
activeFunctions.insert(std::make_pair(it->second.start, it->second));
} else if (mod != activeModuleIndexes.end()) {
activeFunctions.insert(std::make_pair(mod->second + it->second.start, it->second));
}
}
for (auto it = labels.begin(), end = labels.end(); it != end; ++it) {
const auto mod = activeModuleIndexes.find(it->second.module);
if (it->second.module == 0) {
activeLabels.insert(std::make_pair(it->second.addr, it->second));
} else if (mod != activeModuleIndexes.end()) {
activeLabels.insert(std::make_pair(mod->second + it->second.addr, it->second));
}
}
for (auto it = data.begin(), end = data.end(); it != end; ++it) {
const auto mod = activeModuleIndexes.find(it->second.module);
if (it->second.module == 0) {
activeData.insert(std::make_pair(it->second.start, it->second));
} else if (mod != activeModuleIndexes.end()) {
activeData.insert(std::make_pair(mod->second + it->second.start, it->second));
}
}
AssignFunctionIndices();
}
bool SymbolMap::SetFunctionSize(u32 startAddress, u32 newSize) {
lock_guard guard(lock_);
auto funcInfo = activeFunctions.find(startAddress);
if (funcInfo != activeFunctions.end()) {
auto symbolKey = std::make_pair(funcInfo->second.module, funcInfo->second.start);
auto func = functions.find(symbolKey);
if (func != functions.end()) {
func->second.size = newSize;
UpdateActiveSymbols();
}
}
// TODO: check for overlaps
return true;
}
bool SymbolMap::RemoveFunction(u32 startAddress, bool removeName) {
lock_guard guard(lock_);
auto it = activeFunctions.find(startAddress);
if (it == activeFunctions.end())
return false;
auto symbolKey = std::make_pair(it->second.module, it->second.start);
auto it2 = functions.find(symbolKey);
if (it2 != functions.end()) {
functions.erase(it2);
}
activeFunctions.erase(it);
if (removeName) {
auto labelIt = activeLabels.find(startAddress);
if (labelIt != activeLabels.end()) {
symbolKey = std::make_pair(labelIt->second.module, labelIt->second.addr);
auto labelIt2 = labels.find(symbolKey);
if (labelIt2 != labels.end()) {
labels.erase(labelIt2);
}
activeLabels.erase(labelIt);
}
}
return true;
}
void SymbolMap::AddLabel(const char* name, u32 address, int moduleIndex) {
lock_guard guard(lock_);
if (moduleIndex == -1) {
moduleIndex = GetModuleIndex(address);
} else if (moduleIndex == 0) {
sawUnknownModule = true;
}
// Is there an existing one?
u32 relAddress = GetModuleRelativeAddr(address, moduleIndex);
auto symbolKey = std::make_pair(moduleIndex, relAddress);
auto existing = labels.find(symbolKey);
if (sawUnknownModule && existing == labels.end()) {
// Fall back: maybe it's got moduleIndex = 0.
existing = labels.find(std::make_pair(0, address));
}
if (existing != labels.end()) {
// We leave an existing label alone, rather than overwriting.
// But we'll still upgrade it to the correct module / relative address.
if (existing->second.module != moduleIndex) {
LabelEntry label = existing->second;
label.addr = relAddress;
label.module = moduleIndex;
labels.erase(existing);
labels[symbolKey] = label;
// Refresh the active item if it exists.
auto active = activeLabels.find(address);
if (active != activeLabels.end() && active->second.module == moduleIndex) {
activeLabels.erase(active);
activeLabels.insert(std::make_pair(address, label));
}
}
} else {
LabelEntry label;
label.addr = relAddress;
label.module = moduleIndex;
strncpy(label.name, name, 128);
label.name[127] = 0;
labels[symbolKey] = label;
if (IsModuleActive(moduleIndex)) {
activeLabels.insert(std::make_pair(address, label));
}
}
}
void SymbolMap::SetLabelName(const char* name, u32 address) {
lock_guard guard(lock_);
auto labelInfo = activeLabels.find(address);
if (labelInfo == activeLabels.end()) {
AddLabel(name, address);
} else {
auto symbolKey = std::make_pair(labelInfo->second.module, labelInfo->second.addr);
auto label = labels.find(symbolKey);
if (label != labels.end()) {
strncpy(label->second.name, name, 128);
label->second.name[127] = 0;
// Refresh the active item if it exists.
auto active = activeLabels.find(address);
if (active != activeLabels.end() && active->second.module == label->second.module) {
activeLabels.erase(active);
activeLabels.insert(std::make_pair(address, label->second));
}
}
}
}
const char *SymbolMap::GetLabelName(u32 address) const {
lock_guard guard(lock_);
auto it = activeLabels.find(address);
if (it == activeLabels.end())
return NULL;
return it->second.name;
}
const char *SymbolMap::GetLabelNameRel(u32 relAddress, int moduleIndex) const {
lock_guard guard(lock_);
auto it = labels.find(std::make_pair(moduleIndex, relAddress));
if (it == labels.end())
return NULL;
return it->second.name;
}
std::string SymbolMap::GetLabelString(u32 address) const {
lock_guard guard(lock_);
const char *label = GetLabelName(address);
if (label == NULL)
return "";
return label;
}
bool SymbolMap::GetLabelValue(const char* name, u32& dest) {
lock_guard guard(lock_);
for (auto it = activeLabels.begin(); it != activeLabels.end(); it++) {
if (strcasecmp(name, it->second.name) == 0) {
dest = it->first;
return true;
}
}
return false;
}
void SymbolMap::AddData(u32 address, u32 size, DataType type, int moduleIndex) {
lock_guard guard(lock_);
if (moduleIndex == -1) {
moduleIndex = GetModuleIndex(address);
} else if (moduleIndex == 0) {
sawUnknownModule = true;
}
// Is there an existing one?
u32 relAddress = GetModuleRelativeAddr(address, moduleIndex);
auto symbolKey = std::make_pair(moduleIndex, relAddress);
auto existing = data.find(symbolKey);
if (sawUnknownModule && existing == data.end()) {
// Fall back: maybe it's got moduleIndex = 0.
existing = data.find(std::make_pair(0, address));
}
if (existing != data.end()) {
existing->second.size = size;
existing->second.type = type;
if (existing->second.module != moduleIndex) {
DataEntry entry = existing->second;
entry.module = moduleIndex;
entry.start = relAddress;
data.erase(existing);
data[symbolKey] = entry;
}
// Refresh the active item if it exists.
auto active = activeData.find(address);
if (active != activeData.end() && active->second.module == moduleIndex) {
activeData.erase(active);
activeData.insert(std::make_pair(address, existing->second));
}
} else {
DataEntry entry;
entry.start = relAddress;
entry.size = size;
entry.type = type;
entry.module = moduleIndex;
data[symbolKey] = entry;
if (IsModuleActive(moduleIndex)) {
activeData.insert(std::make_pair(address, entry));
}
}
}
u32 SymbolMap::GetDataStart(u32 address) const {
lock_guard guard(lock_);
auto it = activeData.upper_bound(address);
if (it == activeData.end())
{
// check last element
auto rit = activeData.rbegin();
if (rit != activeData.rend())
{
u32 start = rit->first;
u32 size = rit->second.size;
if (start <= address && start+size > address)
return start;
}
// otherwise there's no data that contains this address
return INVALID_ADDRESS;
}
if (it != activeData.begin()) {
it--;
u32 start = it->first;
u32 size = it->second.size;
if (start <= address && start+size > address)
return start;
}
return INVALID_ADDRESS;
}
u32 SymbolMap::GetDataSize(u32 startAddress) const {
lock_guard guard(lock_);
auto it = activeData.find(startAddress);
if (it == activeData.end())
return INVALID_ADDRESS;
return it->second.size;
}
u32 SymbolMap::GetDataModuleAddress(u32 startAddress) const {
lock_guard guard(lock_);
auto it = activeData.find(startAddress);
if (it == activeData.end())
return INVALID_ADDRESS;
return GetModuleAbsoluteAddr(0, it->second.module);
}
DataType SymbolMap::GetDataType(u32 startAddress) const {
lock_guard guard(lock_);
auto it = activeData.find(startAddress);
if (it == activeData.end())
return DATATYPE_NONE;
return it->second.type;
}
void SymbolMap::GetLabels(std::vector<LabelDefinition> &dest) const
{
lock_guard guard(lock_);
for (auto it = activeLabels.begin(); it != activeLabels.end(); it++) {
LabelDefinition entry;
entry.value = it->first;
entry.name = ConvertUTF8ToWString(it->second.name);
dest.push_back(entry);
}
}
#if defined(_WIN32)
struct DefaultSymbol {
u32 address;
const char* name;
};
static const DefaultSymbol defaultSymbols[]= {
{ 0x08800000, "User memory" },
{ 0x08804000, "Default load address" },
{ 0x04000000, "VRAM" },
{ 0x88000000, "Kernel memory" },
{ 0x00010000, "Scratchpad" },
};
void SymbolMap::FillSymbolListBox(HWND listbox,SymbolType symType) const {
wchar_t temp[256];
lock_guard guard(lock_);
SendMessage(listbox, WM_SETREDRAW, FALSE, 0);
ListBox_ResetContent(listbox);
switch (symType) {
case ST_FUNCTION:
{
SendMessage(listbox, LB_INITSTORAGE, (WPARAM)activeFunctions.size(), (LPARAM)activeFunctions.size() * 30);
for (auto it = activeFunctions.begin(), end = activeFunctions.end(); it != end; ++it) {
const FunctionEntry& entry = it->second;
const char* name = GetLabelName(it->first);
if (name != NULL)
wsprintf(temp, L"%S", name);
else
wsprintf(temp, L"0x%08X", it->first);
int index = ListBox_AddString(listbox,temp);
ListBox_SetItemData(listbox,index,it->first);
}
}
break;
case ST_DATA:
{
int count = ARRAYSIZE(defaultSymbols)+(int)activeData.size();
SendMessage(listbox, LB_INITSTORAGE, (WPARAM)count, (LPARAM)count * 30);
for (int i = 0; i < ARRAYSIZE(defaultSymbols); i++) {
wsprintf(temp, L"0x%08X (%S)", defaultSymbols[i].address, defaultSymbols[i].name);
int index = ListBox_AddString(listbox,temp);
ListBox_SetItemData(listbox,index,defaultSymbols[i].address);
}
for (auto it = activeData.begin(), end = activeData.end(); it != end; ++it) {
const DataEntry& entry = it->second;
const char* name = GetLabelName(it->first);
if (name != NULL)
wsprintf(temp, L"%S", name);
else
wsprintf(temp, L"0x%08X", it->first);
int index = ListBox_AddString(listbox,temp);
ListBox_SetItemData(listbox,index,it->first);
}
}
break;
}
SendMessage(listbox, WM_SETREDRAW, TRUE, 0);
RedrawWindow(listbox, NULL, NULL, RDW_ERASE | RDW_FRAME | RDW_INVALIDATE | RDW_ALLCHILDREN);
}
#endif