ppsspp/Core/MemMap.h
2015-04-12 22:37:55 -07:00

492 lines
12 KiB
C++

// Copyright (C) 2003 Dolphin Project / 2012 PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#pragma once
#include <cstring>
#ifdef __SYMBIAN32__
#include <e32std.h>
#endif
#ifndef offsetof
#include <stddef.h>
#endif
// Includes
#include "Common/Common.h"
#include "Common/CommonTypes.h"
#include "Core/Opcode.h"
// PPSSPP is very aggressive about trying to do memory accesses directly, for speed.
// This can be a problem when debugging though, as stray memory reads and writes will
// crash the whole emulator.
// If safe memory is enabled and JIT is disabled, all memory access will go through the proper
// memory access functions, and thus won't crash the emu when they go out of bounds.
#if defined(_DEBUG)
//#define SAFE_MEMORY
#endif
// Global declarations
class PointerWrap;
typedef void (*writeFn8 )(const u8, const u32);
typedef void (*writeFn16)(const u16,const u32);
typedef void (*writeFn32)(const u32,const u32);
typedef void (*writeFn64)(const u64,const u32);
typedef void (*readFn8 )(u8&, const u32);
typedef void (*readFn16)(u16&, const u32);
typedef void (*readFn32)(u32&, const u32);
typedef void (*readFn64)(u64&, const u32);
namespace Memory
{
// Base is a pointer to the base of the memory map. Yes, some MMU tricks
// are used to set up a full GC or Wii memory map in process memory. on
// 32-bit, you have to mask your offsets with 0x3FFFFFFF. This means that
// some things are mirrored too many times, but eh... it works.
// In 64-bit, this might point to "high memory" (above the 32-bit limit),
// so be sure to load it into a 64-bit register.
extern u8 *base;
// These are guaranteed to point to "low memory" addresses (sub-32-bit).
// 64-bit: Pointers to low-mem (sub-0x10000000) mirror
// 32-bit: Same as the corresponding physical/virtual pointers.
// Broken into three chunks to workaround 32-bit mmap() limits.
extern u8 *m_pRAM;
extern u8 *m_pRAM2;
extern u8 *m_pRAM3;
extern u8 *m_pScratchPad;
extern u8 *m_pVRAM;
// 64-bit: Pointers to high-mem mirrors
// 32-bit: Same as above
extern u8 *m_pPhysicalRAM;
extern u8 *m_pUncachedRAM;
// This replaces RAM_NORMAL_SIZE at runtime.
extern u32 g_MemorySize;
extern u32 g_PSPModel;
enum
{
// This may be adjusted by remaster games.
RAM_NORMAL_SIZE = 0x02000000,
// Used if the PSP model is PSP-2000 (Slim).
RAM_DOUBLE_SIZE = RAM_NORMAL_SIZE * 2,
VRAM_SIZE = 0x00200000,
SCRATCHPAD_SIZE = 0x00004000,
#ifdef _ARCH_32
// This wraparound should work for PSP too.
MEMVIEW32_MASK = 0x3FFFFFFF,
#endif
};
enum {
MV_MIRROR_PREVIOUS = 1,
// MV_FAKE_VMEM = 2,
// MV_WII_ONLY = 4,
MV_IS_PRIMARY_RAM = 0x100,
MV_IS_EXTRA1_RAM = 0x200,
MV_IS_EXTRA2_RAM = 0x400,
};
struct MemoryView
{
u8 **out_ptr_low;
u8 **out_ptr;
u32 virtual_address;
u32 size;
u32 flags;
};
// Uses a memory arena to set up an emulator-friendly memory map
void MemoryMap_Setup(u32 flags);
void MemoryMap_Shutdown(u32 flags);
// Init and Shutdown
void Init();
void Shutdown();
void DoState(PointerWrap &p);
void Clear();
class MemoryInitedLock
{
public:
MemoryInitedLock();
~MemoryInitedLock();
};
// This doesn't lock memory access or anything, it just makes sure memory isn't freed.
// Use it when accessing PSP memory from external threads.
MemoryInitedLock Lock();
// used by JIT to read instructions. Does not resolve replacements.
Opcode Read_Opcode_JIT(const u32 _Address);
// used by JIT. Reads in the "Locked cache" mode
void Write_Opcode_JIT(const u32 _Address, const Opcode& _Value);
// Should be used by analyzers, disassemblers etc. Does resolve replacements.
Opcode Read_Instruction(const u32 _Address, bool resolveReplacements = false);
Opcode ReadUnchecked_Instruction(const u32 _Address, bool resolveReplacements = false);
u8 Read_U8(const u32 _Address);
u16 Read_U16(const u32 _Address);
u32 Read_U32(const u32 _Address);
u64 Read_U64(const u32 _Address);
#if (defined(ARM) || defined(_ARM)) && !defined(_M_ARM)
#define _M_ARM
#endif
inline u8* GetPointerUnchecked(const u32 address) {
#ifdef _ARCH_32
return (u8 *)(base + (address & MEMVIEW32_MASK));
#else
return (u8 *)(base + address);
#endif
}
#ifdef SAFE_MEMORY
u32 ReadUnchecked_U32(const u32 _Address);
// ONLY for use by GUI and fast interpreter
u8 ReadUnchecked_U8(const u32 _Address);
u16 ReadUnchecked_U16(const u32 _Address);
void WriteUnchecked_U8(const u8 _Data, const u32 _Address);
void WriteUnchecked_U16(const u16 _Data, const u32 _Address);
void WriteUnchecked_U32(const u32 _Data, const u32 _Address);
#else
inline u32 ReadUnchecked_U32(const u32 address) {
#ifdef _ARCH_32
return *(u32_le *)(base + (address & MEMVIEW32_MASK));
#else
return *(u32_le *)(base + address);
#endif
}
inline u16 ReadUnchecked_U16(const u32 address) {
#ifdef _ARCH_32
return *(u16_le *)(base + (address & MEMVIEW32_MASK));
#else
return *(u16_le *)(base + address);
#endif
}
inline u8 ReadUnchecked_U8(const u32 address) {
#ifdef _ARCH_32
return (*(u8 *)(base + (address & MEMVIEW32_MASK)));
#else
return (*(u8 *)(base + address));
#endif
}
inline void WriteUnchecked_U32(u32 data, u32 address) {
#ifdef _ARCH_32
*(u32_le *)(base + (address & MEMVIEW32_MASK)) = data;
#else
*(u32_le *)(base + address) = data;
#endif
}
inline void WriteUnchecked_U16(u16 data, u32 address) {
#ifdef _ARCH_32
*(u16_le *)(base + (address & MEMVIEW32_MASK)) = data;
#else
*(u16_le *)(base + address) = data;
#endif
}
inline void WriteUnchecked_U8(u8 data, u32 address) {
#ifdef _ARCH_32
(*(u8 *)(base + (address & MEMVIEW32_MASK))) = data;
#else
(*(u8 *)(base + address)) = data;
#endif
}
#endif
inline float Read_Float(u32 address)
{
u32 ifloat = Read_U32(address);
float f;
memcpy(&f, &ifloat, sizeof(float));
return f;
}
// used by JIT. Return zero-extended 32bit values
u32 Read_U8_ZX(const u32 address);
u32 Read_U16_ZX(const u32 address);
void Write_U8(const u8 data, const u32 address);
void Write_U16(const u16 data, const u32 address);
void Write_U32(const u32 data, const u32 address);
void Write_U64(const u64 data, const u32 address);
inline void Write_Float(float f, u32 address)
{
u32 u;
memcpy(&u, &f, sizeof(float));
Write_U32(u, address);
}
u8* GetPointer(const u32 address);
bool IsRAMAddress(const u32 address);
bool IsVRAMAddress(const u32 address);
bool IsScratchpadAddress(const u32 address);
inline const char* GetCharPointer(const u32 address) {
return (const char *)GetPointer(address);
}
inline void MemcpyUnchecked(void *to_data, const u32 from_address, const u32 len)
{
memcpy(to_data, GetPointerUnchecked(from_address), len);
}
inline void MemcpyUnchecked(const u32 to_address, const void *from_data, const u32 len)
{
memcpy(GetPointerUnchecked(to_address), from_data, len);
}
inline void MemcpyUnchecked(const u32 to_address, const u32 from_address, const u32 len)
{
MemcpyUnchecked(GetPointer(to_address), from_address, len);
}
inline bool IsValidAddress(const u32 address) {
if ((address & 0x3E000000) == 0x08000000) {
return true;
} else if ((address & 0x3F800000) == 0x04000000) {
return true;
} else if ((address & 0xBFFF0000) == 0x00010000) {
return true;
} else if ((address & 0x3F000000) >= 0x08000000 && (address & 0x3F000000) < 0x08000000 + g_MemorySize) {
return true;
} else {
return false;
}
}
inline u32 ValidSize(const u32 address, const u32 requested_size) {
u32 max_size;
if ((address & 0x3E000000) == 0x08000000) {
max_size = 0x08000000 + g_MemorySize - address;
}
else if ((address & 0x3F800000) == 0x04000000) {
max_size = 0x04800000 - address;
}
else if ((address & 0xBFFF0000) == 0x00010000) {
max_size = 0x00014000 - address;
}
else if ((address & 0x3F000000) >= 0x08000000 && (address & 0x3F000000) < 0x08000000 + g_MemorySize) {
max_size = 0x08000000 + g_MemorySize - address;
} else {
max_size = 0;
}
if (requested_size > max_size) {
return max_size;
}
return requested_size;
}
inline bool IsValidRange(const u32 address, const u32 size) {
return IsValidAddress(address) && ValidSize(address, size) == size;
}
};
template <typename T>
struct PSPPointer
{
u32_le ptr;
inline T &operator*() const
{
#ifdef _ARCH_32
return *(T *)(Memory::base + (ptr & Memory::MEMVIEW32_MASK));
#else
return *(T *)(Memory::base + ptr);
#endif
}
inline T &operator[](int i) const
{
#ifdef _ARCH_32
return *((T *)(Memory::base + (ptr & Memory::MEMVIEW32_MASK)) + i);
#else
return *((T *)(Memory::base + ptr) + i);
#endif
}
inline T *operator->() const
{
#ifdef _ARCH_32
return (T *)(Memory::base + (ptr & Memory::MEMVIEW32_MASK));
#else
return (T *)(Memory::base + ptr);
#endif
}
inline PSPPointer<T> operator+(int i) const
{
PSPPointer other;
other.ptr = ptr + i * sizeof(T);
return other;
}
inline PSPPointer<T> &operator=(u32 p)
{
ptr = p;
return *this;
}
inline PSPPointer<T> &operator+=(int i)
{
ptr = ptr + i * sizeof(T);
return *this;
}
inline PSPPointer<T> operator-(int i) const
{
PSPPointer other;
other.ptr = ptr - i * sizeof(T);
return other;
}
inline PSPPointer<T> &operator-=(int i)
{
ptr = ptr - i * sizeof(T);
return *this;
}
inline PSPPointer<T> &operator++()
{
ptr += sizeof(T);
return *this;
}
inline PSPPointer<T> operator++(int i)
{
PSPPointer<T> other;
other.ptr = ptr;
ptr += sizeof(T);
return other;
}
inline PSPPointer<T> &operator--()
{
ptr -= sizeof(T);
return *this;
}
inline PSPPointer<T> operator--(int i)
{
PSPPointer<T> other;
other.ptr = ptr;
ptr -= sizeof(T);
return other;
}
inline operator T*()
{
#ifdef _ARCH_32
return (T *)(Memory::base + (ptr & Memory::MEMVIEW32_MASK));
#else
return (T *)(Memory::base + ptr);
#endif
}
inline operator const T*() const
{
#ifdef _ARCH_32
return (const T *)(Memory::base + (ptr & Memory::MEMVIEW32_MASK));
#else
return (const T *)(Memory::base + ptr);
#endif
}
bool IsValid() const
{
return Memory::IsValidAddress(ptr);
}
static PSPPointer<T> Create(u32 ptr) {
PSPPointer<T> p;
p = ptr;
return p;
}
};
inline u32 PSP_GetScratchpadMemoryBase() { return 0x00010000;}
inline u32 PSP_GetScratchpadMemoryEnd() { return 0x00014000;}
inline u32 PSP_GetKernelMemoryBase() { return 0x08000000;}
inline u32 PSP_GetUserMemoryEnd() { return PSP_GetKernelMemoryBase() + Memory::g_MemorySize;}
inline u32 PSP_GetKernelMemoryEnd() { return 0x08400000;}
// "Volatile" RAM is between 0x08400000 and 0x08800000, can be requested by the
// game through sceKernelVolatileMemTryLock.
inline u32 PSP_GetUserMemoryBase() { return 0x08800000;}
inline u32 PSP_GetDefaultLoadAddress() { return 0;}
//inline u32 PSP_GetDefaultLoadAddress() { return 0x0898dab0;}
inline u32 PSP_GetVidMemBase() { return 0x04000000;}
inline u32 PSP_GetVidMemEnd() { return 0x04800000;}
template <typename T>
inline bool operator==(const PSPPointer<T> &lhs, const PSPPointer<T> &rhs)
{
return lhs.ptr == rhs.ptr;
}
template <typename T>
inline bool operator!=(const PSPPointer<T> &lhs, const PSPPointer<T> &rhs)
{
return lhs.ptr != rhs.ptr;
}
template <typename T>
inline bool operator<(const PSPPointer<T> &lhs, const PSPPointer<T> &rhs)
{
return lhs.ptr < rhs.ptr;
}
template <typename T>
inline bool operator>(const PSPPointer<T> &lhs, const PSPPointer<T> &rhs)
{
return lhs.ptr > rhs.ptr;
}
template <typename T>
inline bool operator<=(const PSPPointer<T> &lhs, const PSPPointer<T> &rhs)
{
return lhs.ptr <= rhs.ptr;
}
template <typename T>
inline bool operator>=(const PSPPointer<T> &lhs, const PSPPointer<T> &rhs)
{
return lhs.ptr >= rhs.ptr;
}